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Abstract

MEDLINE/PubMed contains structured
abstracts that can provide argumentative
labels. Selection of abstract sentences
based on the argumentative label has
shown to improve the performance of in-
formation retrieval tasks. These abstracts
make up less than one quarter of all the
abstracts in MEDLINE/PubMed, so it is
worthwhile to learn how to automatically
label the non-structured ones.

We have compared several machine learn-
ing algorithms trained on structured ab-
stracts to identify argumentative labels.
We have performed an intrinsic evalua-
tion on predicting argumentative labels for
non-structured abstracts and an extrinsic
evaluation to predict argumentative labels
on abstracts relevant to Gene Reference
Into Function (GeneRIF) indexing.

Intrinsic evaluation shows that argumen-
tative labels can be assigned effectively
to structured abstracts. Algorithms that
model the argumentative structure seem
to perform better than other algorithms.
Extrinsic results show that assigning ar-
gumentative labels to non-structured ab-
stracts improves the performance on
GeneRIF indexing. On the other hand, the
algorithms that model the argumentative
structure of the abstracts obtain lower per-
formance in the extrinsic evaluation.

1 Introduction

MEDLINE R©/PubMed R© is the largest repository
of biomedical abstracts. The large quantity of
unstructured information available from MED-
LINE/PubMed prevents finding information effi-
ciently. Reducing the information that users need
to process could improve information access and

support database curation. It has been suggested
that identifying the argumentative label of the ab-
stract sentences could provide better information
through information retrieval (Ruch et al., 2003;
Jonnalagadda et al., 2012) and/or information ex-
traction (Mizuta et al., 2006).

Some journals indexed in MEDLINE/PubMed
already provide the abstracts in a structured for-
mat (Ripple et al., 2012). A structured abstract1 is
an abstract with distinct labeled sections (e.g., In-
troduction, Background, or Results). In the MED-
LINE/PubMed data, these labels usually appear in
all uppercase letters and are followed by a colon
(e.g., MATERIALS AND METHODS:). Structured
abstracts are becoming an increasingly larger seg-
ment of the MEDLINE/PubMed database with al-
most a quarter of all abstracts added to the MED-
LINE/PubMed database each year being struc-
tured abstracts. A recent PubMed query (April 22,
2013) shows 1,050,748 citations from 2012, and
249,196 (23.72%)2 of these are considered struc-
tured abstracts.

On August 16, 2010, PubMed began display-
ing structured abstracts formatted to highlight the
various sections within the structured abstracts to
help readers identify areas of interest3. The XML
formatted abstract from MEDLINE/PubMed sep-
arates each label in the structured abstract and in-
cludes a mapping to one of five U.S. National Li-
brary of Medicine (NLM) assigned categories as
shown in the example below:

<AbstractText Label=”MATERIALS AND
METHODS” NlmCategory=”METHODS”>

The five NLM categories that all labels
are mapped to are OBJECTIVE, CONCLU-
SIONS, RESULTS, METHODS, and BACK-
GROUND (Ripple et al., 2011). If a label is new

1http://www.nlm.nih.gov/bsd/policy/structured abstracts.html
2hasstructuredabstract AND 2012[pdat]
3http://www.nlm.nih.gov/pubs/techbull/ja10/ja10 structured abstracts.html
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or not in the list of reviewed structured abstract la-
bels, it will receive a category of UNASSIGNED.
There are multiple criteria for deciding what ab-
stracts are considered structured abstracts or not.
One simple definition would be that an abstract
contains one or more author defined labels. A
more rigid criterion which is followed by NLM4

is that an abstract must contain three or more
unique valid labels (previously identified and cat-
egorized), and one of the labels must be an ending
type label (e.g., CONCLUSIONS). The five NLM
categories are normally manually reviewed and as-
signed once a year to as many new labels as pos-
sible. Currently, NLM has identified 1,949 (Au-
gust 31, 2012) unique labels and categorized them
into one of the five categories. These 1,949 labels
make up approximately 98% of all labels and la-
bel variations found in the structured abstracts in
MEDLINE/PubMed3. An example of structured
abstract is presented in Table 1.

