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Abstract 

Semantic querying over the biomedical litera-
ture has gained popularity, where a semantic 
representation of biomedical documents is re-
quired. Previous BioNLP Shared Tasks exer-
cised semantic event extraction with a small 
number of pre-defined event concepts. The 
GRO task of the BioNLP’13-ST imposes the 
challenge of dealing with over 100 GRO con-
cepts. Its annotated corpus consists of 300 
MEDLINE abstracts, and an analysis of inter-
annotator agreement on the annotations by two 
experts shows Kappa values between 43% and 
56%. The results from the only participant are 
promising with F-scores 22% (events) and 
63% (relations), and also lead us to open is-
sues such as the need to consider the ontology 
structure. 

1 Background 

As semantic resources in the biomedical domain, 
including ontologies and linked data, increase, 
there is a demand for semantic querying over the 
biomedical literature, instead of the keyword 
searching supported by conventional search en-
gines (e.g. PubMed). The semantic search re-
quires adapting Semantic Web technologies to 
the literature, to analyze the complex semantics 
described in biomedical documents and to repre-
sent them with ontology concepts and relations. 
The ontology-based formal semantics will then 
form a Semantic Web. The GRO task of the 
BioNLP Shared Tasks 2013 is to provide a plat-
form to develop and evaluate systems for identi-

fying complex semantic representation of bio-
medical documents in the domain of gene regula-
tion. 
   There are solutions for servicing the ontology 
concepts recognized in the biomedical literature, 
including TextPresso (Müller et al., 2004) and 
GoPubMed (Doms and Schroeder, 2005). They 
utilize term recognition methods to locate the 
occurrences of ontology terms, together with 
terminological variations. Systems like EBIMed 
(Rebholz-Schuhmann et al., 2007) and FACTA 
(Tsuruoka et al., 2008) go further to collect and 
display co-occurrences of ontology terms. How-
ever, they do not extract events and relations of 
the semantic types defined in ontologies. 

The annotation of those ontology event and re-
lation instances described in text was initiated in 
the biomedical domain by the GENIA corpus 
(Kim et al., 2003), and the tasks of the BioNLP 
Shared Tasks 2009 and 2011 aimed at automati-
cally identifying such ontological annotations. 
However, the tasks dealt only with a small num-
ber of ontology concepts (less than 20 unique 
concepts in total), considering the thousands of 
concepts defined in standard biomedical ontolo-
gies (e.g. Gene Ontology, anatomy ontologies). 
The goal of the Gene Regulation Ontology 
(GRO) task is to confirm if text mining tech-
niques can be scaled up to cover hundreds of 
(and eventually thousands of) concepts, and 
thereby to address the complex semantic repre-
sentation of biomedical documents. 

The GRO task is to automatically annotate bi-
omedical documents with the Gene Regulation 
Ontology (Beisswanger et al., 2008). GRO is a 
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conceptual model of gene regulation and in-
cludes 507 concepts, which are cross-linked to 
such standard ontologies as Gene Ontology and 
Sequence Ontology and are integrated into a 
deep hierarchical structure via is-a and part-of 
relations. Note that many of the GRO concepts 
are more specific than those used in the previous 
BioNLP Shared Tasks. The GRO is one of the 
first ontological resources that bring together 
different types of ontology concepts and relations 
in a coherent structure. It has two top-level cate-
gories of concepts, Continuant and Occurrent, 
where the Occurrent branch has concepts for 
processes that are related to the regulation of 
gene expression (e.g. Transcription, 
RegulatoryProcess), and the Continuant branch 
has concepts mainly for physical entities that are 
involved in those processes (e.g. Gene, Protein, 
Cell). It also defines semantic relations (e.g. 
hasAgent, locatedIn) that link the instances of the 
concepts. The GRO task in the BioNLP Shared 
Task (ST) 2013 assumes that the instances of 
Continuant concepts are provided and focuses on 
extracting the instances of the events and rela-
tions defined in the GRO. 

This paper is organized as follows: We de-
scribe the manual construction of the training 
and test datasets for the task in Section 2 and ex-
plain the evaluation criteria and the results in 
Section 3. 

