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Abstract

Hierarchical or nested annotation of lin-
guistic data often co-exists with simpler
non-hierarchical or flat counterparts, a
classic example being that of annotations
used for parsing and chunking. In this
work, we propose a general strategy for
comparing across these two schemes of
annotation using the concept of entailment
that formalizes a correspondence between
them. We use crowdsourcing to obtain
query and sentence chunking and show
that entailment can not only be used as
an effective evaluation metric to assess the
quality of annotations, but it can also be
employed to filter out noisy annotations.

1 Introduction

Linguistic annotations at all levels of linguistic or-
ganization – phonological, morpho-syntactic, se-
mantic, discourse and pragmatic, are often hierar-
chical or nested in nature. For instance, syntac-
tic dependencies are annotated as phrase structure
or dependency trees (Jurafsky and Martin, 2000).
Nevertheless, the inherent cognitive load associ-
ated with nested segmentation and the sufficiency
of simpler annotation schemes for building NLP
applications have often lead researchers to define
non-hierarchical or flat annotation schemes. The
flat annotation, in essence, is a “flattened” ver-
sion of the tree. For instance, chunking of Natu-
ral Language (NL) text, which is often considered
an essential preprocessing step for many NLP ap-
plications (Abney, 1991; Abney, 1995), is, loosely
speaking, a flattened version of the phrase struc-
ture tree. The closely related task of Query Seg-
mentation is of special interest to us here, as it is
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f Pipe representation Boundary var.
3 barbie dress up | games 0 0 1
3 barbie dress | up games 0 1 0
2 barbie | dress up | games 1 0 1
2 barbie | dress up games 1 0 0

Table 1: Example of flat segmentations from 10
Turkers. f is the frequency of annotations; seg-
ment boundaries are represented by |.

the first step in further analysis and understanding
of Web search queries (Hagen et al., 2011).

The task in both query and sentence chunking is
to divide the string of words into contiguous sub-
strings of words (commonly refered to as segments
or chunks) such that the words from a segment
are related to each other more strongly than words
from different segments. It is typically assumed
that the segments are syntactically and semanti-
cally coherent. Table 1 illustrates the concept of
segmentation of a query. The crowdsourced an-
notations for this data were obtained from 10 an-
notators, the experimental details of which will be
described in Sec. 5. We shall refer to this style of
text chunking as flat segmentation.

Nested segmentation of a query or a sentence,
on the other hand, is a recursive application of flat
segmentation, whereby the longer flat segments
are further divided into smaller chunks recursively.
The process stops when a segment consists of less
than three words or is a multiword entity that can-
not be segmented further. This style of segmenta-
tion can be represented through nested parenthe-
sization of the text, as illustrated in Table 2. These
annotations were also obtained through the same
crowdsourcing experiment (Sec. 5). Fig. 1 shows
an alternative visualization of a nested segmenta-
tion in the form of a tree.

An important problem that arises in the con-
text of flat segmentation is the issue of granular-
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f Bracket representation Boundary var.
4 ((barbie dress)( up games)) 0 1 0
3 (barbie ((dress up) games)) 2 0 1
2 (barbie (dress (up games))) 2 1 0
1 ((barbie (dress up)) games) 1 0 2

Table 2: Example of nested segmentation from 10
Turkers. f is the frequency of annotations.

2

barbie 1

0

dress up

games

Figure 1: Tree representation of the nested seg-
mentation: (barbie ((dress up) games))

ity. For instance, in the case of NL chunking, it
is not clear whether the chunk boundaries should
correspond to the innermost parentheses in the
nested segmentation marking very short chunks,
or should one annotate the larger chunks corre-
sponding to clausal boundaries. For this reason,
Inter-Annotator Agreement (IAA) for flat annota-
tion tasks is often poor (Bali et al., 2009; Hagen
et al., 2011; Saha Roy et al., 2012). However, low
IAA does not necessarily imply low quality anno-
tation, and could as well be due to the inherent am-
biguity in the task definition with respect to gran-
ularity. Although we have illustrated the concept
and problems of flat and nested annotations using
the examples of sentence and query segmentation,
these issues are generic and typical of any flat an-
notation scheme which tries to flatten or approx-
imate an underlying hierarchical structure. There
are three important research questions pertaining
to the linguistic annotations of this kind:

• How to measure the true IAA and the quality
of the flat annotations?

