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Abstract

We present the design, preparation, results
and analysis of the Cancer Genetics (CG)
event extraction task, a main task of the
BioNLP Shared Task (ST) 2013. The CG
task is an information extraction task tar-
geting the recognition of events in text,
represented as structured n-ary associa-
tions of given physical entities. In addition
to addressing the cancer domain, the CG
task is differentiated from previous event
extraction tasks in the BioNLP ST series
in addressing a wide range of pathological
processes and multiple levels of biological
organization, ranging from the molecular
through the cellular and organ levels up to
whole organisms. Final test set submis-
sions were accepted from six teams. The
highest-performing system achieved an F-
score of 55.4%. This level of performance
is broadly comparable with the state of
the art for established molecular-level ex-
traction tasks, demonstrating that event ex-
traction resources and methods generalize
well to higher levels of biological orga-
nization and are applicable to the analy-
sis of scientific texts on cancer. The CG
task continues as an open challenge to
all interested parties, with tools and re-
sources available from http://2013.
bionlp-st.org/.

1 Introduction

Despite decades of focused research efforts, can-
cer remains one of the leading causes of death
worldwide. It is now well understood that cancer
is a broad class of diseases with a complex genetic
basis, involving changes in multiple molecular
pathways (Hanahan and Weinberg, 2000; Haber
et al., 2011). The scientific literature on cancer is

enormous, and our understanding of cancer is de-
veloping rapidly: a query of the PubMed literature
database for cancer returns 2.7 million scien-
tific article citations, with 140,000 citations from
2012. To build and maintain comprehensive, up-
to-date knowledge bases on cancer genetics, auto-
matic support for managing the literature is thus
required.

The BioNLP Shared Task (ST) series has been
instrumental in encouraging the development of
methods and resources for the automatic extrac-
tion of bio-processes from text, but efforts within
this framework have been almost exclusively fo-
cused on normal physiological processes and on
molecular-level entities and events (Kim et al.,
2011a; Kim et al., 2011b). To be relevant to can-
cer biology, event extraction technology must be
generalized to be able to address also pathologi-
cal processes as well as physical entities and pro-
cesses at higher levels of biological organization,
including e.g. mutation, cell proliferation, apop-
tosis, blood vessel development, and metastasis.
The CG task aims to advance the development of
such event extraction methods and the capacity for
automatic analysis of texts on cancer biology.

The CG task introduces a novel corpus cover-
ing multiple subdomains of cancer biology, based
in part on a previously introduced angiogenesis
subdomain resource (Pyysalo et al., 2012a). To
extend event extraction to upper levels of biolog-
ical organization and pathological processes, the
task defines a set of 18 entity and 40 event types
based on domain ontologies such as the Com-
mon Anatomy Reference Ontology and Gene On-
tology, more than doubling the number of entity
and event types from those considered in previous
BioNLP ST extraction tasks.

This paper presents the design of the CG task,
introduces the groups and systems taking part in
the task, and presents evaluation results and anal-
ysis.

58



Gene or gene product Gene expression Positive regulation Carcinogenesis
Theme ThemeCause

treatment with L-NAME inhibited growth of adenocarcinoma

Planned process Simple chemical Negative regulation Growth Cancer
ThemeInstrument Theme

Cause

Figure 1: Examples of CG task entities and event structures. Visualizations generated using the BRAT

tool (Stenetorp et al., 2012).

2 Task definition

The CG task goal is the automatic extraction of
events (Ananiadou et al., 2010) from text. The
applied representation and task setting extend on
those first established in the BioNLP ST 2009
(Kim et al., 2011a). Each event has a type such as
GROWTH or METASTASIS and is associated with
a specific span of characters expressing the event,
termed the event trigger. Events can take any num-
ber of arguments, each of which is identified as
participating in the event in a specific role (e.g.
Theme or Cause). Event arguments may be either
(physical) entities or other events, allowing com-
plex event structures that capture e.g. one event
causing or preventing another. Finally, events may
be marked by flags identifying extra-propositional
aspects such as occurrence in a speculative or neg-
ative context. Examples of CG task extraction tar-
gets are shown in Figure 1.

