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Abstract

We describe our system to extract genia
events that was developed for the BioNLP
2013 Shared Task. Our system uses a su-
pervised information extraction platform
based on Support Vector Machines (SVM)
and separates the process of event clas-
sification into multiple stages. For each
event type the SVM parameters are ad-
justed and feature selection carried out.
We find that this optimisation improves
the performance of our approach. Overall
our system achieved the highest precision
score of all systems and was ranked 6th
of 10 participating systems on F-measure
(strict matching).

1 Introduction

The BioNLP 2013 Shared Task focuses on infor-
mation extraction in the biomedical domain and
comprises of a range of extraction tasks. Our sys-
tem was developed to participate within the Genia
Event Extraction task (GE), which focuses on the
detection of gene events and their regulation. The
task considers 13 different types of events which
can be divided into four groups: simple events,
bindings, protein modifications and regulations.
All events consist of a core event, which contains
a trigger word and a theme. With the exception of
regulation events, the theme always refer to a pro-
tein. A regulation event theme can either refer to
a protein or to another event. Binding events can
include up to two proteins as themes. In addition
to the core event, events may include additional
arguments such as ‘cause’ or ‘to location’.

Figure 1 shows examples of events from the
BioNLP 2013 corpus. More details about the Ge-
nia Event task can be found in Kim et al. (2011).

Previous editions of the BioNLP Shared Task
took place in 2009 (Kim et al., 2009) and 2011

Figure 1: Two events from the BioNLP 2013 GE
task: a phosphorylation event consisting of a trig-
ger and a protein and a positive-regulation event
consisting of a trigger, a theme referring to an
event and a cause argument.

(Kim et al., 2011). Promising approaches in the
most recent competition were event parsing (Mc-
Closky et al., 2011) and dual decomposition mod-
els (Riedel and McCallum, 2011). The winner of
the GE task 2011, FAUST (Riedel et al., 2011),
combined these two approaches by using result
from the event parser as an additional input fea-
ture for the dual decomposition.

The UTurku system of Björne et al. (2009) was
the winner of the GE task in 2009. The system
was based on a pipeline containing three main
stages: trigger detection, argument detection and
post-processing. Björne and Salakoski (2011) im-
proved the performance of this system for BioNLP
2011, but was outperformed by FAUST.

Our approach to the BioNLP Shared Task re-
lies on separating the process of event classifica-
tion into multiple stages and creates separate clas-
sifiers for each event type. Our system begins by
pre-processing the input text, followed by multiple
classification stages and a post-processing stage.
The pre-processing applies tokenization, sentence
splitting and dictionary-based trigger detection,
similar to Bui and Sloot (2011). Classification is
based on a Support Vector Machine (SVM) and
uses three main stages: trigger-protein detection,
trigger-event detection and event-cause detection.
Post-processing is a combination of classification
and rule-based approaches. We train a separate
classifier for each event type, rather that relying on
a single classifier to recognise trigger-theme rela-
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tionships for all event types. In addition, we also
optimise the SVM’s parameters and apply feature
selection for each event type.

Our system participated in subtask 1 of the
GE task, which involves the recognition of core
events, including identification of their ‘cause’.

The remainder of this paper describes our sys-
tem in detail (Section 2), presents results from the
Genia Event Extraction task (Section 3) and draws
the conclusions of this work (Section 4).

2 System Description

2.1 Preprocessing

Our system begins by preprocessing the input text,
by applying the sentence splitter and biomedical
named entity tagger from LingPipe1. The sentence
splitter is trained on the MEDLINE data set. The
text is then tokenised. Tokens containing punc-
tuation marks are split, as are tokens containing
a protein or suffixes which could be utilised as
a trigger word. For instance the term ‘Foxp3-
expression’ will be split into ‘Foxp3 - expression’,
since ‘Foxp3’ is as a protein and ‘expression’ a
suffix often used as trigger word. The tokens are
then stemmed using the Porter Stemmer from the
NLTK2 toolkit. The Stanford Parser3 is used to ex-
tract part-of-speech tags, syntax trees and depen-
dency trees.

2.1.1 Trigger Detection
The names of proteins in the text are provided in
the GE task, however the trigger words that form
part of the relation have to be identified. Our sys-
tem uses a dictionary-based approach to trigger
detection. The advantage of this approach is that it
is easy to implement and allows us to easily iden-
tify as many potential trigger words as possible.
However, it will also match many words which
are not true triggers. We rely on the classification
stage later in our approach to identify the true trig-
ger words.

