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Abstract

In order to integrate heterogeneous clinical
information sources, semantically correlating
information entities have to be linked. Our
discussions with radiologists revealed that
anatomical entities with pathological findings
are of particular interest when linking radi-
ology text and images. Previous research to
identify pathological findings focused on sim-
plistic approaches that recognize diseases or
negated findings, but failed to establish a holis-
tic approach. In this paper, we introduce our
syntacto-semantic parsing approach to clas-
sify sentences in radiology reports as either
pathological or non-pathological based on the
findings they describe. Although we operate
with an incomplete, RadLex-based linguistic
resource, the obtained results show the effec-
tiveness of our approach by identifying a recall
value of 74.3% for the classification task.

1 Introduction

In radiology, descriptions of the patient’s health status
are stored in heterogeneous formats. They range from
radiology images - which are the primary source for ra-
diologists - over dictated reports about the image find-
ings up to written texts.

Although the various data items describe the same
status, they are distributed in non-linked systems. This
is hindering the radiologist’s workflow. Especially
when reading reports, radiologists want to link back
from the described finding (in the text) to the related
body location (in the images). Today, they establish
the link manually. This is obviously time-consuming
when state-of-the-art imaging modalities deliver a mass
of stacked images.

In order to link radiology images and reports, each
information source needs to be annotated with seman-
tic meta-information about the anatomical entities they
describe. The necessary semantic image annotations
for the integration have been made available as a result
of the Theseus MEDICO project (Seifert, 2010). Intro-
duced algorithms automatically detect anatomical en-
tities in radiology images and annotate those with the
corresponding RadLex IDs (Seifert et al., 2009). The

semantic annotations from the reports have to be in line
with those image annotations. Therefore, the final re-
sult of the text analysis system need to be anatomical
annotations based on RadLex. We introduce a mecha-
nism that extracts those semantic annotations from the
radiology reports to enable the integration.

We identified three challenges, which a text analy-
sis system has to consider when extracting the relevant
anatomical entities from text:

1. The linguistic characteristics of the reports differ
significantly from standard free-text,

2. the underlying German linguistic resource (the
RadLex taxonomy) is incomplete and

3. only a subset of the named anatomical entities in
the reports are relevant for annotating.

First, the special linguistic characteristics of the han-
dled German reports have to be taken into account.
While the linguistic characteristics English radiology
reports have been intensively studied (Friedman et al.,
1994; Friedman et al., 2002; Sager et al., 1994), Ger-
man ones are still a young research area. German re-
ports are comparable to English ones when it comes
to structural particularities. One can observe two char-
acteristics in both languages: syntactic shortness and
reduced semantic complexity. But the reports differ in
richness of the language used. German language is rich
in inflection form; the same is true for German medical
language. Additionally, clinical texts extend the vari-
ety in inflection forms by introducing a huge amount of
Greek- and Latin-rooted vocabulary. Further linguistic
particularities will be introduced in a later section.

Second, the anatomical annotations will be es-
tablished based on the controlled vocabulary of the
RadLex taxonomy. Anatomical annotations of the im-
ages (based on RadLex) are already available and hence
impose the mandatory condition to use RadLex annota-
tions for the reports. We operate on German radiology
reports that is why we use the German RadLex taxon-
omy. Compared to the English version, the German
RadLex is lacking in terminology. This is an obstacle,
we have to overcome.

Third, we have to find a way to filter relevant
anatomical annotations. According to the radiolo-
gists we worked with, it is inappropriate to extract all
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anatomical entities from the text to link them with the
image annotations. A large portion of the anatomies
is described with normal or absent findings, which do
not describe pathologies. Those findings are included
in the reports in order to exclude differential diag-
noses. However, radiologists are interested in images
of anatomical entities described with pathological find-
ings. Thus, a crucial part of our work is to extract the
anatomical entities with pathological findings in order
to link only those with the image positions.

The core contribution of this paper is the descrip-
tion of a syntacto-semantic parsing approach to identify
the sentences that describe pathological findings by us-
ing the German version of the RadLex taxonomy. The
results of this approach are used to integrate relevant
semantic information from heterogeneous data sources
and support radiologists significantly in their work rou-
tine.

