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Abstract

Planning-based approaches to reference
provide a uniform treatment of linguistic
decisions, from content selection to lexi-
cal choice. In this paper, we show how
the issues of lexical ambiguity, vague-
ness, unspecific descriptions, ellipsis, and
the interaction of subsective modifiers can
be expressed using a belief-state plan-
ner modified to support context-dependent
actions. Because the number of dis-
tinct denotations it searches grows doubly-
exponentially with the size of the refer-
ential domain, we present representational
and search strategies that make generation
and interpretation tractable.

1 Introduction

Planning-based approaches1 to reference are ap-
pealing because they package a broad range of
linguistic decisions into actions that can be used
for both generation and interpretation. In sec-
tion 2, we present linguistic issues and discuss
their implications for designing planning domains
and search algorithms. In section 3, we describe
AIGRE,2 our belief space planner, and explain
how it efficiently handles the issues from section
2. Lastly, we demonstrate AIGRE’s output for
a suite of generation and interpretation tasks, and
walk through a trace of an interpretation task.

1.1 The two linguistic reference tasks
A linguistic act of referring aims to communi-
cate the identity of an object, agent, event or col-
lection thereof to an audience. Depending on the

∗We thank Nicolas Bravo and Yin Fu Chen for their con-
tributions to AIGRE; the three anonymous reviewers for
their comments; and the sponsors of the MIT Media lab.

1Throughout this paper planning is framed as a heuristic
search problem.

2Automatic interpretation and generation of referring
expressions. In French, it means “sour”.

agent’s dialogue role, referring involves one of two
tasks. The speaker completes a referring expres-
sion generation (REG) task: given a context set
and a designated member of it called the target set,
he produces a referring expression that allows the
listener to isolate the target from the rest of the
elements in the context set, called the distractors
(Dale and Reiter, 1995). A listener completes a
referring expression interpretation (REI) task:
given a referring expression and an assumed con-
text set, her goal is to infer the targets that the
speaker intended.

1.2 Reference generation as planning

Many approaches to REG (see (Krahmer and van
Deemter, 2012) for an overview) have focused ex-
clusively on the sub-task of content determina-
tion: given context and target sets, they search for
content that distinguishes the targets from the dis-
tractors. This content is then passed to the next
module in an NLG pipeline (c.f. (Reiter, 1994)) to
ultimately become a noun phrase embedded in a
larger construct.

These “pipeline” architectures prevent infor-
mation from being shared between different lay-
ers of linguistic analysis, contrary to evidence
that the layers interact (Altmann and Steedman,
1988; Danlos and Namer, 1988; Stone and Web-
ber, 1998; Krahmer and Theune, 2002; Horacek,
2004). As an alternative, one can take an inte-
grated “lexicalized approach,” following (Stone et
al., 2003; Koller and Stone, 2007; Garoufi and
Koller, 2010; Koller et al., 2010), in which each
lexical unit’s syntactic, semantic, and pragmatic
contributions are represented as a lexical entry.

Lexicalized approaches presume that lexical en-
tries can be designed to contain all of the syn-
tactic and semantic ingredients required to syn-
thesize a phrase or sentence. As such, the REG
problem is reduced to choosing (i.e., content se-
lection and lexical choice) and serializing lexical
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units (putting them into a flat sequence), which
bears strong similarities to automated planning
(Ghallab et al., 2004). Automated planners try to
find plans (sequences of actions), given (1) a fixed
planning domain that describes how the relevant
aspects of the world are changed by actions, and
(2) a problem instance: a description of the initial
state and the desired goal states.

For planning-based approaches to reference, the
set of actions defined by the planning domain is
analogous to a lexicon: each action corresponds
to a lexical unit and is responsible for defining
its semantic effects, along with the local syntactic
and compositional constraints that are relevant to
the lexical unit (Appelt, 1985; Heeman and Hirst,
1995; Koller and Stone, 2007; Koller et al., 2010;
Garoufi and Koller, 2011).

