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Abstract

The BioNLP Shared Task 2013 is organ-
ised to further advance the field of in-
formation extraction in biomedical texts.
This paper describes our entry in the Gene
Regulation Network in Bacteria (GRN)
part, for which our system finished in sec-
ond place (out of five). To tackle this re-
lation extraction task, we employ a basic
Support Vector Machine framework. We
discuss our findings in constructing local
and contextual features, that augment our
precision with as much as 7.5%. We touch
upon the interaction type hierarchy inher-
ent in the problem, and the importance of
the evaluation procedure to encourage ex-
ploration of that structure.

1 Introduction

The increasing number of results in the biomedical
knowledge field has been responsible for attract-
ing attention and research efforts towards meth-
ods of automated information extraction. Of par-
ticular interest is the recognition of information
from sources that are formulated in natural lan-
guage, since a great part of our knowledge is still
in this format. Naturally, the correct detection of
biomedical events and relations in texts is a matter
which continues to challenge the scientific com-
munity. Thanks to the BioNLP Shared tasks, al-
ready in the third instalment, researchers are given
data sets and evaluation methods to further ad-
vance this field.
We participated in the Gene Regulation Network
(GRN) Task (Bossy et al., 2013), which is an
extension of the Bacteria Gene Interactions Task
from 2011 (Jourde et al., 2011). In this task, ef-
forts are made to automatically extract gene inter-
actions for sporulation, a specific cellular function
of the bacterium bacillus subtilis for which a sta-

ble reference regulatory network exists. An exam-
ple sentence can be seen below. Note that all en-
tities (except for event triggers, i.e. action entities
like transcription in figure 1) are given as input in
both training and test phases. Therefore, this task
makes abstraction of the entity recognition issue,
putting complete focus on the subproblem of rela-
tion detection.

sspG transcription also requires the DNA binding protein GerE .

Event

Interaction: Requirement

Agent
Target

Figure 1: Example sentence: there is an Interac-
tion:Requirement relation defined between entities
GerE and sspG, through the action event of tran-
scription. Full-line entities are given in the test
phase, while dashed-lined ones are not.

As this is our first participation in this task, we
have built a simple, yet adaptable framework. Our
contributions lie therefore more in the domain of
feature definition and exploration, rather than in
designing novel machine learning models.
Predictions could be given in two ways. Either
all events and relations could be predicted, from
which the regulation network would then be infer-
enced (cfr. figure 1, detect all dashed-lined enti-
ties, and the relations between them). Or, a speci-
fication of the regulation network itself is directly
predicted (in the example, this amounts to finding
GerE → sspG, and the type (Requirement)). We
chose to implement the latter method. In section
2 we will lay out the framework we constructed,
and the tools we used. In that section, we will also
look at some of the design choices for our feature
construction. Finally we discuss our results in sec-
tion 3, and touch upon opportunities to exploit the
available interaction hierarchy in this data.
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2 Implementation

Basic Framework For this interaction detec-
tion task, we implement a Support Vector Ma-
chine (SVM) (Vapnik, 1995), with the use of the
SVMLight (Joachims, 1999) implementation in
the Shogun Machine Learning Toolbox. Per given
sentence, we construct our data points to be all
pairs of genic entities in that sentence, i.e., all pos-
sible interaction agent/target pairs. Note that since
the regulation network is a directed graph, the or-
der of the nodes matters; each such pair therefore
occurs twice in the data. It is obvious from this
construction that this leads to a great imbalance:
there are a lot more negatively labelled data points
than positive ones. To respond to this, we tried
applying differential weighing (as seen in (Shawe-
Taylor and Cristianini, 1999) and (Veropoulos et
al., 1999)). This amounts to appointing a big-
ger regularisation parameter C to the positive data
points when training the SVM, thus tightening the
boundary constraint on the margin for these points.
The results of this were unconvincing however, so
we decided not to implement it.
For each interaction type (there are 6 of them),
we then train a separate binary (local, hence one-
versus-all) SVM classifier1, with a Gaussian Ra-
dial Basis Function (RBF) kernel as in (Aĭzerman
et al., 1964) and (Schölkopf et al., 1997). We eval-
uated several types of kernels (linear, polynomial,
Gaussian) in a 25-fold cross-validation over the
union of training and validation set, and the RBF-
kernel consistently gave better results.