A training corpus was created by combining the
training data from the 2013 Shared Task with all
of the data from the 2011 task. All words that are
used as a trigger in this corpus are extracted and
stored in a set of dictionaries. Separate dictionar-
ies are created for different event types (e.g. local-
ization, binding). Each type has its own dictionary,

1http://alias-i.com/lingpipe/index.html
2http://nltk.org/
3http://nlp.stanford.edu/software/lex-parser.shtml

with the exception of protein modification events
(protein modification, phosphorylation, ubiquiti-
nation, acetylation, deacetylation). The corpus did
not contain enough examples of trigger terms for
these events and consequently they are combined
into a single dictionary. The words in the dictio-
naries are stemmed and sorted by their frequency.
Irrelevant words (such as punctuations) are filtered
out.

Trigger detection is carried out by matching the
text against each of the trigger dictionaries, start-
ing with the trigger words with the highest fre-
quency. A word may be annotated as a trigger
word by different dictionaries. If a word is anno-
tated as a trigger word for a specific event then it
may not be annotated as being part of another trig-
ger word from the same dictionary. This restric-
tion prevents the generation of overlapping trigger
words for the same event as well as preventing too
many words being identified as potential triggers.

2.2 Classification

Classification of relations is based on SVM with
a polynomial kernel, using LibSVM (Chang and
Lin, 2011), and is carried out in three stages. The
first covers the core event, which consists of a trig-
ger and a theme referring to a protein. The second
takes all classified events and tries to detect regu-
lation events consisting of a trigger and a theme
that refers to one of these events (see positive-
regulation event in figure 1). In addition to a trig-
ger and theme, regulation and protein modification
events may also include a cause argument. The
third stage is responsible for identifying this addi-
tional argument for events detected in the previous
two stages.

Classification in each stage is always between
pairs of object: trigger-protein (stage 1), trigger-
event (stage 2), event-protein (stage 3) or event-
event (stage 3). At each stage the role of the clas-
sifier is to determine whether there is in fact a re-
lation between a given pair of objects. This ap-
proach is unable to identify binding events involv-
ing two themes. These are identified in a post-
processing step (see Section 2.3) which consid-
ers binding events involving the same trigger word
and decides whether they should be merged or not.

2.2.1 Feature Set
The classification process uses a wide range of
features constructed from words, stemmed words,
part of speech tags, NE tags and syntactic analysis.
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Object Features: The classification process
always considers a pair of objects (e.g. trigger-
protein, trigger-event, event-protein). Object fea-
tures are derived from the tokens (words, stemmed
words etc.) which form the objects. We consider
the head of this object, extracted from the depen-
dency tree, as a feature and all other tokens within
that object as bag of word features. We also con-
sider the local context of each object and include
the three words preceding and following the ob-
jects as features.

Sentence Features: The tokens between the
two objects are also used to form features. A
bag of word is formed from the tokens between
the features and, in addition, the complete se-
quence of tokens is also used as a feature. Differ-
ent sentence features are formed from the words,
stemmed words, part of speech tags and NE tags .

Syntactic Features: A range of features are ex-
tracted from the dependency and phrase-structure
trees generated for each sentence. These fea-
tures are formed from the paths between the the
objects within dependency tree, collapsed depen-
dency tree and phrase-structure tree. The paths are
formed from tokens, stemmed tokens etc.

The features are organised into 57 groups for
use in the feature selection process described later.
For example all of the features relating to the bag
of words between the two objects in the depen-
dency tree are treated as a single group, as are all
of the features related to the POS tags in the three
word range around one of the objects.

2.2.2 Generation of Training and Test Data

Using the training data, a set of positive and neg-
ative examples were generated to train our classi-
fiers. Pairs of entities which occur in a specific
relation in the training data are used to generate
positive examples and all other pairs used to gen-
erate negative ones. Since we do not attempt to
resolve coreference, we only consider pairs of en-
tities that occur within the same sentence.

Due to the fact that we run a dictionary-based
trigger detection on a stemmed corpus we might
cover many trigger words, but unfortunately also
many false ones. To handle this situation our clas-
sifier should learn whether a word serves as a trig-
ger of an event or not. To generate sufficient nega-
tive examples we also run the trigger detection on
the training data set, which already contains the
right trigger words.

2.2.3 Classifier optimisation

Two optimisation steps were applied to the rela-
tion classifiers and found to improve their perfor-
mance.

SVM bias adjustment: The ratio of positive
and negative examples differs in the training data
generated for each relation. For instance the data
for the protein catabolism event contains 156 pos-
itive examples and 643 negatives ones while the
gene expression event has 3617 positive but 34544
negative examples. To identify the best configura-
tion for two SVM parameters (cost and gamma),
we ran a grid search for each classification step
using 5-fold cross validation on the training set.