1.3 Automated planning as heuristic search
When solving an instance of a planning prob-
lem, planners internally generate a directed graph
called a planning graph, where the nodes rep-
resent hypothetical states and the labeled edges
correspond to actions that represent valid transi-
tions between the states. A planning domain and
an initial state thus characterize an implicit graph
of all the possible states and transitions between
them, which is usually infeasible to enumerate. To
avoid constructing parts of the planning graph that
are irrelevant to particular problem, planning tasks
are often solved using heuristic search (Bonet and
Geffner, 2001), which is the same framework un-
derlying popular approaches to content selection
(Bohnet and Dale, 2005).3 Heuristic search is use-
ful for balancing costs (e.g. the cost of a given
word) against benefits (e.g. meeting the communi-
cation goals): lower-cost4 solutions are inherently
preferred. The effectiveness of heuristic search is
determined by the search algorithm and heuristic
function, which gives a numerical estimation of a
given state’s distance to a goal state, h(s)→ [0, 1],
that guides the search algorithm toward states that
have a lower estimated distance to a goal.

The automated planning community has devel-
oped domain-independent techniques for automat-
ically deriving a heuristic function from the struc-

3FULL BREVITY ALGORITHM is simply breadth-first
search; GREEDY ALGORITHM is best-first search; and the
INCREMENTAL ALGORITHM is a best-first where actions are
sorted by preferences (Bohnet and Dale, 2005)

4If a plan’s cost is just its length, heuristic search will
bake-in the brevity sub-maxim of Grice’s Cooperative Prin-
ciple (Dale and Reiter, 1995).

ture of a planning domain, provided it is encoded a
certain way. These approaches solve a simplified
version of the original planning problem, calcu-
late each generated state’s minimal distance to a
goal, and then use that distance as a lower-bound
estimate in the heuristic function for the original
problem (Bonet et al., 1997; Hoffmann, 2001).

(Koller and Petrick, 2011; Koller and Hoff-
mann, 2010) applied domain-independent plan-
ners toward REG, but found them “too slow to be
useful in real NLG applications.” It is important
to note, however, that their results were for a spe-
cific implementation of a planning domain and set
of heuristic search techniques, of which there are
many variations (Edelkamp and Schroedl, 2011).
For example, (Koller and Hoffmann, 2010) later
reported being able to speed a planner by making
its action proposal function more restrictive.

1.4 Interpretation as plan recognition

If generating a sentence can be modeled as a plan-
ning problem, then interpretation can be modeled
as plan recognition (Heeman and Hirst, 1995;
Geib and Steedman, 2006). Plan recognition can
be seen as an “inversion” the planning problem,
and solved using planning techniques (Baker et al.,
2007; Ramı́rez and Geffner, 2010): Given an ini-
tial state (context set), a sequence of partially ob-
served actions (words), what are the most likely
goals (interpretations)?

Moreover, addressing both generation and in-
terpretation in tandem places a strong constraint
on how the lexicon can be designed—an oth-
erwise underconstrained knowledge engineering
problem. Because the same planning domain (lex-
icon) is used for multiple problem instances, a rel-
evant evaluation of a planning-based approach is
its coverage of a range of various linguistic input
(for REI tasks) and output (for REG tasks). One
goal of this paper is to analyze several problematic
referring expressions and draw conclusions from
how they can be used to guide planning-based ap-
proaches to REG and REI.

2 Problems for Referring Expressions

In this section, we describe several linguistic is-
sues using example referring expressions that are
applied to two visual referential domains: KIN-
DLE (Figure 1) and CIRCLE (Figure 2).

Imagine you are a clerk selling the Amazon Kin-
dles in Figure 1. Three separate customers ask you
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Figure 1: The KINDLE referential domain contain-
ing 5 items: k1, k2, k3, k4 and k5.

to pass them:

(R1) the big one

(R2) the inexpensive ones

(R3) a kindle touch

2.1 The problem of lexical ambiguity
The problem with the referring expression (R1)
is that it contains lexical ambiguity: did the
customer intend the sense big1, which modifies
the size attribute, or big2, which modifies the
hard drive.size attribute? Although one is much
more likely, they are both mutually exclusive pos-
sibilities Jthe big oneK = {k4} ⊕ {k5}.

What does this mean for planning-based ap-
proaches to REG and REI? For generation, it
means that some words can cause the listener to
draw multiple interpretations—but only in certain
contexts (which provides an example of how word
meanings draw from the context set). For interpre-
tation, this means that we need a way to represent
conflicting interpretations; and, if there are multi-
ple interpretations for a given observed plan, we
need a way to pick among the alternative interpre-
tations.

