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Abstract

Cross-linguistic studies on unsupervised
word segmentation have consistently
shown that English is easier to segment
than other languages. In this paper, we
propose an explanation of this finding
based on the notion of segmentation
ambiguity. We show that English has a
very low segmentation ambiguity com-
pared to Japanese and that this difference
correlates with the segmentation perfor-
mance in a unigram model. We suggest
that segmentation ambiguity is linked
to a trade-off between syllable structure
complexity and word length distribution.

1 Introduction

During the course of language acquisition, in-
fants must learn to segment words from continu-
ous speech. Experimental studies show that they
start doing so from around 7.5 months of age
(Jusczyk and Aslin, 1995). Further studies indi-
cate that infants are sensitive to a number of word
boundary cues, like prosody (Jusczyk et al., 1999;
Mattys et al., 1999), transition probabilities (Saf-
fran et al., 1996; Pelucchi et al., 2009), phonotac-
tics (Mattys et al., 2001), coarticulation (Johnson
and Jusczyk, 2001) and combine these cues with
different weights (Weiss et al., 2010).

Computational models of word segmentation
have played a major role in assessing the relevance
and reliability of different statistical cues present
in the speech input. Some of these models focus
mainly on boundary detection, and assess differ-
ent strategies to identify them (Christiansen et al.,
1998; Xanthos, 2004; Swingley, 2005; Daland and
Pierrehumbert, 2011). Other models, sometimes
called lexicon-building algorithms, learn the lexi-
con and the segmentation at the same time and use
knowledge about the extracted lexicon to segment

novel utterances. State-of-the-art lexicon-building
segmentation algorithms are typically reported to
yield better performance than word boundary de-
tection algorithms (Brent, 1999; Venkataraman,
2001; Batchelder, 2002; Goldwater, 2007; John-
son, 2008b; Fleck, 2008; Blanchard et al., 2010).

As seen in Table 1, however, the performance
varies considerably across languages with English
winning by a high margin. This raises a general-
izability issue for NLP applications, but also for
the modeling of language acquisition since, obvi-
ously, it is not the case that in some languages,
infants fail to acquire an adult lexicon. Are these
performance differences only due to the fact that
the algorithms might be optimized for English? Or
do they also reflect some intrinsic linguistic differ-
ences between languages?

Lang. F-score Model Reference
English 0.89 AG Johnson (2009)
Chinese 0.77 AG Johnson (2010)
Spanish 0.58 DP Bigram Fleck (2008)
Arabic 0.56 WordEnds Fleck (2008)
Sesotho 0.55 AG Johnson (2008)
Japanese 0.55 BootLex Batchelder (2002)
French 0.54 NGS-u Boruta (2011)

Table 1: State-of-the-art unsupervised segmentation scores
for eight languages.

The aim of the present work is to understand
why English usually scores better than other lan-
guages, as far as unsupervised segmentation is
concerned. As a comparison point, we chose
Japanese because it is among the languages that
have given the poorest word segmentation scores.
In fact, Boruta et al. (2011) found an F-score
around 0.41 using both Brent (1999)’s MBDP-1
and Venkataraman (2001)’s NGS-u models, and
Batchelder (2002) found an F-score that goes
from 0.40 to 0.55 depending on the corpus used.
Japanese also differs typologically from English
along several phonological dimensions such as
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number of syllabic types, phonotactic constraints
and rhythmic structure. Although most lexicon-
building segmentation algorithms do not attempt
to model these dimensions, they still might be rel-
evant to speech segmentation and help explain the
performance difference.

The structure of the paper is as follows. First,
we present the class of lexical-building segmen-
tation algorithm that we use in this paper (Adap-
tor Grammar), and our English and Japanese cor-
pora. We then present data replicating the basic
finding that segmentation performance is better for
English than for Japanese. We then explore the hy-
pothesis that this finding is due to an intrinsic dif-
ference in segmentation ambiguity in the two lan-
guages, and suggest that the source of this differ-
ence rests in the structure of the phonological lexi-
con in the two languages. Finally, we use these in-
sights to try and reduce the gap between Japanese
and English segmentation through a modification
of the Unigram model where multiple linguistic
levels are learned jointly.