2 Corpus annotation 

2.1 Annotation elements 

The BioNLP’13-ST GRO task follows the repre-
sentation and task setting of the ST’09 and ST’11 
main tasks. The representation involves three 
primary categories of annotation elements: enti-
ties (i.e. the instances of Continuant concepts), 
events (i.e. those of Occurrent concepts) and re-
lations. Mentions of entities in text can be either 
contiguous or discontinuous spans that are as-
signed the most specific and appropriate Contin-
uant concepts (e.g. TranscriptionFactor, 
CellularComponent). The event annotation is 
associated with the mention of a contiguous span 

in text (called event trigger) that explicitly sug-
gests the annotated event type (e.g. ‘controls’ - 
RegulatoryProcess). If a participant of an event, 
either an entity or another event, can be explicit-
ly identified with a specific mention in text, the 
participant is annotated with its role in the event. 
In this task, we consider only two types of roles 
(i.e. hasAgent, hasPatient), where an agent of an 
event is the entity that causes or initiates the 
event (e.g. a protein that causes a regulation 
event), and a patient of an event is the entity up-
on which the event is carried out (e.g. the gene 
that is expressed in a gene expression event) 
(Dowty, 1991). The semantic relation annotation 
is to annotate other semantic relations (e.g. 
locatedIn, fromSpecies) between entities and/or 
events, without event triggers. Figure 1 illustrates 
some of the annotations.  

2.2 Document selection  

The corpus texts are selected based on the rele-
vance to the topic of gene regulation in humans. 
Specifically, we first obtained a list of human 
transcription factors (TFs) and then used Pub-
Med to collect a set of candidate documents. A 
random subset of 300 documents was then se-
lected for the GRO task from the collection. We 
annotated entities, events, and relations in them, 
and divided them into three subsets of 150 (train-
ing), 50 (development), and 100 (test) docu-
ments. In fact, 100 out of the 200 documents for 
training and development are from Kim et al. 
(2011a), though we revised and updated their 
annotations based on new annotation guidelines, 
some of which are explained below.  

2.3 Annotation guidelines 

The first step of annotating ontology concepts in 
the text is the recognition of a word or a phrase 
that refers to a concept of the GRO. Such a word 
or phrase, called mention, is one of the names of 
the concept, its synonyms, or expressions that are 
semantically equivalent to or subsumed by the 
concept. For each mention, we annotate it with 
the single, most specific and appropriate concept, 
but not with any general concept. For example, if 

Figure 1. Example annotations of the GRO corpus 
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a protein is clearly mentioned as a transcription 
factor in the text, we annotate it with the GRO 
concept TranscriptionFactor, not with Protein. 

There are many issues in the annotation, and 
we here introduce our guidelines on two of them 
about complex noun phrases and overlapping 
concepts.  

1) If a noun phrase refers to an event that cor-
responds to an Occurrent concept and includes 
mentions of other concepts, we consider sepa-
rately annotating the multiple mentions in the 
phrase with concepts and relations. For example 
in the phrase “nephric duct formation”, we anno-
tate it as follows:  

• “formation”:CellularProcess hasPatient 
“nephric duct”:Cell 

This means that the phrase indicates an individu-
al of CellularProcess, which is an event of form-
ing an entity of Cell, which is nephric duct. An-
other example noun phrase that involves multiple 
mentions is “Sim-2 mRNA expression”, which is 
annotated as follows: 

• “expression”:GeneExpression hasPatient 
(“mRNA”:MessangerRNA encodes 
“Sim-2”:Gene) 

However, we do not allow such multi-mention 
annotation on e.g.  

• “mRNA expression”, because this phrase 
is too generic and frequent so that a mul-
ti-mention annotation for it, “expres-
sion”:GeneExpression hasPatient 
“mRNA”:MessangerRNA, does not en-
code any ‘useful’ information 

•  “nuclear factor”, because this factor is 
not always located in nucleus. 

Therefore, we decided that, in general, we avoid 
annotation of generic information, but consider a 
thread of information specific only if it involves 
specific entities like individual gene/protein and 
cell (e.g. Sim-2, nephric duct). Also, we did not 
divide a noun phrase to multiple mentions if the 
relation between the mentions is not always true 
(cf. “nuclear factor” – “factor”:Protein locatedIn 
“nuclear”:Nucleus). 