• How to compare the agreement between the
flat and the nested annotations?

• How can we identify or construct the opti-
mal or error-free flat annotations from a noisy
mixture of nested and flat annotations?

In this paper, we introduce the concept of “en-
tailment of a flat annotation by a nested annota-
tion”. For a given linguistic unit (a query or a sen-
tence, for example), a nested annotation is said to

entail a flat annotation if the structure of the lat-
ter does not contradict the more specific structure
represented by the former. Based on this simple
notion, which will be formalized in Sec. 3, we
develop effective techniques for comparing across
and evaluating the quality of flat and nested an-
notations, and identifying the optimal flat annota-
tion. We validate our theoretical framework on the
tasks of query and sentence segmentation. In par-
ticular, we conduct crowdsourcing based flat and
nested segmentation experiments for Web search
queries and sentences using Amazon Mechanical
Turk (AMT)1. We also obtain annotations for the
same datasets by trained experts which are ex-
pected to be of better quality than the AMT-based
annotations. Various statistical analyses of the an-
notated data bring out the effectiveness of entail-
ment as a metric for comparison and evaluation of
flat and nested annotations.

The rest of the paper is organized as fol-
lows. Sec. 2 provides some background on the
annotation tasks and related work on IAA. In
Sec. 3, we introduce the notion of entailment
and develop theoretical models and related
strategies for assessing the quality of annotation.
In Sec. 4, we introduce some strategies based
on entailment for the identification of error-free
annotations from a given set of noisy annotations.
Sec. 5 describes the annotation experiments
and results. Sec. 6 concludes the paper by
summarizing the work and discussing future
research directions. All the annotated datasets
used in this research can be obtained freely from
http://research.microsoft.com/
apps/pubs/default.aspx?id=192002
and used for non-commercial research purposes.

2 Background

Segmentation or chunking of NL text is a well-
studied problem. Abney (1991; 1992; 1995)
defines a chunk as a sub-tree within a syntac-
tic phrase structure tree corresponding to Noun,
Prepositional, Adjectival, Adverbial and Verb
Phrases. Similarly, Bharati et al (1995) define it
as Noun Group and Verb Group based only on lo-
cal surface information. Chunking is an important
preprocessing step towards parsing.

Like chunking, query segmentation is an im-
portant step towards query understanding and is
generally believed to be useful for Web search

1https://www.mturk.com/mturk/welcome
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(see Hagen et al. (2011) for a survey). Auto-
matic query segmentation algorithms are typically
evaluated against a small set of human-annotated
queries (Bergsma and Wang, 2007). The reported
low IAA for such datasets casts serious doubts on
the reliability of annotation and the performance
of the algorithms evaluated on them (Hagen et al.,
2011; Saha Roy et al., 2012). To address the is-
sue of data scarcity, Hagen et al. (2011) created
a large set of manually segmented queries through
crowdsourcing2. However, their approach has cer-
tain limitations because the crowd is already pro-
vided with a few possible segmentations of a query
to choose from. Nevertheless, if large scale data
has to be procured crowdsourcing seems to be the
only efficient and effective model for the task, and
has been proven to be so for other IR and lin-
guistic annotations (see Lease et al. (2011) for
examples). It should be noted that almost all the
work on query segmentation, except (Huang et al.,
2010), has considered only flat segments.

An important problem that arises in the context
of flat annotations is the issue of granularity. In the
absence of a set of guidelines that explicitly state
the granularity expected, Inter-Annotator Agree-
ment (IAA) for flat annotation tasks are often poor.
Bali et al. (2009) showed that for NL chunking,
annotators typically agree on major (i.e., clausal)
boundaries but do not agree on minor (i.e., phrasal
or intra-phrasal) boundaries. Similarly, for query
segmentation, low IAA remains an issue (Hagen
et al., 2011; Saha Roy et al., 2012).

The issue of granularity is effectively addressed
in nested annotation, because the annotator is ex-
pected to mark the most atomic segments (such
as named entities and multiword expressions) and
then recursively combine them to obtain larger
segments. Certain amount of ambiguity, that may
arise because of lack of specific guidelines on the
number of valid segments at the last level (i.e., top-
most level of the nested segmentation tree), can
also be resolved by forcing the annotator to recur-
sively divide the sentence/query always into ex-
actly two parts (Abney, 1992; Bali et al., 2009).