2 Computational Framework and
Corpora

2.1 Adaptor Grammar
In this study, we use the Adaptor Grammar frame-
work (Johnson et al., 2007) to test different mod-
els of word segmentation on English and Japanese
Corpora. This framework makes it possible to
express a class of hierarchical non-parametric
Bayesian models using an extension of probabilis-
tic context-free grammars called Adaptor Gram-
mar (AG). It allows one to easily define models
that incorporate different assumptions about lin-
guistic structure and is therefore a useful practical
tool for exploring different hypotheses about word
segmentation (Johnson, 2008b; Johnson, 2008a;
Johnson et al., 2010; Börschinger et al., 2012).

For mathematical details and a description of
the inference procedure for AGs, we refer the
reader to Johnson et al. (2007). Briefly, AG uses
the non-parametric Pitman-Yor-Process (Pitman
and Yor, 1997) which, as in Minimum Descrip-
tion lengths models, finds a compact representa-
tion of the input by re-using frequent structures
(here, words).

2.2 Corpora
In the present study, we used both Child Di-
rected Speech (CDS) and Adult Directed Speech

(ADS) corpora. English CDS was derived from
the Bernstein-Ratner corpus (Bernstein-Ratner,
1987), which consists in transcribed verbal inter-
action of parents with nine children between 1
and 2 years of age. We used the 9,790 utter-
ances that were phonemically transcribed by Brent
and Cartwright (1996). Japanese CDS consists in
the first 10, 000 utterances of the Hamasaki cor-
pus (Hamasaki, 2002). It provides a phonemic
transcript of spontaneous speech to a single child
collected from when the child was 2 up to when
it was 3.5 years old. Both CDS corpora are avail-
able from the CHILDES database (MacWhinney,
2000).

As for English ADS, we used the first 10,000
utterances of the Buckeye Speech Corpus (Pitt et
al., 2007) which consists in spontaneous conver-
sations with 40 speakers in American English. To
make it comparable to the other corpora in this
paper, we only used the idealized phonemic tran-
scription. Finally, for Japanese ADS, we used
the first 10,000 utterances of a phonemic tran-
scription of the Corpus of Spontaneous Japanese
(Maekawa et al., 2000). It consists of recorded
spontaneous conversations, or public speeches in
different fields ranging from engineering to hu-
manities. For each corpus, we present elementary
statistics in Table 2.

3 Unsupervised segmentation with the
Unigram Model

3.1 Setup
In this experiment we used the Adaptor Gram-
mar framework to implement a Unigram model of
word segmentation (Johnson et al., 2007). This
model has been shown to be equivalent to the orig-
inal MBDP-1 segmentation model (see Goldwater
(2007)). The model is defined as:

—
Utterance→Word+

Word→ Phoneme+

—
In the AG framework, an underlined non-

terminal indicates that this non-terminal is
adapted, i.e. that the AG will cache (and learn
probabilities for) entire sub-trees rooted in this
non-terminal. Here, Word is the only unit that the
model effectively learns, and there are no depen-
dencies between the words to be learned. This
grammar states that an utterance must be analyzed
in terms of one or more Words, where a Word is a
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Corpus Child Directed Speech Adult Directed Speech

— English Japanese English Japanese
Tokens
— Utterances 9, 790 10, 000 10, 000 10, 000
— Words 33, 399 27, 362 57, 185 87, 156
— Phonemes 95, 809 108, 427 183, 196 289, 264
Types
— Words 1, 321 2, 389 3, 708 4, 206
— Phonemes 50 30 44 25
Average Lengths
— Words per utterance 3.41 2.74 5.72 8.72
— Phonemes per utterance 9.79 10.84 18.32 28.93
— Phonemes per word 2.87 3.96 3.20 3.32

Table 2 : Characteristics of phonemically transcribed corpora

sequence of Phonemes.
We ran the model twice on each corpus for

2,000 iterations with hyper-parameter sampling
and we collected samples throughout the process,
following the methodology of Johnson and Gold-
water (2009)1. For evaluation, we performed their
Minimum Bayes Risk decoding using the col-
lected samples to get a single score.