Several studies have shown that the labels of the
structured abstracts can be reassigned effectively
based on a Conditional Random Field (CRF) mod-
els (Hirohata et al., 2008). On the other hand, it
is unclear if these models are as effective on non-
structured abstracts (Agarwal and Yu, 2009).

In this paper, we compare several learning al-
gorithms trained on structured abstract data to as-
sign argumentative labels to non-structured ab-
stracts. We performed comparison tests of the
trained models both intrinsically on a held out set
of the structured abstracts and extrinsically on a
set of non-structured abstracts.

The intrinsic evaluation is performed on a data
set of held out structured abstracts that have had
their label identification removed to model non-
structured abstracts. Argumentative labels are as-
signed to the sentences based on the trained mod-
els and used to identify label categorization.

The extrinsic evaluation is performed on a data
set of non-structured abstracts on the task of iden-
tifying GeneRIF (Gene Into Function) sentences.
Argumentative labels are assigned to the sentences
based on the trained models and used to perform
the selection of relevant GeneRIF sentences.

Intrinsic evaluation shows that argumentative
labels can be assigned effectively to structured ab-
stracts. Algorithms that model the argumentative
structure, like Conditional Random Field (CRF),
seem to perform better than other algorithms. Re-

4http://structuredabstracts.nlm.nih.gov/Implementation.shtml

sults show that using the argumentative labels as-
signed by the learning algorithms improves the
performance in GeneRIF sentence selection. On
the other hand, models like CRF, which better
model the argumentative structure of the struc-
tured abstracts, tend to perform below other learn-
ing algorithms on the extrinsic evaluation. This
shows that non-structured abstracts do not have the
same layout compared to structured ones.

2 Related work

As presented in the introduction, one of the ob-
jectives of our work is to assign structured ab-
stract labels to abstracts without these labels. The
idea is to help in the curation process of exist-
ing databases and to improve the efficiency of
information access. Previous work on MED-
LINE/PubMed abstracts has focused on learning
to identify these labels mainly in the Randomized
Control Trials (RCT) domain. (McKnight and
Srinivasan, 2003) used a Support Vector Machine
(SVM) and a linear classifier and tried to pre-
dict the labels of MEDLINE structured abstracts.
Their work finds that it is possible to learn a model
to label the abstract with modest results. Further
studies have been conducted by (Ruch et al., 2003;
Tbahriti et al., 2005; Ruch et al., 2007) to use
the argumentative model of the abstracts. They
have used this to improve retrieval and indexing of
MEDLINE citations, respectively. In their work,
they have used a multi-class Naı̈ve Bayes classi-
fier.

(Hirohata et al., 2008) have shown that the la-
bels in structured abstracts follow a certain argu-
mentative structure. Using the current set of labels
used at the NLM, a typical argumentative struc-
ture consists of OBJECTIVE, METHODS, RE-
SULTS and CONCLUSION. This notion is some-
what already explored by (McKnight and Srini-
vasan, 2003) by using the position of the sentence.

More advanced approaches have been used that
train a model that considers the sequence of labels
in the structured abstracts. (Lin et al., 2006) used a
generative model, comparing them to discrimina-
tive ones. More recent work has been dealing with
Conditional Random Fields (Hirohata et al., 2008)
with good performance.