2.2 The problem of gradable adjectives
Referring expression (R2) does not contain lexical
ambiguity; however, it does suffer from vagueness
as a result of having a gradable adjective, “inex-
pensive,” in the positive form modifying a plural
noun, “ones.” Vagueness is problematic because
it can lead to different interpretations depending
on how the listener determines whether a refer-
ent is/a cluster of referents are INEXPENSIVE or
¬INEXPENSIVE (van Deemter, 2010). If we as-
sume vagueness comes down to the interpreter in-
ferring the speaker’s implicit standard—a specific
value of Price as a cut off, we can exhaust all
possibilities by considering all unique prices. At

one extreme, only the cheapest Kindle is inexpen-
sive, at the other extreme all of the Kindles are
inexpensive (i.e. the comparison class is a proper
superset of the KINDLE domain): (R2) has four
distinct denotations: Jthe inexpensive onesK =
{k1, k2} ⊕ {k1, k2, k3} ⊕ {k1, k2, k3, k5} ⊕
{k1, k2, k3, k5, k4}. Like ambiguity, the use of a
vague lexical unit can cause multiple distinct in-
terpretations, and these outcomes are a function of
the available options in the context set at the time
the lexical unit is used.

2.3 The problem of unspecific descriptions
Referring expression (R3) is problematic be-
cause there are two possible denotations
Ja kindle touchK = {k2} ∨ {k3}5 but in a
way that differs subtly from having two mutex
interpretations like in (R1). The indefinite article
“a” indicates that the speaker has not only
communicated a description that matches multiple
targets, but also the authority to choose on his
behalf. Either {k2} or {k3} is acceptable. For
planning-based approaches, this means that we
should be able to represent a choice between
multiple alternative targets in an interpretation,
and distinguish it from the mutex alternatives
created by vagueness and ambiguity.

2.4 The problem of word ordering
This and the next problem use this CIRCLE refer-
ence domain for their examples:

c1 c2 c3

Figure 2: The CIRCLE referential domain.

Given the visual scene above, how would you
interpret the following referring expressions?

(R4) the biggest green shape

(R5) the second biggest green circle

(R6) the biggest

(R7) the first one
5Our use of the disjunction operator here is non-standard,

but we are not familiar of alternative notation for this distinc-
tion.
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By incrementally evaluating each word in the
sequence (R4), at the second word we have (R6)
J“the biggest”K = {c3}. If every word’s meanings
were combined by intersecting their denotations,
adding the next word, J“green”K = {c1} ∨ {c2} ∨
{c1, c2}, would denote nothing: J“the biggest”K∩
J“green”K = ∅.

An incremental planning system should be able
to handle the non-monotonicity created by these
so-called subsective6 adjectives: (R4) should yield
an interpretation that is not included in (R6), even
though (R6) is a prefix of (R4). If the model of
REI aims to reflect human abilities, it should be
able to incrementally process the words and switch
between disjoint interpretations in real time, as the
psycholinguistic research suggests (Altmann and
Steedman, 1988; Tanenhaus, 2007).

Now, consider when multiple subsective adjec-
tives occur before a noun, as in (R5). Does “sec-
ond biggest”7 modify both J“green circle”K or just
J“circle”K? This depends on who is interpreting:
when we asked 108 self-reported native English
speakers on Mechanical Turk to interpret (R5)
“the second biggest green circle” the uncertainty
was high, but {c1} was favored over {c2} by 3:2
odds. An REI must decide whether it interprets on
behalf of an individual or population; and REG ap-
proaches may want to avoid such expressions that
can lead to conflicting interpretations.

The issues raised by subsective adjectives can
be seen as symptoms of a more general problem:
that of deciding how to combine the meanings of
individual lexical units. This is the responsibility
of a syntactic theory; its duty is to describe how the
combinatoric constraints on surface forms relates
to the “evaluation order” of their semantic parts.
For planning-based approaches, the syntactic the-
ory should be incremental, capable of producing
an interpretation at any stage of processing, and
invertible, capable of being used in generation and
interpretation.

2.5 The problem of ellipsis

(R6) is missing a noun, and in (R7), “the first
one,” the ordinal “first” appears without a grad-

6Characterizing adjectives set-theoretically, (Siegel,
1976; Partee, 1995) contrasted intersective and subsective
meanings. Unlike intersective adjectives, the subsective
adjectives cannot be defined independently of their nouns.