3.2 Evaluation

For the evaluation, we used the same measures as
Brent (1999), Venkataraman (2001) and Goldwa-
ter (2007), namely token Precision (P), Recall (R)
and F-score (F). Precision is defined as the num-
ber of correct word tokens found out of all tokens
posited. Recall is the number of correct word to-
kens found out of all tokens in the gold standard.
The F-score is defined as the harmonic mean of
Precision and Recall , F = 2∗P∗R

P+R .
We will refer to these scores as the segmentation

scores. In addition, we define similar measures for
word boundaries and word types in the lexicon.

3.3 Results and discussion

The results are shown in Table 3. As expected,
the model yields substantially better scores in En-
glish than Japanese, for both CDS and ADS. In
addition, we found that in both languages, ADS
yields slightly worse results than CDS. This is to
be expected because ADS uses between 60% and
300% longer utterances than CDS, and as a result
presents the learner with a more difficult segmen-
tation problem. Moreover, ADS includes between

1We used incremental initialization

70% and 280% more word types than CDS, mak-
ing it a more difficult lexical learning problem.
Note, however, that despite these large differences
in corpus statistics, the difference in segmentation
performance between ADS and CDS are small
compared to the differences between Japanese and
English.

An error analysis on English data shows that
most errors come from the Unigram model mistak-
ing high frequency collocations for single words
(see also Goldwater (2007)). This leads to an
under-segmentation of chunks like “a boy” or “is
it” 2. Yet, the model also tends to break off fre-
quent morphological affixes, especially “-ing” and
“-s” , leading to an over-segmentation of words
like “talk ing” or “black s”.

Similarly, Japanese data shows both over-
and under-segmentation errors. However, over-
segmentation is more severe than for English, as
it does not only affect affixes, but surfaces as
breaking apart multi-syllabic words. In addition,
Japanese segmentation faces another kind of er-
ror which acts across word boundaries. For exam-
ple, “ni kashite” is segmented as “nika shite” and
“nurete inakatta” as “nure tei na katta”. This leads
to an output lexicon that, on the one hand, allows
for a more compact analysis of the corpus than
the true lexicon: the number of word types drops
from 2,389 to 1,463 in CDS and from 4,206 to
2,372 in ADS although the average token length –
and consequently, overall number of tokens – does
not change as dramatically, dropping from 3.96 to

2For ease of presentation, we use orthography to present
examples although all experiments are run on phonemic tran-
scripts.
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— Child Directed Speech Adult Directed Speech

— English Japanese English Japanese

— F P R F P R F P R F P R
Segmentation 0.77 0.76 0.77 0.55 0.51 0.61 0.69 0.66 0.73 0.50 0.48 0.52
Boundaries 0.87 0.87 0.88 0.72 0.63 0.83 0.86 0.81 0.91 0.76 0.74 0.79
Lexicon 0.62 0.65 0.59 0.33 0.43 0.26 0.41 0.48 0.36 0.30 0.42 0.23

Table 3 : Word segmentation scores of the Unigram model

3.31 for CDS and from 3.32 to 3.12 in ADS. On
the other hand, however, most of the output lex-
icon items are not valid Japanese words and this
leads to the bad lexicon F-scores. This, in turn,
leads to the bad overall segmentation performance.