(Agarwal and Yu, 2009) used similar ap-
proaches and evaluated the labeling of full text
articles with the trained model on structured ab-
stracts. Their evaluation included as well a set of
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<Abstract> <AbstractText Label=”PURPOSE” NlmCategory=”OBJECTIVE”>To explore the effects of cervical loop
electrosurgical excision procedure (LEEP) or cold knife conization (CKC) on pregnancy outcomes.</AbstractText>
<AbstractText Label=”MATERIALS AND METHODS” NlmCategory=”METHODS”>Patients with cervical intraep-
ithelial neoplasia (CIN) who wanted to become pregnant and received LEEP or CKC were considered as the treat-
ment groups. Women who wanted to become pregnant and only underwent colposcopic biopsy without any treat-
ments were considered as the control group. The pregnancy outcomes were observed and compared in the three
groups.</AbstractText>
<AbstractText Label=”RESULTS” NlmCategory=”RESULTS”>Premature delivery rate was higher (p = 0.048) in the
CKC group (14/36, 38.88%) than in control group (14/68, 20.5%) with a odds ratio (OR) of 2.455 (1.007 - 5.985);
and premature delivery was related to cone depth, OR was significantly increased when the cone depth was more than
15 mm. There was no significant difference in premature delivery between LEEP (10 / 48, 20.83%) and the control
groups. The average gestational weeks were shorter (p = 0.049) in the CKC group (36.9 +/- 2.4) than in the control
group (37.8 +/- 2.6), but similar in LEEP (38.1 +/- 2.4) and control groups. There were no significant differences
in cesarean sections between the three groups. The ratio of neonatal birth weight less than 2,500 g was significantly
higher (p = 0.005) in the CKC group (15/36) than in the control group (10/68), but similar in the LEEP and control
groups.</AbstractText>
<AbstractText Label=”CONCLUSION” NlmCategory=”CONCLUSIONS”>Compared with CKC, LEEP is relatively
safe. LEEP should be a priority in the treatment of patients with CIN who want to become pregnant.</AbstractText>
</Abstract>

Table 1: XML example for PMID 23590007

abstracts manually annotated. They found that the
performance on full-text was below what was ex-
pected. A similar result was found in the manu-
ally annotated set. They found, as well, that the
abstract sentences are noisy and sometimes the
sentences from structured abstracts did not belong
with the label they were assigned to.

A large number of abstracts in MEDLINE are
not structured; thus intrinsic evaluation of the al-
gorithms trained to predict the argumentative la-
bels on structured abstracts is not completely real-
istic. Extrinsic evaluation has been previously per-
formed by (Ruch et al., 2003; Tbahriti et al., 2005;
Ruch et al., 2007) in information retrieval results
evaluating a Naı̈ve Bayes classifier. We have ex-
tended this work by evaluating a larger set of al-
gorithms and heuristics on a data set developed
to tune and evaluate a system for GeneRIF index-
ing on a data set containing mostly non-structured
abstracts. The idea is that GeneRIF relevant sen-
tences will be assigned distinctive argumentative
labels.

A Gene Reference Into Function (GeneRIF) de-
scribes novel functionality of genes. The cre-
ation of GeneRIF entries involves the identifica-
tion of the genes mentioned in MEDLINE cita-
tions and the citation sentences describing a novel
function. GeneRIFs are available from the NCBI
(National Center for Biotechnology Information)
Gene database5. An example sentence is shown
below linked to the BRCA1 gene with gene id
672 from the citation with PubMed R© identifier
(PMID) 22093627:

5http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene

FISH-positive EGFR expression is associated
with gender and smoking status, but not

correlated with the expression of ERCC1 and
BRCA1 proteins in non-small cell lung cancer.

There is limited previous work related to
GeneRIF span extraction. Most of the available
publications are related to the TREC Genomics
Track in 2003 (Hersh and Bhupatiraju, 2003).
There were two main tasks in this track, the first
one consisted of identifying relevant citations to
be considered for GeneRIF annotation.

In the second task, the participants had to pro-
vide spans of text that would correspond to rel-
evant GeneRIF annotations for a set of citations.
Considering this second task, the participants were
not provided with a training data set. The Dice
coefficient was used to measure the similarity be-
tween the submitted span of text from the title and
abstract of the citation and the official GeneRIF
text in the test set.