2) As some GRO concepts are overlapping, we 
made the following guidelines: 
(a) When there is ambiguity between Increase 

(Decrease), Activation (Inhibition), and 
PositiveRegulation (NegativeRegulation), we 
annotate 
o binary relations with PositiveRegulation, 

ignoring Activation 
(e.g., “augment”:PositiveRegulation hasAgent 
“Nmi”:Protein hasPatient (“recruit-

ment”:Transport hasPatient “coactivator pro-
tein”: TranscriptionCoactivator)) 

o unary relations with Increase 
(e.g., “enhance”:Increase hasPatient “transcrip-
tion”:Transcription) 
   Note that we cannot exchange the two concepts 
of PositiveRegulation and Increase in the two 
examples due to the arity restriction. 
(b) Binding concepts are ambiguous. We anno-

tate as follows: 
o For such a GRO concept as "Binding of 

A to B", A should be the agent and B the 
patient. 

(For example, when we annotate 
BindingOfProteinToDNA and 
BindingOfTFToTFBindingSiteOfProtein, Protein 
and TF will be agents, and DNA and 
BindingSiteOfProtein will be patients, respec-
tively.) 

o For such a GRO concept as "Binding to 
A" for binary relation between two enti-
ties of the same type, both entities should 
be patients. 

(For example, in the events of binding between 
proteins with BindingToProtein and of binding 
between RNAs with BindingToRNA, the pro-
teins and the RNAs, respectively, will all be pa-
tients.) 

Other annotation guidelines can be found at the 
task homepage1. 

2.4 Annotation 

Two annotators with biology background anno-
tated the documents with GRO entities, events 
and relations. They used the Web-based annota-
tion tool brat (Stenetorp et al., 2012) for the an-
notation. Annotator A is the one who annotated 
the earlier version of the corpus (Kim et al., 
2011a). He first revised the earlier version of 100 
abstracts (named Set 1) and drafted the new an-
notation guidelines. Annotator B studied the 
drafted annotations and guidelines and then fur-
ther revised them, and the two annotators togeth-
er updated and made agreements on final ver-
sions of the annotations and guidelines. They 
selected two more sets of 100 abstracts each 
(named Sets 2 and 3), where Set 2 was combined 
with Set 1 to become the training and develop-
ment datasets, and Set 3 became the test dataset. 
They updated the guidelines after annotating Sets 
2 and 3 independently and together combining 
their annotations. 

                                                 
1 http://nlp.sce.ntu.edu.sg/wiki/projects/bionlpst13grotask/ 
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We estimated the inter-annotator agreement 
(IAA) between the two annotators for Sets 2 and 
3 with Kappa measures as shown in Table 1. The 
Kappa values between 43% and 56% are moder-
ately acceptable, though not substantial, which is 
expected with the high degree of the ontology’s 
complexity and also with the high number of 
mentions (56 per abstract; see Table 2). Note that 
the agreement is met, only when the two annota-
tors annotate the same concept on the same men-
tion with the same boundaries and, if any, the 
same roles/arguments, not considering the gener-
alization criteria used for evaluation (see Section 
3 for details). If we relax the boundary restriction 
(i.e. approximate span matching of (Kim et al., 
2009)), the Kappa values for events slightly in-
crease to 47% (Set 2) and 45% (Set 3). Also note 
that the agreement on relations is higher than 
those on entities and events.  

We analyzed the different annotations by the 
two annotators as follows: As for the entity anno-
tations, 84% of the differences are boundary 
mismatches, while the rest are due to mismatch 
of entity types and to missing by either of the 
annotators. As for the event annotations, 56% of 
the differences are also boundary mismatches, 
and 31% are missed by either of the annotators. 
The majority (71%) of the differences in relation 
annotations are due to missing by either annota-
tor, while the rest are mostly due to the differ-
ences in the entity annotations. 

One negative finding is that the agreement did 
not always increase from Set 2 to Set 3, which 
means the two annotators did not improve the 
alignment of their understanding about the anno-
tation even after making agreements on Set 2 
annotations. It may be too early to conclude, and 
the Kappa value might increase as the annotators 
examine more examples, since the annotation 
corpus size in total (Sets 1,2,3 together) is still 
small compared to the total number of GRO con-
cepts. After examining the IAA, we integrated 
the independently annotated sets and released the 
final versions of the three datasets at the task 
homepage. 
 