In brief, we have shown that, across two dif-
ferent corpora, English yields consistently better
segmentation results than Japanese for the Uni-
gram model. This confirms and extends the results
of Boruta et al. (2011) and Batchelder (2002). It
strongly suggests that the difference is neither due
to a specific choice of model nor to particularities
of the corpora, but reflects a fundamental property
of these two languages.

In the following section, we introduce the no-
tion of segmentation ambiguity, it to English and
Japanese data, and show that it correlates with seg-
mentation performance.

4 Intrinsic Segmentation Ambiguity

Lexicon-based segmentation algorithms like
MBDP-1, NGS-u and the AG Unigram model
learn the lexicon and the segmentation at the
same time. This makes it difficult, in case of
poor performance, to see whether the problem
comes from the intrinsic segmentability of the
language or from the quality of the extracted
lexicon. Our claim is that Japanese is intrinsically
more difficult to segment than English, even when
a good lexicon is already assumed. We explore
this hypothesis by studying segmentation alone,
assuming a perfect (Gold) lexicon.

4.1 Segmentation ambiguity

Without any information, a string of N phonemes
could be segmented in 2N−1 ways. When a lexi-
con is provided, the set of possible segmentations
is reduced to a smaller number. To illustrate this,
suppose we have to segment the input utterance:

/ay s k r iy m/ 3, and that the lexicon contains the
following words : /ay/ (I), /s k r iy m/ (scream),
/ay s/ (ice), /k r iy m/ (cream). Only two segmen-
tations are possible : /ay skriym/ (I scream) and
/ays kriym/ (ice cream).

We are interested in the ambiguity generated by
the different possible parses that result from such a
supervised segmentation. In order to quantify this
idea in general, we define a Normalized Segmenta-

tion Entropy. To do this, we need to assign a prob-
ability to every possible segmentation. To this end,
we use a unigram model where the probability of a
lexical item is its normalized frequency in the cor-
pus and the probability of a parse is the product
of the probabilities of its terms. In order to obtain
a measure that does not depend on the utterance
length, we normalize by the number of possible
boundaries in the utterance. So for an utterance of
length N , the Normalized Segmentation Entropy
(NSE) is computed using Shannon formula (Shan-
non, 1948) as follows:

—

NSE = −
�

i Pilog2(Pi)/(N − 1)
—

where Pi is the probability of the parse i .
For CDS data we found Normalized Segmen-

tation Entropies of 0.0021 bits for English and
0.0156 bits for Japanese. In ADS data we
found similar results with 0.0032 bits for English
and 0.0275 bits for Japanese. This means that
Japanese needs between 7 and 8 times more bits
than English to encode segmentation information.
This is a very large difference, which is of the
same magnitude in CDS and ADS. These differ-
ences clearly show that intrinsically, Japanese is
more ambiguous than English with regards to seg-
mentation.

One can refine this analysis by distinguishing
two sources of ambiguity: ambiguity across word

boundaries, as in ”ice cream / [ay s] [k r iy m]”
3We use ARPABET notation to represent phonemic input.
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Figure 1 : Correlation between Normalized Segmentation Entropy (in bits) and the segmentation F-score for CDS (left) and
ADS (Right)

vs ”I scream / [ay] [s k r iy m]”. And ambigu-
ity within the lexicon, that occurs when a lexical
item is composed of two or more sub-words (like
in “Butterfly”).

Since we are mainly investigating lexicon-
building models, it is important to measure the am-
biguity within the lexicon itself, in the ideal case
where this lexicon is perfect. To this end, we com-
puted the average number of segmentations for a
lexicon item. For example, the word “butterfly”
has two possible segmentations : the original word
“butterfly” and a segmentation comprising the two
sub-words : “butter” and “fly”. For English to-
kens, we found an average of 1.039 in CDS and
1.057 in ADS. For Japanese tokens, we found an
average of 1.811 in CDS and 1.978 in ADS. En-
glish’s averages are close to 1, indicating that it
doesn’t exhibit lexicon ambiguity. Japanese, how-
ever, has averages close to 2 which means that lex-
ical ambiguity is quite systematic in both CDS and
ADS.