Surprisingly, one of the main conclusions was
that a very competitive system could be obtained
by simply delivering the title of the citation as the
best GeneRIF span of text. Few teams (EMC (Je-
lier et al., 2003) and Berkley (Bhalotia et al., 2003)
being exceptions), achieved results better than that
simple strategy. Another conclusion of the Ge-
nomics Track was that the sentence position in the
citation is a good indicator for GeneRIF sentence
identification: either the title or sentences close to
the end of the citation were found to be the best
candidates.

Subsequent to the 2003 Genomics Track, there
has been some further work related to GeneRIF
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sentence selection. (Lu et al., 2006; Lu et al.,
2007) sought to reproduce the results already
available from Entrez Gene (former name for the
NCBI Gene database). In their approach, a set
of features is identified from the sentences and
used in the algorithm: Gene Ontology (GO) to-
ken matches, cue words and sentence position in
the abstract. (Gobeill et al., 2008) combined argu-
mentative features using discourse-analysis mod-
els (LASt) and an automatic text categorizer to
estimate the density of Gene Ontology categories
(GOEx). The combination of these two feature
sets produced results comparable to the best 2003
Genomics Track system.

3 Methods

As in previous work, we approach the problem
of learning to label sentences in abstracts us-
ing machine learning methods on structured ab-
stracts. We have compared a large range of ma-
chine learning algorithms, including Conditional
Random Field. The evaluation is performed in-
trinsically on a held out set of structured abstracts
and then evaluated extrinsically on a dataset devel-
oped for the evaluation of algorithms for GeneRIF
indexing.

3.1 Structured abstracts data set

This data set is used to train the machine learning
algorithms and to peform the intrinsic evaluation
of structured abstracts. The abstracts have been
collected from PubMed using the query hasstruc-
turedabstract, selecting the top 100k citations sat-
ifying the query.

The abstract defined within the Abstract at-
tribute is split into several AbstractText tags. Each
AbstractText tag has the label Label that shows
the original label as provided by the journal while
the NlmCategory represents the category as added
by the NLM.

From this set, 2/3 of the citations (66,666) are
considered for training the machine learning algo-
rithms while 1/3 of the citations (33,334) are re-
served for testing. The abstract paragraphs have
been split into sentences and the structured ab-
stract label has been transferred to them. For in-
stance, all the sentences in the INTRODUCTION
section are labeled as INTRODUCTION.

An analysis of the abstracts has shown that there
are cases in which the article keywords were in-
cluded as part of the abstract in a BACKGROUND

section. These were easily recognized by the orig-
inal label KEYWORD. We have removed these
paragraphs since they are not typical sentences
in MEDLINE but a list of keywords. We find
that there are sections like OBJECTIVE where the
number of sentences is very low, with less than 2
sentences on average, while RESULTS is the sec-
tion with the largest number of sentences on aver-
age with over 4.5 sentences.

There are five candidate labels identified from
the structured abstracts, presented in Table 2. The
distribution of labels shows that some labels like
CONCLUSIONS, METHODS and RESULTS are
very frequent. CONCLUSIONS and METHODS
are assigned to more than one paragraph since the
number is bigger compared to the number of cita-
tions in each set. This seems to happen when more
than one journal label in the same citation map
to METHODS or CONCLUSION, e.g. PMID:
23538919.

Label Paragraphs Sentences
BACKGROUND 53,348 132,890
CONCLUSIONS 101,830 205,394
METHODS 107,227 304,487
OBJECTIVE 60,846 95,547
RESULTS 95,824 436,653

Table 2: Structured abstracts data set statistics

We have compared the performance of sev-
eral learning algorithms. Among other classi-
fiers, we use Naı̈ve Bayes and Linear Regression,
which might be seen as a generative learner ver-
sus discriminative (Jordan, 2002) learner. We have
used the implementation available from the Mallet
package (McCallum, 2002).