7The two words “second biggest” are treated as a sin-
gle modifier: just as adjectives can modify nouns, ordinals
like “second” modify superlatives like “biggest,” changing its
meaning so that it skips over the first biggest.

able adjective. We take these to be instances of
ellipsis: when the meaning of a word is present
but its surface form is omitted. In our view, these
expressions should be interpreted as:

(R6’) the biggest [oneNN ]

(R7’) the first [leftmostJJS] one

For planning-based approaches to REI, accom-
modating the phenomenon of ellipsis involves
inferring missing actions—interleaving the par-
tially8 observed actions of the speaker with abduc-
tively inferred actions of the listener (Hobbs et al.,
1993; Benotti, 2010). For a REG, this means that
the speaker can decide to elide some surface forms
under certain conditions—such as if the listener is
expected to infer it from context.

3 AIGRE: a belief-state planning
approach to REI and REG

We used these problematic referring expressions
to guide the design of our belief-state planner, AI-
GRE. Both REG and REI tasks begin with an ini-
tial belief state about a referential domain. In ad-
dition, the REI task is given a referring expression
as input, and the REG task is given a target set.

3.1 Representing states (interpretations) as
beliefs

We draw an analogy between the representation
for an interpretation in a reference task and the
concept of a belief state from artificial intelli-
gence. A belief state characterizes a state of
uncertainty about some lower layer, such as the
world or another belief state. The standard repre-
sentation of a belief state is the power set of the
states in the lower layer, b = P(W), containing
2|W| members, or more generally as a probability
distribution, b = p(W), representing degree of be-
lief.

Given a referential domain, R, REG systems
that can refer to sets (van Deemter, 2000; Stone,
2000; Horacek, 2004) explore a hypothesis space
containing 2|R|−1 denotations, which is represen-
tationally equivalent to a belief state about the hy-
pothesis space of only singleton referents. In our

8The actions are not fully observed because of ellipsis
and, as we have seen with vagueness and ambiguity, different
senses of a word can produce the same surface form of the
lexical unit.
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case, we want to be able to represent multiple in-
terpretations about sets (due to unspecific descrip-
tions, vagueness and ambiguity) so our hypothesis
space contains 22|R|−1 − 1 interpretations. This
state-space grows large quick: for the CIRCLE do-
main, where |R| = 3, there are 127 denotations;
while for KINDLE, where |R| = 5, there are over
two billion.

Fortunately, there are ways to avoid this double-
exponent. First, a belief state uses lazy evalua-
tion to generate its contents: the members of the
power set of the referential domain that are consis-
tent with its intensional description and arity con-
straints (more details in section 3.1.1).

Second, the base exponent is avoided altogether,
as we derive it by aggregating states from the plan-
ning graph. The initial belief state, one of com-
plete uncertainty, implicitly represents 2|R| − 1
possible target sets: it is the branching of non-
deterministic actions that gives rise to the first ex-
ponent (due to lexical ambiguity and vagueness;
see 3.2). This gives a clear way to distinguish
unspecific interpretations (when the listener has a
choice over multiple targets) from the other mu-
tually exclusive targets (choices that were artifacts
of the interpretation process): If two candidate tar-
get sets belong to the same belief state, then they
are the result of unspecificity; whereas, if they are
in different belief states, then they are mutually
exclusive. For example, a REI procedure may pro-
duce two belief states as results: bx = {t1}∨{t2}∨
{t3} and by = {t1, t2, t3}. From this, we conclude
its denotation is: ({t1}∨{t2}∨{t3})⊕{t1, t2, t3}.

In the field of automated planning, belief-
state planning using heuristic search (Bonet and
Geffner, 2000; Hoffmann and Brafman, 2005) has
been used to relax some assumptions of classical
planning, such as the requirement that the problem
instance contains a single (known) initial state,
and that each action in the planning domain only
changes the state in a single (deterministic) way.
Belief state planners allow one action to have mul-
tiple effects, and instead of finding linear plans,
they output plan trees that describe which action
the agent should take contingent upon each ac-
tion’s possible outcomes.

Furthermore, because a belief state represents
an interpretation, we can stop and inspect the
search procedure at any point and we will have a
complete interpretation; thus, achieving the incre-
mental property we desired.

3.1.1 Belief state implementation details
The key responsibilities of a belief state are to rep-
resent and detect equivalent or inconsistent infor-
mation at the intensional level. Its function is to
aggregate all actions’ informational content and
detect whether a partial information update is in-
consistent or would cause the interpretation to be
invalid (i.e., have no members). In AIGRE, be-
lief states are represented as a collection of ob-
jects, called cells,9 which hold partial informa-
tion and manage the consistency of information
updates. AIGRE’s belief states contain the fol-
lowing components:

• target an attribute-value matrix describing properties
that a referent in the domain must entail to be consid-
ered consistent with the belief state.