Feature Construction and Selection Consider
our data points (i.e., the agent/target pairs) xijk =
(eij , eik), j 6= k, where eij denotes the jth entity
of sentence i. For each such point, the basic (real-
valued) feature set-up is this:

f(xijk) = fent(eij )� fent(eik)� fextra(eij , eik),

a concatenation (the� operation) of the respective
feature vectors fent defined separately on the pro-
vided entities. To that we add fextra, which con-
tains the Stanford parse tree (Klein and Manning,
2003) distance of the two entities, and the location
and count (if any) of Promoter entities: these are
necessary elements for transcription without being
part of the gene itself. For any entity, we then con-

1There is a lot of scope for leveraging the hierarchy in the
interaction types; we touch upon this in the conclusion.

struct the feature vector as:

fent(eij ) =
1

Nij

∑
w∈eij

fbase(w)� fcontext(w, i),

whereNij is the number of words in eij . This is an
average over all words w that make up entity eij

2,
with the choice of averaging as a normalisation
mechanism, to prevent a consistent assignment of
relatively higher values to multi-word entities. In-
side the sum is the concatenation of the local fea-
ture function on the words (fbase) with fcontext,
which will later be seen as encoding the sentence
context.
The base feature function on a word is a vector
containing the following dimensions:

• The entity type, as values ∈ {0, 1};

• Vocabulary features: for each word in the dic-
tionary (consisting of all words encountered),
a similarity score ∈ [0, 1] is assigned that
measures how much of the beginning of the
word is shared3. In using a similarity scor-
ing instead of a binary-valued indicator func-
tion, we want to respond to the feature spar-
sity, aggravated by the low amount of data
(134 sentences in training + validation set).
While this introduces some additional noise
in the feature space, this is greatly offset by
a better alignment of dimensions that are ef-
fectively related in nature. Also note that,
due to the nature of the English language,
this approach of scoring similarities based on
a shared beginning, is more or less equiva-
lent to stemming (albeit with a bias towards
more commonly occurring stems). For our
cross-validations, utilisation of these similar-
ity scores attributed to an increase in F-score
of 7.6% (mainly due to an increase in re-
call of 7.0%, without compromising preci-
sion) when compared to the standard binary
vocabulary features.

• Part-of-speech information, using the
Penn-Treebank (maximum entropy) tagger,
through the NLTK Python library (Bird et
al., 2009). These are constructed in the same
fashion as the vocabulary features;

2Note that one entity can consist of multiple words.
3To not overemphasise small similarities (e.g. one or two

initial letters in common), we take this as a convex function
of the proportion of common letters.
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• Location of the word in its sentence (nor-
malised to be ∈ [0, 1]). Note that next to
being of potential importance in determining
an entity to be either target or agent, the sub-
space of the two location dimensions of the
respective entities in the data point xijk =
(eij , eik) also encodes the word distance be-
tween these.

• Depth in the parse tree (normalised to be ∈
[0, 1]).

Adding contextual features On top of these ba-
sic features, we add some more information about
the context in which the entities reside. To this ef-
fect, we concatenate to the basic word features the
tree context: a weighted average of all other words
in the sentence:

fcontext(w, i) =
1

Z

∑
wj∈sentencei

αdi(w,wj)fbase(wj)

with fbase the basic word features described
above, and weights given by α ≤ 14 and di(w,wj)
the parse tree distance from w to wj . The normal-
isation factor we use is

Z =
∑

wj∈sentencei

αdi(w,wj)

i.e., the value we would get if a feature would be
consistently equal to 1 for all words. This nor-
malisation makes sure longer sentences are not
overweighted. For the inner parse tree nodes we
then construct a similar vector (using only part-
of-speech and phrasal category information), and
append it to the word context vector.
Note that the above definition of fcontext also al-
lows us to define di(w,wj) to be the word distance
in the sentence, leaving out any grammatical (tree)
notion. We designate this by the term sentence
context.