In addition to these two classifiers, we have
used AdaBoostM1 and SVM. SVM has been
trained using stochastic gradient descent (Zhang,
2004), which is very efficient for linear ker-
nels. Table 2 shows a large imbalance between
the labels, so we have used the modified Huber
Loss (Zhang, 2004), which has already been used
in the context of MeSH indexing (Yeganova et al.,
2011). Both algorithms were trained based on the
one-versus-all approach. We have turned the algo-
rithms into multi-class classifiers by selecting the
prediction with the highest confidence by the clas-
sifiers (Tsoumakas and Katakis, 2007). We have
used the implementation of these algorithms avail-
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able from the MTI ML package6, previously used
in the task of MeSH indexing (Jimeno-Yepes et al.,
2012).

The learning algorithms have been trained on
the text of the paragraph or sentences from the
data set presented above. The text is lowercased
and tokenized. In addition to the textual features,
the position of the sentence or paragraph from the
beginning of the abstract is used as well.

As we have seen, argumentative structure of the
abstract labels has been previously modeled using
a linear chain CRF (Lafferty et al., 2001). CRF
is trained using the text features from sentences or
paragraphs in conjunction of the abstract labels to
perform the label assignment. In our experiments,
we have used the implementation available from
the Mallet package, using only an order 1 model.

3.2 GeneRIF data set

We have developed a data set to compare and
evaluate GeneRIF indexing approaches (Jimeno-
Yepes et al., 2013) as part of the Gene Indexing
Assistant project at the NLM7. The current scope
of our work is limited to the human species. The
development is performed in two steps described
below. The first step consists of selecting cita-
tions from journals typically associated with hu-
man species. During the second step, we apply
Index Section rules for citation filtering plus ad-
ditional rules to further focus the set of selected
citations. Since there was no GeneRIF indexing
before 2002, only articles from 2002 through 2011
from the 2011 MEDLINE Baseline 8 (11/19/2010)
were used to build the data set.

A subset of the filtered citations was collected
for annotation. The annotations were performed
by two annotators. Guidelines were prepared and
tested on a small set by the two annotators and re-
fined before annotating the entire set.

The data set has been annotated with GeneRIF
categories of the sentences. The categories are:
Expression, Function, Isolation, Non-GeneRIF,
Other, Reference, and Structure. We assigned the
GeneRIF category to all the categories that did
not belong to Non-GeneRIF. The indexing task is
then to categorize the sentences into GeneRIF sen-
tences and Non-GeneRIF ones. Based on their an-
notation work on the data set, the F-measure for

6http://ii.nlm.nih.gov/MTI ML/index.shtml
7http://www.lhncbc.nlm.nih.gov/project/automated-

indexing-research
8http://mbr.nlm.nih.gov

the annotators is 0.81. We have used this annota-
tion for the extrinsic evaluation of GeneRIF index-
ing.

This data set has been further split into training
and testing subsets. Table 3 shows the distribution
between GeneRIF and Non-GeneRIF sentences.

Set Total GeneRIF Non-GeneRIF
Training 1987 829 (42%) 1158 (58%)
Testing 999 433 (43%) 566 (57%)

Table 3: GeneRIF sentence distribution

In previous work, the indexing of GeneRIF sen-
tences, on our data set, was performed based on
a trained classifier on a set of features that per-
formed well on the GeneRIF testing set (Jimeno-
Yepes et al., 2013). Naı̈ve Bayes was the learning
algorithm that performed the best compared to the
other methods and has been selected in this work
as the method to be used to combine the features
of the argumentative labeling algorithms.

The set of features in the baseline experiments
include the position of the sentence from the be-
ginning of the abstract, the position of the sentence
counting from the end of the abstract, the sen-
tence text, the annotation of disease terms, based
on MetaMap (Aronson and Lang, 2010), and gene
terms, based on a dictionary approach, and the
Gene Ontology term density (Gobeill et al., 2008).

4 Results

As mentioned before, we have performed the eval-
uation of the algorithms intrinsically, given a set
of structured abstracts, and extrinsically based on
their performance on GeneRIF sentence indexing.