• distractor an attribute-value matrix describing proper-
ties that a referent in the domain must not entail to be
considered consistent with the belief state. This allows
AIGRE to represent negative assertions, such as “the
not big one” or “all but the left one.”

• target arity an interval (initially [0,∞)) representing
the valid sizes of a target set.

• contrast arity an interval (initially [0,∞)) represent-
ing the valid sizes of the difference in the sizes of a
target set and the set containing all consistent referents.

• part of speech a symbol (initially S) representing the
previous action’s part of speech.

• deferred effects a list (initially empty) that holds ef-
fect functions and the trigger part of speech symbol
that indicates when the function will be executed on the
belief state.

A belief state does not have to store all 2|R| − 1
target sets; it can lazily produce its full denota-
tion only when needed. It does this by generating
the power set of all elements in the referential do-
main that entail the target description, do not en-
tail the distractor, and are consistent with two ar-
ity constraints: The target arity property requires
the target set’s size to be within its interval, and
it is used to model number agreement and cardinal
modifiers. The contrast arity requires that the dif-
ference between a given target set and the largest
target set in the belief state (the number of con-
sistent referents) is a size within its interval, and
is used to model the semantics of determiners and
qualifiers.

Actions operate on AIGRE’s belief states, yet
the belief state influences much of the behavior of

9The idea behind cells comes from the propagator
framework of (Radul and Sussman, 2009) and our Python
library is available from http://eventteam.github.io/
beliefs/
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the action’s effects. As we will see in the next sec-
tion, the contents of a belief state determine the
number of effects an action will yield, the specific
values within the effect’s belief (using late bind-
ing), and whether or not the update is valid.

3.2 Representing context-dependent actions
AIGRE’s lexicon is comprised of lexical units—
actions that can change belief states. Each ac-
tion/word is an instantiation of an action class and
has (1) a syntactic category (part of speech), (2) a
lexical unit, (3) a specific semantic contribution—
determined in part by its syntactic category, (4)
a fixed lexical cost, and (5) a computed effect
cost. Actions are defined by instantiating class in-
stances, for example:

GradableAdj(’big’, attr=’size’)

CrispAdj(’big’, attr=’size’, val=[5,∞))

When instantiating an action, the first argument is
its lexeme in its root form; the class’ initializa-
tion method uses the root lexeme to also instan-
tiate variant actions for each derivative lexical unit
(e.g. plural, comparative, superlative, etc).

3.2.1 Actions yield effect functions, not states
Actions in AIGRE receive a belief state as input
and lazily generate 0 or more effect functions as
output, depending on the contents of the belief
state. Unlike conventional planners, actions pro-
duce effect functions rather than successor states
because (1) it allows us to defer the execution of
an effect, as we describe in 3.2.3, (2) generat-
ing effect functions is fast; copying belief states
is slow, and (3) actions can annotate the yielded
effect functions with an estimated cost, giving the
search process an additional degree of control over
what successor state is created next. We view an
action that does not yield any effects to be analo-
gous to a traditional planning domain’s action that
does not having its preconditions satisfied; unlike
traditional domains, an action’s behavior is opaque
until it is explicitly applied to a belief state.

3.2.2 Ambiguity and vagueness using
non-deterministic actions

Gradable adjectives yield an effect for each same-
named attribute10 (lexical ambiguity) for each
value (vagueness) in the parent belief state’s con-
sistent referents. For example, given the ac-
tion BIGJJ applied to an initial belief state about
the KINDLE referential domain, b0, the action

10Ordered by breadth-first traversal of targets’ properties.

yields a separate effect for each unique value of
each unique attribute-path that terminates with
size for all consistent referents. In this case,
the referents have two size properties, size and
hard drive.size, each with 3 distinct values, so
the BIGJJ action applied to b0 yields 6 effects in
total: BIG(b0) → e0, e1 . . . e6. When executed on
a belief state, e0 would add the nested property
size to its target property (if it doesn’t already
exist) and then attempt to merge it with an interval
beginning at the largest size value11 of a referent
consistent with b0: [7,∞).

Effects for vague and ambiguous actions prolif-
erate: if the adjective BIG has s senses, and there
are r referents compatible with the belief state,
then it can yield as many as s× r effect functions.
In section 3.3.1, we will show how the search al-
gorithm can mitigate this complexity by conserva-
tively generating effects.