Table 1. Inter-annotator agreement re-
sults 
 Set 2 Set 3 
Entities  44.6% 43.8% 
Events  45.8% 43.2% 
Relations  54.7% 55.9% 
All 46.2% 45.3% 
 

2.5 Statistics 

Table 2 shows the number of MEDLINE ab-
stracts in each of the three datasets: training, de-
velopment, and test datasets. It also shows the 
number of instances for each of the following 
annotation types: entities (i.e. instances of Con-
tinuant concepts), event mentions (i.e. event trig-
gers), event instances (i.e. instances of Occurrent 
concepts), and relation instances. Note that rela-
tion instances are not associated with mentions 
like event instances. It also shows the number of 
unique entity/event types (i.e. unique GRO con-
cepts) used in the annotation of each dataset. The 
total number of unique entity types in the three 
datasets is 174, and that of unique event types is 
126. 
 
Table 2. Number of annotation elements 
 Train Dev. Test 
No. of documents 150 50 100
No. of entity mentions 5902 1910 4007
No. of event mentions 2005 668 2164
No. of event instances 2175 747 2319
No. of event instances 
with agents 

693 251 625

No. of event instances 
with patients 

1214 451 1467

No. of relation instances 1964 581 1287
No. of unique entity types 128 94 147
No. of unique event types 98 72 100
 
  Note that the frequency of event instances in the 
test dataset (23.2 per document) is much higher 
than those in the training and development da-
tasets (14.5 and 14.9 per document, respective-
ly). We compared the three datasets and ob-
served that several event types (e.g. 
GeneticModification), which are popular in the 
test dataset (e.g. GeneticModification is the 12th 
frequent type (2.3%)), seldom appear in the other 
two datasets. It may indicate that the annotators 
were getting aware of (or familiar with) more 
GRO concepts as they annotate more documents, 
where the test dataset is the last annotated. This 
sudden increase of frequency did not happen for 
the entity annotations, possibly because the two 
annotators were provided with candidate entity 
annotations, though of low quality, from a pre-
liminary dictionary-based entity recognition 
method and modified them. 
  Table 3 shows the number of mentions for the 
most frequent top-level Continuant concepts 
such as InformationBiopolymer, whose sub-
concepts include Gene and Protein, Cell, and 
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ExperimentalMethod. Please note that these fre-
quent concepts are closely related to the topic of 
gene regulation, and that this distribution may 
reflect to some degree the distribution of terms in 
the sub-domain of gene regulation, but not that in 
the whole MEDLINE. If you like to see the de-
scendant concepts of those top-level concepts, 
please refer to the latest version of the GRO2.  
 
Table 3. Number of mentions for frequent 
top-level Continuant concepts 
Level 2 Level 3 Level 4 Count 
Continuant/PhysicalContinuant 3647 
 MolecularEntity 2805 
 InformationBiopo

lymer 
2508 

 ComplexMolecula
rEntity 

140 

 Chemical 127 
 Ligand 27 
 LivingEntity 584 
 Cell 306 
 Organism 268 
 Tissue 170 
 CellComponent 77 
Continuant/NonPhysicalContinuant 359 
 ExperimentalMethod 123 
 Function 111 
 MolecularStructure 66 
 Locus 25 
 Phenotype 11 
 
  Table 4 shows the number of event instances 
for the most frequent top-level Occurrent con-
cepts. Table 5 shows the number of instances for 
each relation. 
 
Table 4. Number of event instances for 
frequent top-level Occurrent concepts 
Level 3 Level 4 Count 
Occurrent/Process/RegulatoryProcess 782 
 PositiveRegulation 217 
 NegativeRegulation 186 
Occurrent/Process/MolecularProcess 422 
 IntraCellularProcess 189 
Occurrent/Process/PhysiologicalProcess 418 
 OrganismalProcess 143 
Occurrent/Process/PhysicalInteraction 312 
 Binding 296 
Occurrent/Process/Mutation 82 
Occurrent/Process/Localization 77 