4.1 Intrinsic evaluation (structured
abstracts)

Tables 4 and 5 show the results of the intrinsic
evaluation for paragraph and sentence experiments
respectively. The algorithms are trained to label
the paragraphs or sentences from the structured
abstracts. The precision (P), recall (R) and F1

(F) values are presented for each argumentative la-
bel. The methods evaluated include Naı̈ve Bayes
(NB), Logistic Regression (LR), SVM based on
modified Huber Loss (Huber) and AdaBoostM1
(ADA). These methods have been trained on the
text of either the sentence or the paragraph, and
might include their position feature, indicated with
the letter P (e.g. NB P for Naı̈ve Bayes trained
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Label NB NB P LR LR P ADA ADA P Huber HuberP CRF
BACKGROUND P 0.6047 0.6853 0.6374 0.7369 0.6098 0.7308 0.5862 0.7166 0.7357

R 0.5672 0.7190 0.5868 0.7207 0.3676 0.7337 0.4984 0.6694 0.7093
F 0.5854 0.7017 0.6110 0.7287 0.4587 0.7323 0.5387 0.6922 0.7223

CONCLUSIONS P 0.7532 0.8626 0.8365 0.9413 0.6975 0.8862 0.7578 0.9051 0.9769
R 0.8606 0.9366 0.8675 0.9552 0.8246 0.9404 0.7987 0.9340 0.9784
F 0.8033 0.8981 0.8517 0.9482 0.7557 0.9125 0.7777 0.9193 0.9776

METHODS P 0.9002 0.9278 0.9113 0.9396 0.8256 0.9041 0.8668 0.9116 0.9684
R 0.9040 0.9126 0.9294 0.9493 0.8955 0.9250 0.9012 0.9237 0.9675
F 0.9021 0.9201 0.9203 0.9444 0.8591 0.9144 0.8837 0.9176 0.9680

OBJECTIVE P 0.7294 0.7650 0.7167 0.7531 0.6763 0.7565 0.6788 0.7160 0.7608
R 0.6453 0.7190 0.7255 0.7549 0.6937 0.7228 0.6733 0.7365 0.7759
F 0.6848 0.7413 0.7210 0.7540 0.6849 0.7393 0.6761 0.7261 0.7683

RESULTS P 0.8841 0.9106 0.9086 0.9372 0.8554 0.9157 0.8560 0.9122 0.9692
R 0.8414 0.8542 0.8857 0.9216 0.7842 0.8564 0.8447 0.8846 0.9758
F 0.8622 0.8815 0.8970 0.9294 0.8182 0.8851 0.8503 0.8981 0.9725

Average P 0.7743 0.8303 0.8021 0.8616 0.7329 0.8387 0.7491 0.8323 0.8822
R 0.7637 0.8283 0.7990 0.8604 0.7131 0.8357 0.7433 0.8296 0.8814
F 0.7690 0.8293 0.8005 0.8610 0.7229 0.8372 0.7462 0.8310 0.8818

Table 4: Intrinsic evaluation of paragraph based labeling

Label NB NB P LR LR P ADA ADA P Huber HuberP CRF
BACKGROUND P 0.4983 0.6313 0.5558 0.6862 0.4779 0.6417 0.5153 0.6495 0.6738

R 0.4980 0.6921 0.5084 0.7139 0.3207 0.6993 0.3372 0.6554 0.7104
F 0.4981 0.6603 0.5311 0.6998 0.3838 0.6693 0.4076 0.6524 0.6916

CONCLUSIONS P 0.5876 0.7270 0.6794 0.8431 0.5672 0.7651 0.6153 0.7767 0.8977
R 0.7103 0.8388 0.6788 0.8187 0.4998 0.6816 0.5163 0.7213 0.8671
F 0.6431 0.7789 0.6791 0.8307 0.5314 0.7209 0.5615 0.7480 0.8821