3.2.3 Effects can be deferred until a trigger
We view subsective adjectives (see 2.4) as having
their context-specific meaning evaluated within
the scope of the noun’s meaning (i.e., after eval-
uating the noun). To achieve this without chang-
ing the words’ surface orderings, each adjective’s
effects are deferred until a syntactic trigger: when
the belief state’s part of speech indicates it has
reached a noun state. Deferred effect functions
are stored in the belief state’s deferred effects
queue along with a trigger. This solution makes
the search harder: deferred actions have no imme-
diate effect on the belief state, and so (in the eyes
of the search algorithm) they do not move the be-
lief toward the search goal.

3.3 Controlling search through belief states
A heuristic search planner must specify how to de-
termine which state to expand next, and how to de-
termine when a search process has succeeded, i.e.,
a goal test function. AIGRE approaches the first
issue in a variety of ways: by (a) using a heuristic
function to rank the candidate nodes so that the
most promising nodes are expanded first (b) using
an action proposal function to restrict the actions
used to expand the current node (c) using a greedy
search algorithm that does not generate all suc-
cessor nodes.

Note that although both REG and REI tasks in-
volve choosing belief-changing actions that map

11Gradable (vague) values are represented with intervals,
where one extreme is the standard.
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an initial belief state onto a target belief state, the
two search processes are subject to very different
constraints. With generation, the desired seman-
tic content is fixed and the linguistic choices are
open; while for interpretation, the linguistic con-
tents are relatively fixed and the semantic possi-
bilities are open. We use these differences to cre-
ate task-specific heuristics, action proposal mech-
anisms, and goal-test functions; and find that the
interpretation task tends to search a much smaller
space than that of generation.

3.3.1 Heuristic functions
For REI, the action proposal function is so restric-
tive that we can generate and test the entire search
space; therefore, no heuristic is necessary.

For REG, the heuristic function characterizes its
communicational objective: to describe the tar-
get(s) and none of the distractors. For this we
use the F1 score (F-measure) from information re-
trieval, because it rewards inclusion of targets (re-
call) and penalizes inclusion of distractors (preci-
sion). Given a belief state, s, and the intended tar-
get set, ṫ:

h(s) = max F1(ṫ, t) ∀ t ∈ s (1)

This heuristic iterates over each target set, t, in a
belief state to find the biggest set difference ac-
cording to the F1 score. By taking the worst pos-
sible score of any target, it always is greater than
or equal to the true distance.

3.3.2 Goal test functions
For REI, a goal state is one in which all obser-
vations have been accounted for, and the belief
state’s part of speech is a noun. For REG, a goal
state is one in which only the targets are described
(i.e. its heuristic, Equation 1, returns 0), and the
belief state’s part of speech is a noun.

Both goal test functions impose a syntactic con-
straint: the requirement that plans terminate in a
noun state. This all-or-nothing constraint, along
with the language model in the action proposal
function, forces the generated expressions to be
syntactically well-formed English expressions.

3.3.3 Action proposal functions
While expanding a search state, instead of gener-
ating effects for every action in the lexicon, the
action proposal restricts the set of actions that are
considered. It is passed the parent belief state,

whose part of speech property tells the syntac-
tic category of the last action that changed it. Ac-
tions are proposed only if they are consistent with
a language model that describes valid transitions
between syntactic categories. Our (limited) lan-
guage model is expressed in a regular language:
DT? CD? (ORD? JJS)* JJ* (NN|NNS)+.

For the problem of REI, we are licensed to make
the action proposal function even more restric-
tive. AIGRE restricts those whose lexical units
can produce the text that appears in the remaining
observation sequence.

In addition to enforcing syntactic constraints,
the action proposal function gives us a nice way to
handle omitted actions. During interpretation, AI-
GRE allows default actions, representing elided
words or conventional implictures, to be inferred
at a cost, but only under rare circumstances. A
designated subset of actions are marked as default
actions, indicating that they can be assumed even
though their lexical unit is not present. A default
action is only suggested if (1) none of the other ac-
tions have matched the remaining observed input
text and (2) its precondition is met.

For example, the language model forbids the
ORD→NN transition and the goal test function re-
quires that all noun phrases terminate with a
noun. Consequently, “the second” is interpreted
as “theDT secondORD [leftmostJJS] [oneNN ]”,
assuming the default actions LEFTMOSTJJS and
ONENN . For (R6), the requirement of ending with
a noun allows the subsective meaning of “biggest”
to be evaluated: its deferred effect is triggered af-
ter ONENN .