The following sections present the categories
of annotation and the specific annotated types in-
volved in the CG task: entities, relations, events,
and event modifications. To focus efforts on novel
challenges, the CG task follows the general con-
vention of the BioNLP ST series of only requiring
participants to extract events and their modifica-
tions. For other categories of annotation, correct
(gold standard) annotations are provided also for
test data.

2.1 Entities

The entity types defined in the CG task are shown
in Table 1. The molecular level entity types largely
match the scope of types such as PROTEIN and
CHEMICAL included in previous ST tasks (Kim et
al., 2012; Pyysalo et al., 2012b). However, the CG
types are more fine grained, and the types PRO-
TEIN DOMAIN OR REGION and DNA DOMAIN OR

REGION are used in favor of the non-specific type
ENTITY, applied in a number of previous tasks
for additional event arguments (see Section 2.3).
The definitions of the anatomical entity types are

Type
ORGANISM
Anatomical entity

ORGANISM SUBDIVISION
ANATOMICAL SYSTEM
ORGAN
MULTI-TISSUE STRUCTURE
TISSUE
DEVELOPING ANATOMICAL STRUCTURE
CELL
CELLULAR COMPONENT
ORGANISM SUBSTANCE
IMMATERIAL ANATOMICAL ENTITY
PATHOLOGICAL FORMATION

CANCER
Molecular entity

GENE OR GENE PRODUCT
PROTEIN DOMAIN OR REGION
DNA DOMAIN OR REGION
SIMPLE CHEMICAL

AMINO ACID

Table 1: Entity types. Indentation corresponds to
is-a structure. Labels in gray identify groupings
defined for organization only, not annotated types.

progression of chronic myeloid leukemia (CML)

Development Cancer Cancer
EquivTheme

Figure 2: Example Equiv relation.

drawn primarily from the Common Anatomy Ref-
erence Ontology (Haendel et al., 2008), a small,
species-independent upper-level ontology based
on the Foundational Model of Anatomy (Rosse
and Mejino Jr, 2003). We refer to Ohta et al.
(2012) for more detailed discussion of the anatom-
ical entity type definitions.

2.2 Relations

The CG task does not target the extraction of
any standalone relations. However, following the
model of past BioNLP ST tasks, the CG corpus is
annotated by Equiv (equivalence) relations, sym-
metric, transitive relations that identify two entity
mentions as referring to the same entity (Figure 2).
These relations primarily mark local aliases and
are applied only in evaluation. When determining
whether a predicted event matches a gold event,
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Type Core arguments Additional arguments
Anatomical

DEVELOPMENT Theme (Anatomy)
BLOOD VESSEL DEVELOPMENT Theme?(Anatomy) AtLoc?

GROWTH Theme (Anatomy)
DEATH Theme (Anatomy)

CELL DEATH Theme?(CELL)
BREAKDOWN Theme (Anatomy)
CELL PROLIFERATION Theme (CELL)
CELL DIVISION Theme (CELL)
CELL DIFFERENTIATION Theme (CELL) AtLoc?
REMODELING Theme (TISSUE)
REPRODUCTION Theme (ORGANISM)

Pathological
MUTATION Theme (GGP) AtLoc?, Site?
CARCINOGENESIS Theme?(Anatomy) AtLoc?
CELL TRANSFORMATION Theme (CELL) AtLoc?
METASTASIS Theme?(Anatomy) ToLoc
INFECTION Theme?(Anatomy), Participant?(ORGANISM)

Molecular
METABOLISM Theme (Molecule)

SYNTHESIS Theme (SIMPLE CHEMICAL)
CATABOLISM Theme (Molecule)

AMINO ACID CATABOLISM Theme?(Molecule)
GLYCOLYSIS Theme?(Molecule)

GENE EXPRESSION Theme+(GGP)
TRANSCRIPTION Theme (GGP)
TRANSLATION Theme (GGP)
PROTEIN PROCESSING Theme (GGP)

PHOSPHORYLATION Theme (Molecule) Site?
(other chemical modifications defined similarly to PHOSPHORYLATION)

PATHWAY Participant (Molecule)
General

BINDING Theme+(Molecule) Site?
DISSOCIATION Theme (Molecule) Site?
LOCALIZATION Theme+(Molecule) AtLoc?, FromLoc?, ToLoc?