4.2 Segmentation ambiguity and supervised
segmentation

The intrinsic ambiguity in Japanese only shows
that a given sentence has multiple possible seg-
mentations. What remains to be demonstrated is
that these multiple segmentations result in system-
atic segmentation errors. To do this we propose
a supervised segmentation algorithm that enumer-
ates all possible segmentations of an utterance
based on the gold lexicon, and selects the segmen-
tation with the highest probability. In CDS data,
this algorithm yields a segmentation F-score equal
to 0.99 for English and 0.95 for Japanese. In ADS
we find an F-score of 0.96 for English and 0.93 for
Japanese. These results show that lexical informa-
tion alone plus word frequency eliminates almost

all segmentation errors in English, especially for
CDS. As for Japanese, even if the scores remain
impressively high, the lexicon alone is not suffi-
cient to eliminate all the errors. In other words,
even with a gold lexicon, English remains easier
to segment than Japanese.

To quantify the link between segmentation en-
tropy and segmentation errors, we binned the sen-
tences of our corpus in 10 bins according to the
Normalized Segmentation Entropy, and correlate
this with the average segmentation F-score for
each bin. As shown Figure 1, we found significant
correlations: (R = −0.86, p < 0.001) for CDS
and (R = −0.93, p < 0.001) for ADS, showing
that segmentation ambiguity has a strong effect
even on supervised segmentation scores. The cor-
relation within language was also significant but
only in the Japanese data : R = −0.70 for CDS
and R = −0.62 for ADS.

—
Next, we explore one possible reason for this

structural difference between Japanese and En-
glish, especially at the level of the lexicon.

4.3 Syllable structure and lexical
composition of Japanese and English

One of the most salient differences between En-
glish and Japanese phonology concerns their syl-
lable structure. This is illustrated in Figure 2
(above), where we plotted the frequency of the dif-
ferent syllabic structures of monosyllabic tokens
in English and Japanese CDS. The statistics show
that English has a very rich syllabic composition
where a diversity of consonant clusters is allowed,
whereas Japanese syllable structure is quite simple
and mostly composed of the default CV type. This
difference is bound to have an effect on the struc-
ture of the lexicon. Indeed, Japanese has to use
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Figure 2 : Trade-off between the complexity of syllable structure (above) and the word token length in terms of syllables
(below) for English and Japanese CDS.

multisyllabic words in order to achieve a large size
lexicon, whereas, in principle, English could use
mostly monosyllables. In Figure 2 (below) we dis-
play the distribution of word length as measured
in syllables in the two languages for the CDS cor-
pora. The English data is indeed mostly composed
of mono-syllabic words whereas the Japanese one
is made of words of more varied lengths. Overall,
we have documented a trade-off between the di-
versity of syllable structure on the one hand, and
the diversity of word lengths on the other (see Ta-
ble 4 for a summary of this tradeoff expressed in
terms of entropy).

— CDS ADS

— Eng. Jap. Eng. Jap.
Syllable types 2.40 1.38 2.58 1.03
Token lengths 0.62 2.04 0.99 1.69

Table 4 : Entropies of syllable types and token lengths in
terms of syllables (in bits)

We suggest that this trade-off is responsible for
the difference in the lexicon ambiguity across the
two languages. Specifically, the combination of
a small number of syllable types and, as a conse-
quence, the tendency for multi-syllabic word types
in Japanese makes it likely that a long word will
be composed of smaller ones. This cannot happen
very often in English, since most words are mono-
syllabic, and words smaller than a syllable are not
allowed.

5 Improving Japanese unsupervised
segmentation

We showed in the previous section that ambigu-
ity impacts segmentation even with a gold lexicon,
mainly because the lexicon itself could be ambigu-
ous. In an unsupervised segmentation setting, the
problem is worse because ambiguity within and
across word boundaries leads to a bad lexicon,
which in turn results in more segmentation errors.
In this section, we explore the possibility of miti-
gating some of these negative consequences.