3.3.4 Search strategies
Because the action proposal function is so restric-
tive for REI, the entire search space can be ex-
plored usually under a second. For REG, expand-
ing the complete planning graph to a depth of 5
using ≈ 100 actions takes several minutes.

To complete the REG task efficiently, we have
experimented with search strategies and found op-
timal A* search to be too slow. Although they
give up guarantees of optimality and complete-
ness, hillclimbing-based approaches rescue the
REG task from having to expand every relevant ac-
tion’s effect by committing to the first effect whose
successor shows an improvement over the current
state. Because we do not want the same results
each time (non-deterministic output is character-
istic of human reference generation (van Deemter
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et al., 2011)), AIGRE randomly chooses effects
with a probability inversely proportional to the ac-
tion’s lexical cost, which is a kind of stochastic
hillclimbing. The results are promising: non-
deterministic outputs can be generated in usually
less than a second (see Figure 4).

4 AIGRE’s Output for REI and REG

In lieu of a formal evaluation, we have included
examples of AIGRE’s output for several tasks in-
volving the CIRCLE and KINDLE reference do-
mains: see Table 1 for output of the REG task;
and Figures 5 and 6 for outputs of REI tasks.

AIGRE’s word costs were derived from their
inverse token frequencies in the Open American
National Corpus (Ide and Macleod, 2001). They
are only a approximation and clearly do not accu-
rately quantify the costs of human linguistic de-
cisions. With this in mind, the referring expres-
sion’s denotations’ relative likelihoods, which are
derived from costs, should not be given much cre-
dence. Our point here is that this large hypothesis
space can be represented and searched efficiently.

0.0 0.5 1.0
Relative likelihood of denotation

a kindle touch

the inexpensive ones

the big one

Net Interpretations for KINDLE domain

{k2}
{k3}
{k4}
{k5}
{k1, k2}
{k1, k2, k3}
{k1, k2, k3, k5}
{k1, k2, k3, k4, k5}
∅

Figure 3: REI results for R1, R2 and R3 in the
KINDLE domain. Each color represents a different
target set, and more than one color in a bar indi-
cates the interpretation is uncertain.

5 An example trace of a REI task

The interpretation task begins with an initial state
containing the belief state b0 about the KINDLE

referring domain12 (figure 1) and the referring ex-
pression, “any two cheap ones.” The search pro-
cedure begins by selecting actions to transform b0

into successor states. The actions are sorted by
how much of the prefix of the observed text they

12To AIGRE, each Kindle is an attribute-values matrix
rather than a visual image.

0.0 0.5 1.0
Relative likelihood of denotation

the first one

the biggest

the second biggest green circle

the biggest green shape

Net Interpretations for CIRCLE domain

{c1}
{c2}
{c3}
∅

Figure 4: REI for R4-R7 in the CIRCLE domain.

match; and for “any two cheap ones,” the first ac-
tion is ANYDT and it transforms b0 into b1:

b0 =


TARGET ARITY [0,∞)

CONTRAST ARITY [0,∞)

TARGET []

DISTRACTOR []

PART OF SPEECH S

DEFERRED EFFECTS []


(Note: For lack of space, we just show the parts of the belief
state that change)

b1 =
[

CONTRAST ARITY [1,∞)

PART OF SPEECH DT

]

The contrast arity property allows AIGRE to
represent the notion of conveying a choice from
alternatives, as with the indefinite meanings of
“some” or “any,” as well as the fact that definite
descriptions take the maximal set.13

Applying the effect of the action, TWOCD, for
the word “two” transforms b1 into b2:

b2 =
[

TARGET ARITY [2, 2]

PART OF SPEECH CD

]

To be concrete, the initial belief state, b0,
models all 31 groupings of referents: b0 |=
{k1} , {k3, k5} . . . ; the belief state b1 contains 30
sets—all but the set containing all 5 kindles; and
b2 represents

(
5
2

)
= 10 alternative sets.