REGULATION Theme (Any), Cause?(Any)
POSITIVE REGULATION Theme (Any), Cause?(Any)
NEGATIVE REGULATION Theme (Any), Cause?(Any)

PLANNED PROCESS Theme*(Any), Instrument*(Entity)

Table 2: Event types and their arguments. Nesting corresponds to ontological structure (is-a/part-of ).
The affixes ?, *, and + denote zero or one, zero or more, and one or more, respectively. GGP abbreviates
for GENE OR GENE PRODUCT. For brevity, additional argument types are not shown in table: Loc
arguments take an anatomical entity type, and Site PROTEIN/DNA DOMAIN OR REGION.

differences in references to equivalent entities are
ignored, so that e.g. an event referring to CML
as its Theme instead of chronic myeloid leukemia
would be considered to match the event shown in
Figure 2.

2.3 Events

Table 2 summarizes the event types defined in the
CG task. As in most previous BioNLP ST task
settings, the event types are defined primarily with
reference to the Gene Ontology (GO) (Ashburner
et al., 2000). However, GO explicitly excludes
from its scope pathological processes, which are
critically important to the CG task. To capture
pathological processes, we systematically expand
the scope GO-based event types to include also

analogous processes involving pathological enti-
ties. For example, statements such as “cancer
growth” are annotated with GROWTH events by
analogy to processes such as “organ growth”. Sec-
ond, we introduce a number of event types ex-
plicitly accounting for pathological processes with
no analogous normal physiological process, such
as METASTASIS. Finally, many important effects
are discussed in the literature through statements
involving experimenter action such as transfect
and treat (Figure 1). To capture such state-
ments, we introduce the general PLANNED PRO-
CESS type, defined with reference to the Ontol-
ogy for Biomedical Investigations (Brinkman et
al., 2010).

The event argument roles largely match those
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Domain Documents Query terms
Carcinogenesis 150 cell transformation, neoplastic AND (proteins OR genes)
Metastasis 100 neoplasm metastasis AND (proteins OR genes)
Apoptosis 50 apoptosis AND (proteins OR genes)
Glucose metabolism 50 (glucose/metabolism OR glycolysis) AND neoplasms

Table 3: Queries for document selection. All query terms were restricted to MeSH Term matches only
(e.g. "apoptosis"[MeSH Terms])

established in previous BioNLP ST tasks (Kim et
al., 2012; Pyysalo et al., 2012b): Theme identifies
the arguments undergoing the primary effects of
the event, Cause those that are responsible for its
occurrence, and Participant those whose precise
role is not stated. Site is used to identify specific
parts of Theme entities affected (e.g. phosphory-
lated residues) and the Loc roles entities where the
event takes place (AtLoc) and start and end points
of movement (FromLoc and ToLoc).

2.4 Event modifications

The CG task follows many previous BioNLP ST
tasks in including the event modification types
NEGATION and SPECULATION in its extraction
targets. These modifications apply to events,
marking them as explicitly negated and specula-
tively stated, respectively (Kim et al., 2011a).

2.5 Evaluation

The CG task evaluation follows the criteria orig-
inally defined in the BioNLP ST’09, requiring
events extracted by systems to otherwise match
gold standard events exactly, but allowing trigger
spans to differ from gold spans by single words
(approximate span matching) and not requiring
matching of additional arguments (see Table 2) for
events referred from other events (approximate re-
cursive matching). These criteria are discussed in
detail by Kim et al. (2011a).