The present study is an extension of our recent
work (Ramanath et al., 2013) on analysis of the
effectiveness of crowdsourcing for query and sen-
tence segmentation. We introduced a novel IAA
metric based on Kripendorff’s α, and showed that
while the apparent agreement between the annota-

2http://www.webis.de/research/corpora

tors in a crowdsourced experiment might be high,
the chance corrected agreement is actually low for
both flat and nested segmentations (as compared
to gold annotations obtained from three experts).
The reason for the apparently high agreement is
due to an inherent bias of the crowd to divide
a piece of text in roughly two equal parts. The
present study extends this work by introducing a
metric to compare across flat and nested segmen-
tations that enables us to further analyze the relia-
bility of the crowdsourced annotations. This met-
ric is then employed to identify the optimal flat
segmentation(s) from a set of noisy annotations.
The study uses the same experimental setup and
annotated datasets as described in (Ramanath et
al., 2013). Nevertheless, for the sake of readability
and self-containedness, the relevant details will be
mentioned here again.

We do not know of any previous work that com-
pares flat and nested schemes of annotation. In
fact, Artstein and Poesio (2008), in a detailed sur-
vey of IAA metrics and their usage in NLP, men-
tion that defining IAA metrics for trees (hierarchi-
cal annotations) is a difficult problem due to the
existence of overlapping annotations. Vadas and
Curran (2011) and Brants (2000) discuss measur-
ing IAA of nested segmentations employing the
concepts of precision, recall, and f-score. How-
ever, neither of these studies apply statistical cor-
rection for chance agreement.

3 Entailment: Definition and Modeling

In this section, we shall introduce certain notations
and use them to formalize the notion of entail-
ment, which in turn, is used for the computation of
agreement between flat and nested segmentations.
Although we shall develop the whole framework
in the context of queries, it is applicable to sen-
tence segmentation and, in fact, more generally to
any flat and nested annotations.

3.1 Basic Definitions

Let Q be the set of all queries. A query q ∈ Q
can be represented as a sequence of |q| words:
w1w2 . . . w|q|. We introduce |q| − 1 random vari-
ables, b1, b2, . . . b|q|−1, such that bi represents the
boundary between the words wi and wi+1. A flat
and nested segmentation of q, represented by F j

q

and N j
q respectively, j varying from 1 to total

number of annotations, c, is a particular instan-
tiation of these boundary variables as follows.
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Definition. Flat Segmentation: A flat segmen-
tation, F j

q , can be uniquely defined by a binary
assignment of the boundary variables bji , where
bji = 1 iff wi and wi+1 belong to two different flat
segments. Otherwise, bji = 0. Thus, q has 2|q|−1

possible flat segmentations.

Definition. Nested Segmentation: A nested seg-
mentation, N j

q , is defined as an assignment of
non-negative integers to the boundary variables
such that bji = 0 iff words wi and wi+1 form an
atomic segment (i.e., they are grouped together),
else bji = 1 + max(lefti, righti), where lefti
and righti are the heights of the largest subtrees
ending at wi and beginning at wi+1 respectively.

This numbering scheme can be understood
through Fig. 1. Every internal node of the binary
tree corresponding to the nested segmentation is
numbered according to its height. The lowest in-
ternal nodes, both of whose children are query
words, are assigned a value of 0. Other internal
nodes get a value of one greater than the height
of its higher child. Since every internal node cor-
responds to a boundary, we assign the height of
the node to the corresponding boundary variables.
The number of unique nested segmentations of q
is the corresponding Catalan number3 C|q|−1.

Note that, following Abney’s (1992) suggestion
for nested chunking, we define nested segmenta-
tion as a strict binary tree or binary bracketing of
the query. This is not only helpful for theoretical
analysis, but also necessary to ensure that there
is no ambiguity related to the granularity of seg-
ments.