3 Results and Conclusion

Cross-validation performance on training data
Because we have no direct access to the final test
data, we explore the model performance by con-
sidering results from a 25-fold cross-validation on
the combined training and validation set. Table 1

4We optimised α to be 0.4, by tuning on a 25-fold cross-
validation, only using training and validation set.

shows the numbers of three different implementa-
tions5: one with respectively no fcontext concate-
nated, and the tree context (the official submission
method) and sentence context versions. We see
that a model based uniquely on information from
the agent and target entities already performs quite
well; a reason for this could be the limited amount
of entities and/or interactions that come into play
in the biological process of sporulation, augment-
ing the possibility that a pair can already be ob-
served in the training data. Adding context infor-
mation increases the F-score by 2%, mainly due to
a substantial increase in precision, as high as 7.5%
for the sentence context. Recall performs better in
the tree variant however, pointing to the fact that
grammatical structure can play a role in identify-
ing relations.
Note that we only considered the sentence alter-
ation after the submission deadline, so the better
results seen here could no longer implore us to use
this version of the context features.

Context SER Prec. Recall F1
None 0.827 0.668 0.266 0.380
Tree 0.794 0.709 0.285 0.406
Sentence 0.787 0.743 0.278 0.405

Table 1: Results of the cross-validation for several
implementations of context features. (C = 5, σ =
8.75)

We can identify some key focus points to fur-
ther improve our performance. Generally, as can
be seen in the additional results of table 1, a low
recall is the main weakness in our system. These
low numbers can in part be explained by the lack
of great variation in the features, mainly due to
the low amount of data we have. Interesting to
note here, is the great diversity of performance of
the local classifiers separately: the SVM for Tran-
scription attains a recall of 42.0%, in part because
this type is the most frequent in our data. However,
the worst performers, Requirement and Regulation
(with a recall of 0.0% and 3.7% respectively) are
not per se the least frequent; in fact, Regulation
is the second most occurring. Considerable effort
should be put into addressing the general recall is-
sue, and gaining further insight into the reasons
behind the displayed variability.

5For simplicity, we keep all other parameters (C, and the
RBF kernel parameter σ) identical across the different entries
of the table. While in theory a separate parameter optimisa-
tion on each model could affect the comparison, this showed
to be of little qualitative influence on the results.
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Final results on test data On submission of the
output from the test data, our system achieved a
Slot Error Rate (SER) of 0.830 (precision: 0.500,
recall: 0.227, F1: 0.313), coming in second place
after the University of Ljubljana (Zitnik et al.,
2013) who scored a SER of 0.727 (precision:
0.682, recall: 0.341, F1: 0.455).

Exploring structure One of the main issues of
interest for future research is the inherent hierar-
chical structure in the interactions under consid-
eration. These are not independent of each other,
since there are the following inclusions:

Regulation

Inhibition Activation

Requirement

Binding

Transcription

So for example, each interaction of type Tran-
scription is also of type Binding, and Regula-
tion. This structure implicates additional knowl-
edge about the output space, and we can use this
to our benefit when constructing our classifier.
In our initial framework, we make use of local
classifiers, and hence do not leverage this addi-
tional knowledge about type structure. We have
already started exploring the design of techniques
that can exploit this structure, and preliminary re-
sults are promising.
One thing we wish to underline in this process
is the need for an evaluation procedure that is as
aware of the present structures as the classifier. For
instance, a system that predicts a Binding interac-
tion to be of type Regulation, is more precise than
a system that identifies it as an Inhibition. Both
for internal as external performance comparison,
we feel this differentiation could broaden the fo-
cus towards a more knowledge-driven approach of
evaluating.
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