In section 3, we saw that when the Unigram
model tries to learn Japanese words, it produces an
output lexicon composed of both over- and under-
segmented words in addition to words that re-
sult from a segmentation across word boundaries.
One way to address this is by learning multiple
kinds of units jointly, rather than just words; in-
deed, previous work has shown that richer mod-
els with multiple levels improve segmentation for
English (Johnson, 2008a; Johnson and Goldwater,
2009).

5.1 Two dependency levels
As a first step, we will allow the model to not
just learn words but to also memorize sequences of
words. Johnson (2008a) introduced these units as
“collocations” but we choose to use the more neu-
tral notion of level for reasons that become clear
shortly. Concretely, the grammar is:
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— CDS ADS

— English Japanese English Japanese

— F P R F P R F P R F P R
Level 1
— Segmentation 0.81 0.77 0.86 0.42 0.33 0.55 0.70 0.63 0.78 0.42 0.35 0.50
— Boundaries 0.91 0.84 0.98 0.63 0.47 0.96 0.86 0.76 0.98 0.73 0.61 0.90
— Lexicon 0.64 0.79 0.54 0.18 0.55 0.10 0.36 0.56 0.26 0.15 0.68 0.08
Level 2
— Segmentation 0.33 0.45 0.26 0.59 0.65 0.53 0.50 0.60 0.43 0.45 0.54 0.38
— Boundaries 0.56 0.98 0.40 0.71 0.87 0.60 0.76 0.95 0.64 0.73 0.92 0.60
— Lexicon 0.36 0.25 0.59 0.47 0.44 0.49 0.46 0.38 0.56 0.43 0.37 0.50

Table 5 : Word segmentation scores of the two levels model

—
Utterance→ level2+

level2→ level1+

level1→ Phoneme+

—
We run this model under the same conditions

as the Unigram model but evaluate two different
situations. The model has no inductive bias that
would force it to equate level1 with words, rather
than level2. Consequently, we evaluate the seg-
mentation that is the result of taking there to be a
boundary between every level1 constituent (Level
1 in Table 5) and between every level2 constituent
(Level 2 in Table 5 ). From these results , we see
that English data has better scores when the lower
level represents the Word unit and when the higher
level captures regularities above the word. How-
ever, Japanese data is best segmented when the
higher level is the Word unit and the lower level
captures sub-word regularities.

Level 1 generally tends to over-segment utter-
ances as can be seen by comparing the Boundary
Recall and Precision scores (Goldwater, 2007). In
fact when the Recall is much higher than the Pre-
cision, we can say that the model has a tendency
to over-segment. Conversely, we see that Level 2
tends to under-segment utterances as the Bound-
ary Precision is higher than the Recall.

Over-segmentation at Level 1 seems to benefit
English since it counteracts the tendency of the
Unigram model to cluster high frequency colloca-
tions. As far as segmentation is concerned, this
effect seems to outweigh the negative effect of
breaking words apart (especially in CDS), as En-
glish words are mostly monosyllabic.

For Japanese, under-segmentation at Level 2

seems to be slightly less harmful than over-
segmentation at Level 1, as it prevents, to some
extent, multi-syllabic words to be split. However,
the scores are not very different from the ones we
had with the Unigram model and slightly worse
for the ADS. What seems to be missing is an inter-
mediate level where over- and under-segmentation
would counteract one another.

5.2 Three dependency levels

We add a third dependency level to our model as
follows :

—
Utterance→ level3+

level3→ level2+

level2→ level1+

level1→ Phoneme+

—
As with the previous model, we test each of the

three levels as the word unit, the results are shown
in Table 6.