3.2 Entailment
Given a nested segmentation N j

q , there are several
possible ways to “flatten” it. Flat segmentations of
q, where bi = 0 for all i (i.e., the whole query is
one segment) and bi = 1 for all i (i.e., all words are
in different segments) are trivially obtainable from
N j

q , and therefore, are not neither informative nor
interesting. Intuitively, any flat segmentation, F k

q ,
can be said to agree with N j

q if for every flat seg-
ment in F k

q there is a corresponding internal node
in N j

q , such that the subgraph rooted at that node
spans (contains) all and only those words present
in the flat segment (Abney, 1991).

Let us take the examples of flat and nested
segmentations shown in Tables 1 and 2 to illus-

3http://en.wikipedia.org/wiki/Catalan\
_number

trate this notion. Consider two nested segmenta-
tions, N1

q = ((barbie (dress up)) games), N2
q =

(barbie ((dress up) games)) and three flat seg-
mentations, F 1

q = barbie | dress up | games,
F 2

q = barbie | dress up games, F 3
q =

barbie dress | up games. Figure 2 diagram-
matically compares the two nested segmentations
(the two rows) with the three flat segmentations
(columns A, B and C). There are three flat seg-
ments in F 1

q , of which the two single word
segments barbie and games trivially coincide
with the corresponding leaf nodes. The segment
dressup coincides exactly with the words spanned
by the node marked 0 of N1

q (Fig. 2, top row, col-
umn A). Hence, F 1

q can be said to be in agree-
ment withN1

q . On the other hand, there is no node
in N1

q , which exactly coincides with the segment
dressupgames of F 2

q (Fig. 2, top row, column B).
Hence, we say that N1

q does not agree with F 2
q .

We formalize this notion of agreement in terms
of entailment, which is defined as follows.

Definition: Entailment. A nested segmentation,
N j

q is said to entail a flat segmentation, F k
q , (or

equivalently, F k
q is entailed by N j

q ) if and only if
for every multiword segment wi+1, wi+2, ..., wi+l

in F k
q , the corresponding boundary variables in

N j
q follows the constraint: bi > bi+m and bi+l >

bi+m for all 1 ≤ m < l.
It can be proved that this definition of entail-

ment is equivalent to the intuitive description pro-
vided earlier. Yet another equivalent definition of
entailment is presented in the form of Algorithm 1.
Due to paucity of space, the proofs of equivalence
are omitted.

Definition: Average Observed Entailment. For
the set of queries Q, and corresponding sets of
c flat and nested segmentations, there are |Q|c2

pairs of flat and nested segmentations that can be
compared for entailment. We define the average
observed entailment for this annotation set as the
fraction of these |Q|c2 annotation pairs for which
the flat segmentation is entailed by the correspond-
ing nested segmentation. We shall express this
fraction as percentage.

3.3 Entailment by Random Chance

Average observed Entailment can be considered
as a measure of the IAA, and hence, an indica-
tor of the quality of the annotations. However,
in order to interpret the significance of this value,
we need an estimate of the average entailment that
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Figure 2: Every node of the tree represent boundary values, nested(flat). Column A: F 1
q is entailed by

both N1
q and N2

q , Column B: F 2
q is entailed by N2

q but not N1
q , Column C: F 3

q is entailed by neither
N1

q nor N2
q . The nodes (or equivalently the boundaries) violating the entailment constraint are marked a

cross, and those agreeing are marked with ticks.

Algorithm 1 Algorithm: isEntail
1: procedure ISENTAIL(flat, nested) . flat,

nested are lists containing boundary values
2: if len(nested) ≤ 1 or len(flat) ≤ 1 then
3: return True
4: end if
5: h← largest element in nested
6: i← index of h
7: if flat[i] = 1 then
8: if ! isEntail(flat[: i], nested[: i]) or

! isEntail(flat[i+1 :], nested[i+1 :]) then
9: return False

10: else
11: return True
12: end if
13: else
14: while h 6= 0 do
15: nested[i]← −nested[i]
16: h← largest element in nested
17: i← index of h
18: if flat[i] = 1 then
19: return False
20: end if
21: end while
22: return True
23: end if
24: end procedure

one would expect if the annotations, both flat and
nested, were drawn uniformly at random from the

set of all possible annotations. From our exper-
iments we observe that trivial flat segmentations
are, in fact, extremely rare, and a very large frac-
tion of the flat annotations have two or three seg-
ments. Therefore, for computing the chance en-
tailment, we assume that the number of segments
in the flat segmentation is known and fixed, which
is either 2 or 3, but all segmentations with these
many segments are equally likely to be chosen.
We also assume that all nested segmentations are
equally likely.