3 Corpus

3.1 Document selection

The corpus texts are the titles and abstracts of pub-
lications from the PubMed literature database, se-
lected on the basis of relevance to cancer genet-
ics, specifically with respect to major subdomains
relating to established hallmarks of cancer (Hana-
han and Weinberg, 2000). Of the 600 documents
forming the CG task corpus, 250 were previously
released as part of the MLEE corpus (Pyysalo
et al., 2012a) involving the angiogenesis subdo-
main. The remaining 350 were selected by iter-

Item Train Devel Test Total
Documents 300 100 200 600
Words 66 082 21 732 42 064 129 878
Entities 11 034 3 665 6 984 21 683
Relations 466 176 275 917
Events 8 803 2 915 5 530 17 248
Modifications 670 214 442 1 326

Table 4: Corpus statistics

atively formulating PubMed queries consisting of
MeSH terms relevant to subdomains such as apop-
tosis and metastasis (Table 3). Following initial
query formulation, random sets of abstracts were
selected from each domain and manually exam-
ined to select a final set of documents that specifi-
cally discuss both the target process and its molec-
ular foundations.

3.2 Annotation process

The corpus annotation was created using the BRAT

annotation tool (Stenetorp et al., 2012) by a single
PhD biologist with extensive experience in event
annotation (Tomoko Ohta). For the entity anno-
tation, we created preliminary annotation using
the following automatic named entity and entity
mention taggers: BANNER (Leaman and Gonza-
lez, 2008) trained on the GENETAG corpus (Tan-
abe et al., 2005) for GENE OR GENE PRODUCT

entities, Oscar4 (Jessop et al., 2011) for SIMPLE

CHEMICAL and AMINO ACID entities, NERsuite1

trained on the AnEM corpus (Ohta et al., 2012)
for anatomical entities, and LINNAEUS (Gerner
et al., 2010) for ORGANISM mentions. Process-
ing was performed on a custom pipeline originally
developed for the BioNLP ST’11 (Stenetorp et al.,
2011). Following preliminary automatic annota-
tion, all entity annotations were manually revised
to create the final entity annotation.

By contrast to entity annotation, no automatic
preprocessing was applied for event annotation to
avoid any possibility of bias introduced by ini-
tial application of automatic methods. The event
annotation extended the guidelines and manual

1http://nersuite.nlplab.org
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Team Institution Members
TEES-2.1 University of Turku 1 BI (Björne and Salakoski, 2013)
NaCTeM National Centre for Text Mining 1 NLP (Miwa and Ananiadou, 2013)
NCBI National Center for Biotechnology Information 3 BI (Liu et al., 2013)
RelAgent RelAgent Private Ltd. 1 LI, 1 CS (Ramanan and Nathan, 2013)

UET-NII University of Engineering and Technology, Vietnam 6 CS (Tran et al., 2013)and National Institute of Informatics, Japan
ISI Indian Statistical Institute 2 ML, 2 NLP -

Table 5: Participating teams and references to system descriptions. Abbreviations: BI=Bioinformatician,
NLP=Natural Language Processing researcher, CS=Computer Scientist, LI=Linguist, ML=Machine
Learning researcher.

NLP methods Events Resources
Team Lexical Syntactic Trigger Arg Group Modif. Corpora Other
TEES-2.1 Porter McCCJ + SD SVM SVM SVM SVM GE hedge words
NaCTeM Snowball Enju, GDep SVM SVM SVM SVM - triggers
NCBI MedPost, BLem McCCJ + SD Joint, subgraph matching - GE, EPI -
RelAgent Brill fnTBL, custom rules rules rules rules - -
UET-NII Porter Enju SVM MaxEnt Earley - - triggers
ISI CoreNLP CoreNLP NERsuite Joint, MaltParser - - -

Table 6: Summary of system architectures. Abbreviations: CoreNLP=Stanford CoreNLP, Porter=Porter
stemmer, BLem=BioLemmatizer, Snowball=Snowball stemmer, McCCJ=McClosky-Charniak-Johnson
parser, Charniak=Charniak parser, SD=Stanford Dependency conversion

annotation process introduced by Pyysalo et al.
(2012a). Following the initial annotation, a num-
ber of revision passes were made to further im-
prove the consistency of the annotation using a va-
riety of automatically supported methods.2

3.3 Corpus statistics

Table 4 summarizes the corpus statistics for the
training, development and test sets, representing
50%, 17%, and 33% of the documents, respec-
tively. The CG task corpus is the largest of the
BioNLP ST 2013 corpora by most measures, in-
cluding the number of annotated events.