Feature Selection: We also perform feature se-
lection for each event type. We remove each fea-
ture in turn and carry out 5-fold cross validation on
the training data to identify whether the F-measure
improves. If improvement is found then the fea-
ture that leads to the largest increase in F-measure
is removed from the feature set for that event type
and the process repeated. The process is continued
until no improvement in F-measure is observed
when any of the features are removed. The set of
features which remain are used as the final set for
the classifier.

The feature selection shows the more positive
training examples we have for an event type the
fewer features are removed. For example, gene
expression events have the highest amount of pos-
itive examples (3617) and achieve the best F-
measure score without removing any feature. On
the other hand, there are just 156 training exam-
ples for protein catabolism events and the best re-
sults are obtained when 39 features are removed.
On average we remove around 14 features for each
event classifier. We observed that sentence fea-
tures and those derived from the local context of
the object are those which are removed most of-
ten.

2.3 Post-Processing

The output from the classification stage is post-
processed in order to reduce errors. Two stages of
post-processing are applied: one of which is based
on a classifier and another which is rule based.

Binding Re-Ordering: As already mentioned
in Section 2.2, our classification is only capable
of detecting single trigger-protein bindings. How-
ever if two binding events share the same trig-
ger, they could be merged into a single binding
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containing two themes. A classifier is trained to
decide whether to merge pairs of binding events.
The classifier is provided with the two themes that
share a trigger word and is constructed in the same
way as the classifiers that were used for relations.
We utilise the same feature set as in the other clas-
sification steps and run a grid search to adjust the
SVM parameter to decide whether to merge two
bindings or not.

Rule-Based Post-Processing: The second
stage of post-processing considers all the events
detected within a sentence and applies a set of
manually created rules designed to select the most
likely. Some of the most important rules include:

• Assume that the classifier has identified both
a simple event (e1) and regulation event (e2)
using the same trigger word and theme. If an-
other event uses a different trigger word with
e1 as its theme then e2 is removed.

• If transcription and gene expression events
are identified which use the same trigger and
theme then the gene expression event is re-
moved. This situation occurs since transcrip-
tion is a type of a gene expression and the
classifiers applied in Section 2.2 may identify
both types.

• Assume there are two events (e1 and e2) of
the same type (e.g. binding) that use the same
trigger word but refer to different proteins. If
the theme of a regulation event refers to e1

then a new regulation event referring to e2 is
introduced.

3 Results

Our approach achieved the highest precision score
(63.00) in the formal evaluation in terms of strict
matching in the GE task 1. The next highest preci-
sion scores were achieved by BioSEM (60.67) and
NCBI (56.72). We believe that the classifier opti-
misation (Section 2.2.3) for each event and the use
of manually created post-processing rules (Section
2.3) contributed to the high precision score. Our
system was ranked 6th place of 10 in terms of F-
measure with a score of 42.06.

Table 1 presents detailed results of our system
for the GE task. Our approach leads to high preci-
sion scores for many of the event types with a pre-
cision of 79.23 for all simple events and 92.68 for
protein modifications. Our system’s performance

is lower for regulation events than other types with
a precision of 52.69. Unlike other types of events,
the theme of a regulation event may refer to an-
other event. The detection of regulation events can
therefore be affected by errors in the detection of
simple events.

Results of our system are closer to the best re-
ported results when strict matching is used as the
evaluation metric. In this case the F-measure is
6.86 lower than the winning system (BioSEM).
However, when the approximate span & recursive
matching metric is used the results of our sys-
tem are 8.74 lower than the best result, which is
achieved by the EVEX system.

Event Class Recall Prec. Fscore
Gene expression 62.20 85.37 71.96
Transcription 33.66 45.33 38.64
Protein catabolism 57.14 53.33 55.17
Localization 23.23 85.19 36.51
SIMPLE ALL 54.02 79.23 64.24
Binding 31.53 46.88 37.70
Phosphorylation 47.50 92.68 62.81
PROT-MOD ALL 39.79 92.68 55.68
Regulation 11.46 42.86 18.08
Positive regulation 23.72 53.60 32.88
Negative regulation 20.91 54.19 30.18
REG. ALL 21.14 52.69 30.18
EVENT TOTAL 31.57 63.00 42.06

Table 1: Evaluation Results (strict matching)

4 Conclusion

Our approach to the BioNLP GE task 1 was to cre-
ate a separate SVM-based classifier for each event
type. We adjusted the SVM parameters and ap-
plied feature selection for each classifier. Our sys-
tem post-processed the outputs from these classi-
fiers using a further classifier (to decide whether
events should be merged) and manually created
rules (to select between conflicting events). Re-
sults show that our approach achieves the high-
est precision of all systems and was ranked 6th in
terms of F-measure when strict matching is used.

In the future we would like to improve the recall
of our approach and also aim to explore the use of
a wider range of features. We would also like to
experiment with post-processing based on a clas-
sifier and compare performance with the manually
created rules currently used.
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