When there are 2 segments: For a query q, the
number of flat segmentations with two segments,
i.e., one boundary, is

(|q|−1
1

)
= |q| − 1. Note

that for any nested segmentation N j
q , all flat seg-

mentations that have at least one boundary and is
entailed by it must have a boundary between wi∗

and wi∗+1, where bi∗ has the highest value in N j
q .

In other words, bi∗ is the boundary corresponding
to the root of the nested tree (the proof is intu-
itive and is omitted). Therefore, there is exactly
one “flat segmentation with one boundary” that is
entailed by a given N j

q . Therefore, the random
chance that a nested segmentation N j

q will entail
a flat segmentation with one boundary is given by
(|q| − 1)−1 (for |q| > 1).

When there are 3 segments: Number of flat
segmentations with two boundaries is

(|q|−1
2

)
. The

flat segmentation(s) entailed by N j
q can be gener-

ated as follows. As argued above, every flat seg-
mentation entailed by N j

q must have a boundary
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at position i∗. The second boundary can be either
in the left or right of i∗. But in either case, the
choice of the boundary is unique which will corre-
spond to the highest node in the left or right sub-
tree of the root node. Thus, every nested segmen-
tation entails at most 2 flat segmentations. How-
ever, if i∗ = 1 or |q| − 1 for a N j

q , then, respec-
tively, the left or right subtrees do not exist. In
such cases, there is only one flat segmentation en-
tailed by N j

q . Note that there are exactly C|q|−2

nested segmentations for which the i∗ = 1, and
similarly another C|q|−2 for which i∗ = |q| − 1.
Therefore, out of C|q|−1 ×

(|q|−1
2

)
pairs, exactly

2C|q|−1−2C|q|−2 pairs satisfy the entailment con-
ditions. Thus, the expected probability of entail-
ment by random chance when there are exactly
two boundaries in the flat segmentation of q is:

2(C|q|−1 − C|q|−2)

C|q|−1

(|q|−1
2

) = 2

(
|q| − 1

2

)−1

(1−
C|q|−2

C|q|−1
)

The values of the probability of observing a ran-
dom nested segmentation entailing a flat segmen-
tation with exactly two boundaries for |q| =
3, 4, 5, 6, 7 and 8 are 1, 0.4, 0.213. 0.133, 0.091
and 0.049 respectively.

3.4 Other IAA Metrics

Although entailment can be used as a measure of
agreement between flat and nested segmentations,
IAA within flat or within nested segmentations
cannot be computed using this notion. In (Ra-
manath et al., 2013), we have extensively dealt
with the issue of computing IAA for these cases.
Krippendorff’s α (Krippendorff, 2004), which is
an extremely versatile agreement coefficient, has
been appropriately modified to be applicable to a
crowdsourced annotation scenario. α = 1 im-
plies perfect agreement, α = 0 implies that the
observed agreement is just as good as that by ran-
dom chance, whereas α < 0 implies that the ob-
served agreement is less than that one would ex-
pect by random chance. Due to paucity of space
we omit any further discussion on this and refer
the reader to (Ramanath et al., 2013). Here, we
will use the α values as an alternative indicator of
IAA and therefore, the quality of annotation.

4 Optimal Segmentation

Suppose that we have a large number of flat and
nested annotations coming from a noisy source

such as crowdsourcing; is it possible to employ
the notion of entailment to identify the annota-
tions which are most likely to be correct? Here,
we describe two such strategies to obtain the opti-
mal (error-free) flat segmentation.

Flat Entailed by Most Nested (FEMN): The
intuition behind this approach is that if a flat seg-
mentation F k

q is entailed by most of the nested
segmentations of q, then it is very likely that F k

q

is correct. Therefore, for each flat segmentations
of q, we count the number of nested segmentations
of q that entail it, and the one with highest count is
declared as the optimal FEMN segmentation. It is
interesting to note that while computing the opti-
mal FEMN segmentation, we never encountered a
tie between two flat segmentations. The trivial flat
segmentations (i.e., if the whole query is one seg-
ment or every word is in different segments) are
filtered as a preprocessing step.