4 Participation

Final results to the CG task were successfully sub-
mitted by six teams, from six different academic
groups and one company, representing a broad
range of expertise ranging from biology to ma-
chine learning, natural language processing, and
linguistics (Table 5).

The characteristics of the participating systems
are summarized in Table 6. There is an interesting
spread of extraction approaches, with two systems
applying SVM-based pipeline architectures shown

2There was no opportunity to train a second annotator in
order to evaluate IAA specifically for the new CG corpus an-
notation. However, based on our previous evaluation using
the same protocol (Pyysalo et al., 2012a), we expect the con-
sistency of the final annotation to fall in the 70-80% F-score
range (primary task evaluation criteria).

successful in previous BioNLP ST events, one
applying a joint pattern matching approach, one
a rule-based approach, and two systems parsing-
based approaches to event extraction. Together,
these systems represent all broad classes of ap-
proaches applied to event extraction in previous
BioNLP ST events. Three of the six systems ad-
dressed also the event modification (negation and
speculation) extraction aspects of the task.

Although all systems perform syntactic analy-
sis of input texts, there is a fair amount of vari-
ety in the applied parsers, which include the parser
of Charniak and Johnson (2005) with the biomed-
ical domain model of McClosky (2009) and the
Stanford Dependency conversion (de Marneffe
et al., 2006) – the choice in many systems in
BioNLP ST’11 – as well as Enju (Miyao and Tsu-
jii, 2008), GDep (Sagae and Tsujii, 2007), Stan-
ford CoreNLP3, and a custom parser by RelAgent
(Ramanan and Nathan, 2013). Simple stemming
algorithms such as that of Porter (1980) remain
popular for word-level processing, with just the
NCBI system using a dedicated biomedical do-
main lemmatizer (Liu et al., 2012).

The task setting explicitly allows the use of any
external resources, including other corpora, and
previously released event resources contain sig-
nificant numbers of annotations that are relevant

3http://nlp.stanford.edu/software/
corenlp.shtml
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Team recall prec. F-score
TEES-2.1 48.76 64.17 55.41
NaCTeM 48.83 55.82 52.09
NCBI 38.28 58.84 46.38
RelAgent 41.73 49.58 45.32
UET-NII 19.66 62.73 29.94
ISI 16.44 47.83 24.47

Table 7: Primary evaluation results

to the molecular level events annotated in the CG
task. Nevertheless, only the TEES and NCBI
teams made use of corpora other than the task
data, both using the GE corpus (Kim et al., 2012)
and NCBI using also the EPI corpus (Pyysalo et
al., 2012b). In addition to corpora annotated for
events, lexical resources derived from such cor-
pora, containing trigger and hedge expressions,
were applied by three teams.

We refer to the descriptions presented by each
of the participating teams (see Table 5) for further
detail on the systems and their implementations.

5 Results

The primary evaluation results are summarized in
Table 7. The highest performance is achieved by
the established machine learning-based TEES sys-
tem, with an F-score of 55%. Previous versions
of the same system achieved the highest perfor-
mance in the BioNLP ST’09 (52% F-score) and
in four out of eight tasks in BioNLP ST’11 (53%
F-score for the comparable GE task) (Björne and
Salakoski, 2011). The performance of the system
ranked second, EventMine (Miwa et al., 2012),
is likewise broadly comparable to the results for
the same system on the GE task considered in
BioNLP ST’09 and ’11. The NCBI submis-
sion also extends a system that participated in the
ST’11 GE task, then achieving a somewhat lower
F-score of 41.13% (Liu et al., 2011). By con-
trast, the RelAgent, UET-NII and ISI submissions
involve systems that were not previously applied
in BioNLP ST events. Thus, in each case where
system performance for previously proposed event
extraction tasks is known, the results indicate that
the systems generalize to CG task extraction tar-
gets without loss in performance.