                                                 
2 http://www.ebi.ac.uk/Rebholz-srv/GRO/GRO.html 

 Transport 16 
Occurrent/Process/Decrease 73 
Occurrent/Process/Affecting 64 
 Maintenance 20 
Occurrent/Process/ExperimentalInterve
ntion 
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 GeneticModification 54 
Occurrent/Process/Increase 49 
Occurrent/Process/ResponseProcess 38 
 ResponseToChemicalStimul

us 
13 

 
Table 5. Number of relation instances 
Relation Count Relation Count 
locatedIn 405 hasPart 403 
fromSpecies 274 hasFunction 82 
resultsIn 56 encodes 49 
precedes 17 hasQuality 1 
 

3 Evaluation 

There was one submission for the GRO task of 
the BioNLP’13-ST, designated as “TEES-2.1” 
(Björne and Salakoski, 2013). For comparison 
purposes, the GRO task organizers produced re-
sults with a preliminary system by adapting our 
existing system, designated as OSEE (Kim and 
Rebholz-Schuhmann, 2011b), for event extrac-
tion and developing a simple machine learning 
model for relation identification. We describe 
these two systems briefly and compare their re-
sults with several criteria. 

3.1 System descriptions 

TEES-2.1 is based on multi-step SVM classifica-
tion, which automatically learns event annotation 
rules to train SVM classifiers and applies the 
classifiers for 1) locating triggers, 2) identifying 
event arguments, and 3) selecting candidate 
events.  

OSEE is a pattern matching system that learns 
language patterns for event extraction from the 
training dataset and applies them to the test da-
taset. It performs the three steps of TEES-2.1 in a 
single step of pattern matching, thus requiring a 
huge amount of patterns (eventually, a pattern for 
each combination of the features from the three 
steps) and failing to consider that many features 
of a step are independent from other steeps and 
also from event types and can thus be general-
ized.  

We added a simple Naïve Bayes model to the 
system for identifying (binary) semantic relations 
between entities, which utilizes such features as 
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entity strings, the distance between them, and the 
shortest path between the two entities in the de-
pendency structure of the source sentence, which 
is identified by Enju parser (Sagae et al., 2007). 

3.2 Evaluation criteria 

The GRO task follows some of the evaluation 
criteria of the Genia Event Extraction (GE) task 
of BioNLP-ST 2009 (Kim et al., 2009), includ-
ing strict and approximate matching, and also 
introduce new criteria that consider 1) the hierar-
chical structure of the GRO and 2) parent and/or 
grandparent of answer concept. We here explain 
these new criteria in detail. 

1) In this scheme of evaluation, the event re-
sults of a participant are classified into the GRO 
concepts at the third level (see Table 4 for exam-
ples), which are ancestors of their labeled clas-
ses, and the evaluation results are accumulated 
for each of those concepts at the third level. This 
scheme may give us insights on which categories 
the participant system shows strength or weak-
ness. 

2) This scheme is to deal with such a case that 
the answer class is "GeneExpression", but a par-
ticipant gives "IntraCellularProcess" or 
"MolecularProcess", which are the parent and 
grandparent of the answer class, thus not entirely 
wrong nor too generic. For example, the scheme 
"Allowing parents" allows "IntraCellularProcess" 
to be a correct match to the answer class 
"GeneExpression", as well as the answer class 
itself. "Allowing grandparents" accepts the 
grandparents of answer classes as well as the 
parents. 

3.3 Evaluation results 

Table 6 shows the evaluation results of the two 
systems. Note that all the evaluation results in 
terms of precision, recall, and F-score in all the 
tables are percentages. The performance of the 
TEES-2.1 systems, which is clearly better than 
the OSEE system, is lower than its performance 
for other tasks of the BioNLP’13-ST, which is 
understandable, considering 1) the higher num-
ber of GRO concepts than those for the other 
tasks and 2) the low Kappa value of the inter-
annotator agreement. 

It also shows that the evaluation scheme that al-
lows the parents/grandparents of answer con-
cepts for acceptance does not greatly help in-
creasing the performance, which may mean that 
the systems are designed to aim individual con-
cepts, not considering the ontology structure. 
This issue of considering the structure of the on-

tology in event extraction can be an interesting 
future work. 
 