Iterative Voting (IV): FEMN assumes that the
nested segmentations are relatively noise-free. If
most of the nested segmentations are erroneous,
FEMN would select an erroneous optimal flat seg-
mentation. To circumvent this issue, we propose a
more sophisticated iterative voting process, where
we count the number of flat segmentations entailed
by each nested segmentation of q, and similarly,
number of nested segmentations that entail each
flat segmentation. The flat and nested segmenta-
tions with the least scores are then removed from
the dataset. Then we recursively apply the IV pro-
cess on the reduced set of annotations until we are
left with a single flat segmentation.

5 Experiments and Results

We obtained nested and flat segmentation of Web
search queries through crowdsourcing as well as
from trained experts. Furthermore, we also con-
ducted similar crowdsourcing experiments for NL
sentences, which helped us understand the specific
challenges in annotating queries because of their
apparent lack of a well-defined syntactic structure.

In this section, we first describe the experimen-
tal setup and datasets, and then present the obser-
vations and results.

5.1 Crowdsourcing Experiment

In this study we use the same set of crowd-
sourced annotations as described in (Ramanath
et al., 2013). For the sake of completeness, we
briefly describe the annotation procedure here as
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well. We used Amazon Mechanical Turk for the
crowdsourcing experiments. Two separate Hu-
man Intelligence Tasks were designed for flat and
nested segmentation. The concept of flat and
nested segmentation was introduced to the Turk-
ers with the help of two short videos4.

When in doubt regarding the meaning of a
query, the Turkers were advised to issue the query
on a search engine of their choice and find out its
possible interpretation(s). Only Turkers who had
completed more than 100 tasks at an acceptance
rate of ≥ 60% were allowed to participate in the
task and were paid $0.02 for a flat and $0.06 for a
nested segmentation. Every query was annotated
by 10 different annotators.

5.2 Dataset

The following sets of queries and sentences were
used for annotations:

Q500, QG500: Saha Roy et al. (2012) re-
leased a dataset of 500 queries, 5 to 8 words long,
for the evaluation of various segmentation algo-
rithms. This dataset has flat segmentations from
three annotators obtained under controlled exper-
imental settings, and could be considered as Gold
annotation. Hence, we selected this set for our ex-
periments as well. We procured the correspond-
ing nested segmentation for these queries from
two human experts who are regular search engine
users. They annotated the data under supervision
and were trained and paid for the task. We shall
refer to the set of flat and nested gold annotations
as QG500, whereas Q500 will be reserved for the
dataset procured through the AMT experiments.

Q700: As 500 queries are not enough for mak-
ing reliable conclusions and also, since the queries
may not have been chosen specifically for the pur-
pose of annotation experiments, we expanded the
set with another 700 queries sampled from the
logs of a popular commercial search engine. We
picked, uniformly at random, queries that were 4
to 8 words long.

S300: We randomly selected 300 English sen-
tences from a collection of full texts of public do-
main books5 that were 5 to 15 words long, and
manually checked them for well-formedness.

4Flat: http://youtu.be/eMeLjJIvIh0, Nested:
http://youtu.be/xE3rwANbFvU

5http://www.gutenberg.org

5.3 Entailment Statistics

Table 3 reports two statistics – the values of
Kripendorff’s α and the average observed entail-
ment (expressed as %) for flat and nested segmen-
tations along with the corresponding expected val-
ues for entailment by chance. For nested segmen-
tation, the α values were computed for two differ-
ent distance metrics6 d1 and d2.

As expected, the highest value of α for both
flat and nested segmentation is observed for the
gold annotations. An α > 0.6 indicates a rea-
sonably good7 IAA, and thus, reliable annota-
tions. We note that the entailment statistics fol-
low a very similar trend as α, and for all the cases,
the observed average entailment is much higher
than what we would expect by random chance.
These two observations clearly point to the fact
that entailment is indeed a good indicator of the
agreement between the nested and flat segmenta-
tions, and consequently, the reliability of the an-
notations. We also observe that the average en-
tailment for S300 is in the same ballpark as for
the queries. This indicates that the apparent lack
of structure in queries does not specifically influ-
ence the annotations. Along the same lines, one
can also argue that the length of a text, which
is higher for sentences than queries, does not af-
fect the crowdsourced annotations. In fact, in our
previous study (Ramanath et al., 2013), we show
that it is the bias of the Turkers to divide a text
in approximately two segments of equal size (ir-
respective of other factors, like syntactic structure
or length), that leads to very similar IAA across
different types of texts. Our current study on en-
tailment further strengthens this fact.