To introduce our solution, the remainder of this pa-
per is organized as follows: Section 2 refers to related
work in the field and shows where sub-problems are
still unsolved. In Section 3, we analyze the linguistic
characteristics of the reports. Section 4 introduces the
text analysis system for integrating radiology text and
images. The system handles both the linguistic partic-
ularities of the reports and the shortcomings of RadLex
as linguistic resource and filters relevant anatomical en-
tities from the reports. Section 5 evaluates and dis-
cusses the classification and extraction results. Finally,
Section 6 concludes with possible future work.

2 Related work

Medical grammar-based text analysis systems In-
formation extraction from medical texts is a well-
researched task in medical natural language processing
(Meystre et al, 2008). Especially radiology reports play
an important role.

Theoretical work in the linguistic characteristics of
the medical sublanguage has been conducted on the
adaption of theories of Harris by (Friedman et al.,
2002). Early systems of (Sager et al., 1994; Friedman
et al., 1994) are adaptations of the theories and imple-
ment own (context-free) medical language grammar for
radiology reports. They show that parsing of medical
texts based on a combined semantic-syntactic grammar
can be successfully conducted – but they conducted
their research using English reports. Even today, ad-
vances in grammar-based parsing of medical texts are
reached (Fan et al., 2011).

More recently, sophisticated semantic medical text
analysis systems have integrated a component to parse
texts. (Savova et al., 2010) They take the output of the
parsing process to extract semantic relationships be-
tween the medical concepts described.

All those systems work with elaborated lexicons that
fully cover the vocabulary used in English report.

Detecting diseases and Negated finding Most sys-
tems cover the problem of detecting pathological find-
ings in the reports just partially: In order to detect
pathologies, they automate the assignment of codes for
diseases listed in ontologies such as UMLS (Aronson,
2001; Lindberg, 1990; Long, 2005) or ICD (Computa-
tional Medicine Center, 2007; Pestian et al., 2007).

Non-pathological findings are identified using nega-
tion detection algorithms. Available approaches range
from simple algorithms based on dictionary lookup and
regular expressions (Chapman et al., 2001; Mutalik et
al., 2001) through machine learning (Goryachev et al.,
2006) up to advanced approaches that apply a context-
free ”negation grammar” (Huang, 2007).

Gap analysis While the grammar-based analysis of
radiology reports has proven to be successful with com-
plete lexical resources, we have to face the shortcom-
ings of an incomplete lexicon. Furthermore, in other
systems the grammar is used to analyze the syntax of
the reports. Our approach to use it for classification is
novel and has not been applied so far.

Working with German clinical texts is another chal-
lenge in the field. English texts have been made avail-
able by a number of shared tasks and gained more and
more interest in the last decade. Medical corpora in
languages other than English are not available to that
extent.

That is perhaps also the reason for the tremendous
lack of German medical ontologies. While great effort
is put into the advance of English ontologies, German
language versions are rare.

Terminology acquisition and semantic classification
Semantic classifications beyond the hierarchical infor-
mation encoded in taxonomies and ontologies are still
rare for ontology concepts. In particular, semantic clas-
sifications such as information about the pathological
nature of the concepts are missing so far.

Several approaches address this lack of semantic in-
formation: Corpus-based approaches base their meth-
ods on statistical analyses about the coverage and us-
age frequency of UMLS ontology concepts (Liu et al.,
2012; Wu et al., 2012). (Johnson, 1999) derives seman-
tic classes from ontology mapping and disambiguates
multiple senses in contexts of discharge summaries.
(Campbell et al., 1999) applies pattern-based rules and
combines them with UMLS concepts to acquire new
and semantically classified terminology. However, this
approach is limited to noun phrases.

Finally, (Zweigenbaum et al., 2003) introduce ap-
proaches to automatically extending the existing En-
glish UMLS ontology with non-English concepts based
on statistical algorithms.

3 Corpus analysis
3.1 Reference corpus
Since a publicly available corpus of German radiology
reports is missing, we build our own annotated corpus
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based on 2713 de-identified reports from our clinical
partner, the University Hospital Erlangen. The reports
result from radiology examinations of lymphoma pa-
tients and range from April 2002 to July 2007. Each
report contains two free-text sections: The first one de-
scribes findings observed in the images. In the second
sections, the radiologist provides an overall evaluation
about the findings, derives probable diagnoses and ex-
cludes differential diagnoses.