These parallels with results for previously intro-
duced tasks involving molecular-level events are
interesting, in particular considering that the CG
task involves more than twice the number of en-
tity and event types included in previously con-

sidered BioNLP ST tasks. The results suggest
not only that event extraction methods generalize
well to higher levels of biological organization,
but also that overall performance is not primar-
ily limited by the number of targeted types. It is
also notable that the complexity of the task set-
ting does not exclude rule-based systems such as
that of RelAgent, which scores within 10% points
of the highest-ranking system. While the parser-
based systems of UET-NII and ISI perform be-
low others here, it should be noted that related ap-
proaches have achieved competitive performance
in previous BioNLP ST tasks (McClosky et al.,
2011), suggesting that further development could
lead to improvements for systems based on these
architectures. As is characteristic for event extrac-
tion systems in general, all systems show notably
higher precision than recall, with the performance
of the UET-NII and ISI systems in particular pri-
marily limited by low recall.

The F-score results are shown separately for
each event type in Table 8. As suggested by the
overall results, the novel categories of events in-
volving anatomical and pathological entities are
not particularly challenging for most systems,
with results roughly mirroring performance for
molecular level events; the best results by event
category are 77% F-score for anatomical, 68%
for pathological, and 73% for molecular. Of
the newly introduced CG event categories, only
planned processes involving intentional human in-
tervention appear to represent difficulties, with the
best-performing system for PLANNED PROCESS

reaching only 41% F-score. Two previously es-
tablished categories of events remain challenging:
general events – best 53% F-score – including
BINDING (often taking multiple arguments) and
LOCALIZATION (frequent additional arguments),
and regulation category events, which often form
complex event structures by involving events as ar-
guments. Event modifications, addressed by three
of the six participating teams, show comparatively
low levels of extraction performance, with a best
result of 40% F-score for NEGATION and 30%
for SPECULATION. However, as in previous tasks
(Kim et al., 2011a), this is in part due to the com-
pound nature of the problem: for an event modifi-
cation attribute to be extracted correctly, the event
that it attaches to must also be correct.

Further details on system performance and anal-
yses are available on the shared task home page.
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Event TEES-2.1 NaCTeM NCBI RelAgent UET-NII ISI
DEVELOPMENT 71.43 64.77 67.33 66.31 61.72 53.66
BLOOD VESSEL DEVELOPM 85.28 78.82 81.92 79.60 21.49 13.56
GROWTH 75.97 59.85 66.67 76.92 70.87 65.52
DEATH 81.74 73.17 74.07 64.71 77.78 63.16
CELL DEATH 73.30 75.18 78.05 66.98 25.17 7.35
CELL PROLIFERATION 80.00 78.33 72.73 64.39 71.43 57.40
CELL DIVISION 0.00 0.00 0.00 0.00 0.00 0.00
CELL DIFFERENTIATION 56.34 48.48 48.98 54.55 59.26 24.14
REMODELING 30.00 22.22 21.05 40.00 20.00 23.53
REPRODUCTION 100.00 100.00 100.00 100.00 100.00 100.00

Anatomical total 77.20 71.31 73.68 70.82 50.04 38.86
MUTATION 38.00 41.05 25.11 27.36 27.91 9.52
CARCINOGENESIS 77.94 72.18 67.14 64.12 35.96 24.72
CELL TRANSFORMATION 81.56 82.54 71.13 67.07 57.14 32.39
BREAKDOWN 76.74 70.13 76.54 42.42 58.67 50.70
METASTASIS 70.91 51.05 52.69 47.79 56.41 26.20
INFECTION 69.57 76.92 69.23 33.33 11.76 0.00