Figure 3 plots the distribution of the entailment
values for the three datasets. The distributions are
normal-like implying that entailment is a robust
metric and its average value is a usable statistic.

In order to analyze the agreement between the
Turkers and the experts, we computed the av-
erage entailment between Q500 flat annotations
(from AMT) with QG500 nested annotations, and
similarly, Q500 nested annotations with QG500

6Intuitively, for d1 disagreements between segment
boundaries are equally penalized at all the levels of nested
tree, whereas for d2 disagreements higher up the tree (i.e.,
close to the root) are penalized more than those at lower lev-
els.

7It should be noted that there is no consensus on what is
a good value of α for linguistic annotations, partly because
it is dependent on the nature of the annotation task and the
demand of the end applications that use the annotated data.
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Dataset Krippendorff’s α Entailment Statistics
Flat Nested Observed Chance
d1 d1 d2

Q700 0.21 0.21 0.16 49.68 12.63
Q500 0.22 0.15 0.15 56.69 19.08

QG500 0.61 0.66 0.67 87.07 11.91
S300 0.27 0.18 0.14 52.86 19.12

Table 3: α and Average Entailment Statistics

Figure 3: Distribution of the entailment values (x-
axis) plotted as the % of comparable flat-nested
annotation pairs.

Figure 4: Distribution of percentage of entailed
pairs using QG500 as reference.

flat annotations, which turned out to be 70.42%
and 63.24% respectively. The corresponding dis-
tributions are shown as Nested and Flat in Fig.
4. Thus, the flat segmentations from the Turkers
seem to be more accurate than their nested seg-
mentations, a fact also supported by the α values.
This could be due to the much higher cognitive
load associated with nested segmentation that de-
mands more time and concentration that an ordi-
nary Turker may not be willing to invest.

5.4 Optimal Segmentation Results

In order to evaluate the optimal flat segmentation
selection strategies, FEMN and IV, we computed

the percentage of queries in Q500 for which the
optimal flat segmentation (as obtained by apply-
ing these strategies on AMT annotations) is en-
tailed by the corresponding nested segmentations
in QG500. The average entailment values for
FEMN and IV turns out to be 79.60% and 82.80%
respectively. This shows that the strategies are in-
deed able to pull out the more accurate flat seg-
mentations from the set, though, as one would ex-
pect, IV performs better than FEMN, and its cho-
sen segmentations are almost as good as that by
expert annotators.

Another experiment was conducted to precisely
characterize the effectiveness of these strategies
whereby we mixed the annotations from the Q500
and QG500, and then applied FEMN and IV to
pull out the optimal flat segmentations. We ob-
served that for 63.71% and 91.44% of the queries,
the optimal segmentation chosen by FEMN and IV
respectively was indeed one of the three gold flat
annotations in QG500. This reinforces our con-
clusion that IV can effectively identify the optimal
flat segmentation of a query from a noisy set of flat
and nested segmentations.

6 Conclusion

In this paper, we proposed entailment as a theo-
retical model for comparing hierarchical and non-
hierarchical annotations. We present a formaliza-
tion of the notion of entailment and use it for de-
vising two strategies, FEMN and IV, for identify-
ing the optimal flat segmentation in a noisy set of
annotations. One of the main contributions of this
work resides in our following experimental find-
ing: Even though annotations obtained through
crowdsourcing for a difficult task like query seg-
mentation might be very noisy, a small fraction of
the annotations are nevertheless correct; it is pos-
sible to filter out these correct annotations using
the Iterative Voting strategy when both hierarchi-
cal and non-hierarchical segmentations are avail-
able from the crowd.

The proposed model is generic and we be-
lieve that the experimental findings extend beyond
query and sentence segmentation to other kinds of
linguistic annotations where hierarchical and non-
hierarchical schemes co-exist.
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