METHODS P 0.7857 0.8206 0.8193 0.8549 0.7224 0.7793 0.7343 0.7894 0.8931
R 0.8084 0.8366 0.8427 0.8696 0.7789 0.8152 0.7828 0.8250 0.8988
F 0.7969 0.8285 0.8308 0.8622 0.7496 0.7968 0.7578 0.8068 0.8960

OBJECTIVE P 0.5522 0.6237 0.6032 0.6696 0.5497 0.6671 0.5525 0.6259 0.6258
R 0.4894 0.5530 0.4995 0.5534 0.4082 0.4518 0.4479 0.5036 0.5779
F 0.5189 0.5862 0.5465 0.6060 0.4685 0.5388 0.4947 0.5581 0.6009

RESULTS P 0.8294 0.8517 0.8071 0.8449 0.6903 0.7665 0.6957 0.7877 0.8892
R 0.7517 0.7743 0.8429 0.8679 0.7998 0.8143 0.6957 0.8208 0.8995
F 0.7886 0.8112 0.8246 0.8563 0.7410 0.7897 0.6957 0.8039 0.8943

Average P 0.6506 0.7309 0.6930 0.7797 0.6015 0.7239 0.6226 0.7258 0.7959
R 0.6516 0.7390 0.6745 0.7647 0.5615 0.6924 0.5560 0.7052 0.7907
F 0.6511 0.7349 0.6836 0.7721 0.5808 0.7078 0.5874 0.7154 0.7933

Table 5: Intrinsic evaluation of sentence based labeling

with the features from text and the position). The
results include those based on CRF trained on the
text of either the sentence or the paragraph taking
into account the labeling sequence.

CRF has the best performance in both tables,
with the differences being more dramatic on the
paragraph results. These results are comparable
to (Hirohata et al., 2008), even though we are
working with a different set of labels. Compar-
ing the remaining learning algorithms, LR per-
forms better than the other classifiers. Both Ad-
aBoostM1 and SVM perform not as well as NB
and LR; this could be due to the noise referred
to by (Agarwal and Yu, 2009) that appears in the
structured abstract sentences. Considering either
the paragraph or the sentence text, the position in-
formation helps improve their performance.

CONCLUSIONS, METHODS and RESULTS
labels have the best performance, which matches
the most frequent labels in the dataset (see Ta-
ble 2). BACKGROUND and OBJECTIVE have
worse performance compared to the other labels.
These two labels have the largest imbalance com-
pared to the other labels, which seems to nega-
tively impact the classifiers performance.

The results based on the paragraphs outperform
the ones based on the sentences. Argumentative
structure of the paragraphs seems to be easier,
probably due to the fact that individual sentences
have been shown to be noisy (Agarwal and Yu,
2009), and this could explain this behaviour.
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4.2 Extrinsic evaluation (GeneRIFs)

Extrinsic evaluation is performed on the GeneRIF
data set presented in the Methods section. The
idea of the evaluation is to assign one of the ar-
gumentative labels to the sentences, based on the
models trained on structured abstracts, and eval-
uate the impact of this assignment in the selec-
tion of GeneRIF sentences. From the set of ma-
chine learning algorithms intrinsically evaluated,
we have selected the LR models trained with and
without position information (Pos) and the CRF
model. The LR and CRF models are used to la-
bel the GeneRIF training and testing data with the
argumentative labels.

Table 6 shows the results of the extrinsic evalu-
ation. Results obtained with the argumentative la-
bel feature and with or without the set of features
used in the baseline are compared to the baseline
model, i.e. NB and the set of features presented
in the Methods section. In all the cases, precision
(P), recall (R) and F1 using the argumentative fea-
tures improve over the baseline.

The intrinsic evaluation was performed either
on sentences or paragraphs. The sentence mod-
els perform better than the paragraph based mod-
els. We find as well that LR with sentence position
performs slightly better than when combined with
the baseline features, with higher recall but lower
precision. Contrary to the intrinsic results, LR per-
forms better than CRF, even though both outper-
form the baseline. This means that non-structured
sentences do not necessarily follow the same argu-
mentative structure as the structured abstracts.