The action CHEAPJJ corresponding to the grad-
able adjective “cheap” is non-deterministic: it
yields a different effect for each distinct attributes’
values, starting with the lowest price, $79.00. This

13The power set of the belief state’s referents forms a lat-
tice under the subset operator, and for the definite article
“the” we only want the top row. We model its meaning with
a deferred effect that sets contrast arity to [0,0] after a noun.
The indefinite article “a” sets contrast arity to [1,∞) and
target arity to 1; “a” has the same meaning as “any one.”
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TARGET SECONDS REFERRING EXPRESSIONS (AND COSTS)
{c1} 0.66± 0.3 the small one (2.3), the left one (2.4), the smaller one (2.4), the smallest one (2.4), the leftmost one (2.4) . . .
{c2} 1.05± 0.5 the center one (2.4), the medium-sized one (2.4), the center circle (2.4), the green big one (3.4)
{c3} 1.63± 1.1 the blue one (2.3), the right one (2.3), the big one (2.3), the large one (2.4), the larger one (2.4). . .
{c1, c2} 0.37± 0.1 the green ones (2.3), the green circles (2.3), the 2 green ones (3.4), the small ones (3.4)
{c1, c3} 0.52± 0.1 the 2 not center ones (4.5), the 2 not center circles (4.5), the 2 not medium-sized ones (4.5)
{c2, c3} 0.41± 0.1 the right ones (3.4), the 2 right ones (4.4), the 2 right circles (4.4), the 2 big ones (4.5)
{c1, c2, c3} 0.19± 0.1 the ones (1.2), the circles (1.2), the 3 ones (2.3)
{k1} 3.24± 2.0 the left one (2.4), the light one (2.4), the small cheap one (3.5), the small cheapest one (3.5)
{k2} 0.94± 0.2 the left touch (3.4), the small center one (3.5), the small center touch (3.6), the small center cheap one (4.7)
{k3} 1.11± 1.0 the center one (2.4), the small heavy one (3.5), the small heavier one (3.5), the small heaviest touch (3.6) . . .
{k4} 0.20± 0.2 the kindle dx (1.2), the big one (2.3), the big kindle dx (2.4)
{k5} 0.19± 0.1 the kindle fire (1.2), the right one (2.3), the right kindle fire (2.4)

Table 1: AIGRE’s outputs for REG tasks (each repeated for 20 trials). If the output is bold, it means
that when we fed the referring expression back to AIGRE as a REI task, it was able to derive multiple
alternative interpretations and the referring expression is uncertain.

any
cost: 1.08

two
cost: 2.16

ones2
cost: 11.65

ch
ea

p 1
(p

ric
e)

sta
nd
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d:

(−
∞

, 1
49

]

co
st:

6.5
6

ones2
cost: 7.65

cheap1 (price)
standard: (−∞, 379]
cost: 18.56

cheap1
(price)

standard: (−∞, 199]

cost: 10.56

ones2
cost: 19.65

b0
size:31

b1
size:30

b2
size:10

b5
size:3

b6
size:6

b7
size:10

b8
size:3

b9
size:6

b10
size:10

Figure 5: The planning graph for interpreting, “any two cheap ones.” Search proceeds from the initial
state b0 rightward toward goal states (diamonds). The labeled edges represent the actions, and contain
the cumulative path costs. Only intermediate states that lead to a goal are shown—even though CHEAPJJ

initially had 5 successors, two were invalid belief states because they had 0 members.

effect adds a new attribute target.price to the be-
lief state and sets its value to be the open inter-
val (−∞, 79.00]. The action’s next effect creates
a separate belief state for the second lowest price
from the referents, $99.00, and so on, all the way
up to the most expensive price, $379.00.

b3 =
[

TARGET
[

PRICE (−∞, 79.00]
]]

b4 =
[

TARGET
[

PRICE (−∞, 99.00]
]]

b5 =
[

TARGET
[

PRICE (−∞, 149.00]
]]

. . .

The last word, “ones,” invokes an ac-
tion ONESNNS whose effect adds the tar-
get.type=entity property to the belief state and
then merges targetset arity with [2,∞) because
it is plural (though its value doesn’t change).

0.0 0.5 1.0
Relative p of denotation

ones

cheap

two

any

Incremental REI for ‘any two cheap ones’
Possible Targets

{k1, k2}
{k1, k3}
{k1, k4}
{k1, k5}
{k2, k3}
{k2, k4}
{k2, k5}
{k3, k4}
{k3, k5}
{k4, k5}

Figure 6: All denotation’s relative likelihoods.
Each row corresponds to a column of the planning
graph in Figure 5: the first row, “any,” is just node
b1 and the last row is the aggregate of the belief
states b8, b9 and b10—derived by summing all the
denotations’ inverted costs.
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