Table 6. Evaluation results (percentage) 
Evaluation 
scheme 

TEES-2.1 OSEE 
R P F R P F 

Strict match-
ing 

15 37 22 10 18 13 

Approximate 
boundary 
matching 

16 39 23 10 20 14 

Approximate 
recursive 
matching 

16 39 23 12 20 15 

Allowing par-
ents 

16 38 23 10 19 13 

Allowing 
grandparents 

16 38 23 10 19 13 

 
Table 7 shows the performance of the systems 
for different event categories in the third level of 
the GRO. It shows that the systems are good at 
extracting events of the categories of 
MolecularProcess (e.g. GeneExpression) and 
Localization (e.g. Transport), but are, expectedly, 
poor at extracting events of the categories with 
small number of training data (e.g. Decrease, 
ResponseProcess). 
 
Table 7. Evaluation results grouped into 
3rd-level GRO concepts (%) 
3rd-level con-

cept 
TEES-2.1 OSEE 

R P F R P F 
RegulatoryPr

ocess 
12 24 16 10 11 11

MolecularPro
cess 

30 60 40 23 51 31

Physiological
Process 

9 78 17 6 25 9

PhysicalIntera
ction 

18 33 24 3 6 4

Mutation 16 39 23 1 8 2
Localization 21 62 31 16 55 24

Decrease 3 12 4 0 0 0
Affecting 2 50 3 0 0 0
Increase 8 8 8 0 0 0

ResponseProc
ess 

3 8 4 5 50 10

 
  Table 8 shows the performance of the systems 
for the most frequent concepts and also for some 
selected infrequent concepts. From the results, 
we observe that the system performance for an 
event class does not reflect the number of train-
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ing data of the class, and that the performance of 
the syntactic pattern matching system OSEE is 
high for the event classes, for which the machine 
learning system TEES-2.1 also performs well. 
These observations may indicate that the current 
approaches to event extraction deal with event 
types independently, not considering the hierar-
chical (or semantic) relations between the event 
types nor relations between entity types. 
 
Table 8. Evaluation results for frequent 
and infrequent individual concepts (%) 

Event class 
(Count) 

TEES-2.1 OSEE 
R P F R P F 

RegulatoryPr
ocess (224) 

18 23 20 13 13 13

PositiveRegul
ation (217) 

11 22 15 11 9 9

NegativeRegu
lation (186) 

12 23 16 14 10 12

GeneExpressi
on (160) 

59 72 65 46 67 55

Disease (143) 0 0 0 1 100 3
Decrease (73) 3 12 4 0 0 0
Localization 

(61) 
16 71 27 20 60 30

Development
alProcess (61) 

23 82 36 23 78 35

BindingOfPro
teinToDNA 

(55) 

13 15 14 0 0 0

GeneticModif
ication (54) 

0 0 0 0 0 0

 
  Table 9 shows the performance of the systems 
for the GRO relations. These results of TEES in 
the relation identification of the GRO task (F-
scores between 50% and 87%) are much higher 
than the best results of relation identification 
(40% F-score) in the Bacteria Biotopes (BB) task 
(Nédellec et al., 2013), which is to extract rela-
tions of localization and part-of. Though the two 
relation identification tasks of GRO and BB can-
not be directly compared due to many differ-
ences (e.g. entity types, relation types, corpus 
sources), it may indicate that the GRO task cor-
pus has been annotated consistently enough to 
train a model with such high performance and 
that the low performance of event extraction 
compared to relation identification may be due to 
the big number of event types and would be re-
solved as the corpus size increases. 
 

Table 9. Evaluation results for relations 
(%) 

Relation TEES-2.1 OSEE 
R P F R P F 

locatedIn 45 83 58 66 38 48
hasPart 45 81 58 76 22 34

fromSpecies 80 96 87 89 41 56
hasFunction 38 73 50 62 20 30

encodes 49 89 63 45 2 5
Total 49 86 63 72 23 35

 

4 Conclusion 

The main challenge in this task is the increased 
size of the underlying ontology (i.e. GRO) and 
the more complex semantic representation in 
GRO compared to those in other ontologies used 
for ontology-based event extraction. The com-
plex structure of the GRO enables us to evaluate 
participant systems at different abstrac-
tion/generalization levels. The evaluation results 
of the participant are quite promising, leading us 
to open issues in this direction, including the in-
corporation of ontology structure in event extrac-
tion. We plan to extend the corpus semi-
automatically by incrementally updating the 
event extraction system with more training data. 
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