Pathological total 67.51 59.78 54.19 48.14 46.90 25.17
METABOLISM 83.87 70.27 74.29 80.00 68.75 71.43
SYNTHESIS 78.26 71.11 78.26 53.57 64.71 48.65
CATABOLISM 63.64 36.36 38.10 23.08 20.00 36.36
GLYCOLYSIS 0.00 100.00 95.45 97.78 0.00 0.00
AMINO ACID CATABOLISM 0.00 66.67 66.67 66.67 0.00 0.00
GENE EXPRESSION 78.21 79.96 73.69 69.45 58.01 53.28
TRANSCRIPTION 37.33 42.86 51.55 28.12 32.00 20.93
TRANSLATION 40.00 22.22 0.00 0.00 0.00 0.00
PROTEIN PROCESSING 100.00 100.00 100.00 0.00 100.00 100.00
ACETYLATION 100.00 100.00 66.67 100.00 66.67 66.67
GLYCOSYLATION 100.00 100.00 100.00 100.00 100.00 100.00
PHOSPHORYLATION 63.33 70.37 53.12 64.15 58.33 50.00
UBIQUITINATION 100.00 100.00 0.00 100.00 0.00 100.00
DEPHOSPHORYLATION 0.00 80.00 100.00 100.00 0.00 0.00
DNA METHYLATION 66.67 66.67 30.30 42.11 32.43 33.33
DNA DEMETHYLATION 0.00 0.00 0.00 0.00 0.00 0.00
PATHWAY 71.30 59.07 51.14 34.29 18.31 35.64

Molecular total 72.60 72.77 67.33 60.72 49.35 46.70
BINDING 45.35 43.93 37.89 32.69 33.94 11.92
DISSOCIATION 0.00 0.00 0.00 0.00 0.00 0.00
LOCALIZATION 54.83 57.20 47.58 45.22 44.94 35.94

General total 52.20 53.08 44.70 40.89 41.76 29.59
REGULATION 32.66 28.73 14.19 26.48 5.51 4.57
POSITIVE REGULATION 45.89 44.18 34.70 38.40 13.00 12.33
NEGATIVE REGULATION 47.79 43.17 33.20 40.47 10.30 12.16

Regulation total 43.08 39.79 29.21 35.58 10.30 10.29
PLANNED PROCESS 39.43 40.51 34.28 28.57 22.74 21.22

Sub-total 56.75 53.50 48.56 46.37 31.72 25.90
NEGATION 40.00 29.55 0.00 34.64 0.00 0.00
SPECULATION 27.14 30.35 0.00 25.90 0.00 0.00

Modification total 34.66 29.95 0.00 30.88 0.00 0.00
Total 55.41 52.09 46.38 45.32 29.94 24.47

Table 8: Primary evaluation F-scores by event type

6 Discussion and conclusions

We have presented the Cancer Genetics (CG) task,
an information extraction task introduced as a
main task of the BioNLP Shared Task (ST) 2013.
The task is motivated by the needs of maintain-
ing up-to-date knowledge bases of the enormous
and fast-growing literature on cancer genetics, and
extends previously proposed BioNLP ST tasks in
several aspects, including the inclusion of enti-
ties and events at levels of biological organiza-

tion above the molecular and the explicit inclusion
of pathological and planned processes among ex-
traction targets. To address these extraction goals,
we introduced a new corpus covering various sub-
domains of cancer genetics, annotated for 18 en-
tity and 40 event types and marking over 17,000
manually annotated events in 600 publication ab-
stracts.

Final submissions to the CG task were received
from six groups, who applied a variety of ap-
proaches including machine learning-based clas-
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sifier pipelines, parsing-based approaches, and
pattern- and rule-based systems. The best-
performing system achieved an F-score of 55.4%,
a level of performance comparable to the state of
the art in established molecular level event extrac-
tion tasks. The results indicate that event extrac-
tion methods generalize well across the novel as-
pects introduced in the CG task and that event ex-
traction is applicable to the automatic processing
of the cancer literature.

Following convention in the BioNLP Shared
Task series, the Cancer Genetics task will con-
tinue as an open challenge available to all inter-
ested participants. The CG task corpus, supporting
resources and evaluation tools are available from
http://2013.bionlp-st.org/.
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