Except for English CDS, all the corpora
have their best scores with this intermediate
level. Level 1 tends to over-segment Japanese
utterances into syllables and English utterances
into morphemes. Level 3, however, tends to
highly under-segment both languages. English
CDS seems to be already under-segmented at
Level 2, very likely caused by the large number
of word collocations like ”is-it” and ”what-is”,
an observation also made by Börschinger et al.
(2012) using different English CDS corpora.
English ADS is quantitatively more sensitive to
over-segmentation than CDS mainly because it
has a richer morphological structure and relatively
longer words in terms of syllables (Table 4).
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— CDS ADS

— English Japanese English Japanese

— F P R F P R F P R F P R
Level 1
— Segmentation 0.79 0.74 0.85 0.27 0.20 0.41 0.35 0.28 0.48 0.37 0.30 0.47
— Boundaries 0.89 0.81 0.99 0.56 0.39 0.99 0.68 0.52 0.99 0.70 0.57 0.93
— Lexicon 0.58 0.76 0.46 0.10 0.47 0.05 0.13 0.39 0.07 0.10 0.70 0.05
Level 2
— Segmentation 0.49 0.60 0.42 0.70 0.70 0.70 0.77 0.76 0.79 0.60 0.65 0.55
— Boundaries 0.71 0.97 0.56 0.81 0.82 0.81 0.90 0.88 0.92 0.81 0.90 0.74
— Lexicon 0.51 0.41 0.64 0.53 0.59 0.47 0.58 0.69 0.50 0.51 0.57 0.46
Level 3
— Segmentation 0.18 0.31 0.12 0.39 0.53 0.30 0.43 0.55 0.36 0.28 0.42 0.21
— Boundaries 0.26 0.99 0.15 0.46 0.93 0.31 0.71 0.98 0.55 0.59 0.96 0.43
— Lexicon 0.17 0.10 0.38 0.32 0.25 0.41 0.37 0.28 0.51 0.27 0.20 0.42

Table 6 : Word segmentation scores of the three levels model

6 Conclusion

In this paper we identified a property of lan-
guage, segmentation ambiguity, which we quan-
tified through Normalized Segmentation Entropy.
We showed that this quantity predicts performance
in a supervised segmentation task.

With this tool we found that English was in-
trinsically less ambiguous than Japanese, account-
ing for the systematic difference found in this pa-
per. More generally, we suspect that Segmentation
Ambiguity would, to some extent, explain much
of the difference observed across languages (Ta-
ble 1). Further work needs to be carried out to test
the robustness of this hypothesis on a larger scale.

We showed that allowing the system to learn
at multiple levels of structure generally improves
performance, and compensates partially for the
negative effect of segmentation ambiguity on un-
supervised segmentation (where a bad lexicon am-
plifies the effect of segmentation ambiguity). Yet,
we end up with a situation where the best level of
structure may not be the same across corpora or
languages, which raises the question as to how to
determine which level is the correct lexical level,
i.e., the level that can sustain successful grammat-
ical and semantic learning. Further research is
needed to answer this question.

Generally speaking, ambiguity is a challenge in
many speech and language processing tasks: for
example part-of-speech tagging and word sense

disambiguation tackle lexical ambiguity, proba-
bilistic parsing deals with syntactic ambiguity and
speech act interpretation deals with pragmatic am-
biguities. However, to our knowledge, ambiguity
has rarely been considered as a serious problem in
word segmentation tasks.

As we have shown, the lexicon-based approach
does not completely solve the segmentation am-
biguity problem since the lexicon itself could be
more or less ambiguous depending on the lan-
guage. Evidently, however, infants in all lan-
guages manage to overcome this ambiguity. It has
to be the case, therefore, that they solve this prob-
lem through the use of alternative strategies, for
instance by relying on sub-lexical cues (see Jarosz
and Johnson (2013)) or by incorporating semantic
or syntactic constraints (Johnson et al., 2010). It
remains a major challenge to integrate these strate-
gies within a common model that can learn with
comparable performance across typologically dis-
tinct languages.
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