Label P R F
Baseline 0.6210 0.6605 0.6405
LR Par 0.7235 0.6767 0.6993
LR Par + Base 0.7184 0.8014 0.7576
LR Par Pos 0.5978 0.8891 0.7149
LR Par Pos + Base 0.6883 0.8060 0.7426
LR Sen 0.7039 0.7852 0.7424
LR Sen + Base 0.7325 0.7968 0.7633
LR Sen Pos 0.7014 0.9007 0.7887
LR Sen Pos + Base 0.7222 0.8406 0.7769
CRF Par 0.6682 0.6744 0.6713
CRF Par + Base 0.7036 0.8060 0.7513
CRF Sen 0.6536 0.8499 0.7390
CRF Sen + Base 0.7134 0.7875 0.7486

Table 6: GeneRIF extrinsic evaluation

5 Discussion

Results show that it is possible to automatically
predict the argumentative label of the structured
abstracts and to improve the performance for
GeneRIF annotation. Intrinsic evaluation shows
that paragraph labeling is easier compared to sen-
tence labeling, which might be partly due to the
noise in the sentences as identified by (Agarwal
and Yu, 2009). The excellent performance for
paragraph labeling was already shown by previous
work (Hirohata et al., 2008) while sentence label-
ing issues for structured abstracts was previously
introduced by (Agarwal and Yu, 2009). In both in-
trinsic tasks, adding the position of the paragraph
or sentence improves the performance of the learn-
ing algorithms.

Extrinsic evaluation shows that, compared to
the baseline features for GeneRIF annotation,
adding argumentative labeling using the trained
models improves its performance, which is close
to the human performance reported in the Meth-
ods section. On the other hand, we find that the
CRF models show lower performance compared
to the LR models. From the LR models, the po-
sition of the sentence or paragraph seems to have
better performance.

In addition, the LR model trained on the sen-
tences performs better compared to the model
trained on the paragraphs. This might be partly
due to the fact that sentence based models seem
to be better suited than the paragraph based ones
as might have been expected. The fact that the
CRF models performance is below the LR mod-
els denotes that the structured abstracts seem to
follow a pattern that is different in the case of
non-structured abstracts. Looking closer at the
assigned labels, the LR models tend to assign
more CONCLUSIONS and RESULTS labels to
the GeneRIF sentences compared to the CRF ones.

6 Conclusions and Future Work

We have presented an evaluation of several learn-
ing algorithms to label abstract text in MED-
LINE/PubMed with argumentative labels, based
on MEDLINE/PubMed structured abstracts. The
results show that this task can be achieved with
high performance in the case of labeling the para-
graphs but this is not the same in the case of sen-
tences. This intrinsic evaluation was performed on
structured abstracts, and in this set the CRF mod-
els seem to perform much better compared to the
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other models that do not use the labeling sequence.
On the other hand, when applying the trained

models to MEDLINE/PubMed non-structured ab-
stracts, we find that the extrinsic evaluation of
these labeling on the GeneRIF task shows lower
performance for the CRF models. This indicates
that the structured abstracts follow a pattern that
non-structured ones do not follow. The extrin-
sic evaluation shows that labeling the sentences
with argumentative labels improves the indexing
of GeneRIF sentences. The argumentative labels
help identifying target sentences for the GeneRIF
indexing, but more refined labels learned from
non-structured abstracts could provide better per-
formance. An idea to extend this research would
be evaluating the latent discovery of section labels
and to apply this labeling to the proposed GeneRIF
task and to other tasks, e.g. MeSH indexing. La-
tent labels might accommodate better the argu-
mentative structure of non-structured abstracts.

As shown in this work, the argumentative lay-
out of non-structured abstracts and structured ab-
stracts is not the same. There is still the open ques-
tion if there is any layout regularity in the non-
structured abstracts that could be exploited to im-
prove information access.
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