3.2 Development set of reports
From the corpus, we selected 174 reports for the devel-
opment set. They are uniformly distributed across time
and length.

The development set serves multiple purposes:

1. It is used for the linguistic analysis.

2. We use it for grammar derivation.

3. And pathology classifications and additional vo-
cabulary are learned from the sentences.

A radiologist classified each of the contained sentences
either as pathological or non-pathological. This is done
based on the characteristics of the findings described in
the sentence. Sentences describing normal or negated
findings are classified as ’non-pathological’ and those
containing descriptions of abnormalities are classified
as ’pathological’. In cases where sentences include
both types of findings, they are classified as ’patholog-
ical’. Hence, each sentence in the development set was
annotated with the classification information.

3.3 Statistics of the development set
The 174 reports in the development set contain 4295
sentences of which less than half are classified as
’pathological’. This ratio is in line with the radiol-
ogists’ experience. As from their intuition, the ma-
jority of the findings described in radiology reports is
noted as absent or has normal status. In the reports,
they complement pathological findings in order to note
the absence of finding and to exclude suspected dis-
eases. However, those sentences classified as ’non-
pathological’ are irrelevant for our setting of linking
the containing anatomies to the images.

Table 1 shows additional results of the statistical cor-
pus analysis.

Sentence classification
non-

Corpus characteristic pathological pathological
Sentences 1943 2352

Tokens used 16437 11572
Average sentence length 8.46 4.92

Distinct word types 2398 1581

Table 1: Results of statistical corpus analysis based on
the development set

Another significant characteristic of the sentences is
their average length. Pathological sentences are about
as twice as long as non-pathological ones and thus are
more complex in their syntax. The pathology classifier
has to cover this complexity.

Furthermore, from comparing the distinct word
types used, we conclude that the description of patho-
logical findings requires a richer language than those of
normal states and absent findings in non-pathological
sentences. The linguistic resource has to cover this re-
quired rich language.

3.4 Semantic and syntactic characteristics

One of the most apparent syntactic characteristics of
the reports is the elliptical style of the sentences. The
texts are rich in omission of verbs; verbs are dispens-
able as they only underline the absence or presence
of symptoms. An example that illustrates the facts is
shown below.

General language
In der Lunge sind keine Ergüsse zu finden.
In the lung, there are no effusions found.

Radiologist’s style
Lunge: Kein Erguss.
Lung: No effusions.

The observation of the syntactic structure of the sen-
tences is in line with (Friedman et al., 2002) and will
simplify the classification of the sentences.

The second observation we made is that the medical
language uses a high amount of domain-specific vocab-
ulary. This vocabulary is rarely used in every-day lan-
guage and is highly connected with (implicit) medical
domain knowledge. Thus, the linguistic handling of
the reports requires a domain-specific lexicon. Further-
more, the vocabulary can be categorized into only a few
semantic classes representing the content, such as mea-
surements, dates, anatomies, modifier of the anatomies,
diseases, etc.

Third, one feature of the medical language is very
domain-specific: It uses a high amount of Greek- and
Latin-rooted words. This is important, because those
terms follow their own specific inflection forms. Fur-
thermore, for many terms there exist both German and
Latin-/Greek-rooted descriptions which are used inter-
changeably (e.g. descriptions of anatomical entities or
diseases). However, most lexicons only contain a sin-
gle term - not the complete list of synonyms.

Like the German language, the medical lan-
guage is also rich in compound terms such as
Nasenseptumdeviation (deviation of the nasal septum)
or Glukosestoffwechselsteigerung (increase in glucose
metabolism). Especially radiologists use a high num-
ber of compounds to describe pathological findings.
They will be of particular importance for the identifi-
cation of pathological findings. In many cases, only
after determining the pathology classification of each
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subtoken, the classification of the compound can be de-
termined.

Systems that mine information from radiology re-
ports have to consider the named syntactic and se-
mantic characteristics and handle them as language-
specifics. In particular, the short length of the sentences
simplifies the development of a grammar with a limited
number of rules.

4 Methods
4.1 Grammar-based classification approach
Based on the observations from the corpus analysis,
we derive and apply a semantic context-free grammar
(CFG) to classify sentences.

Using a grammar to classify the sentences may not
seem intuitive for every-day language sentences. Nev-
ertheless, the language used in radiology reports allows
this approach. There are several facts that support the
usage of a grammar.

1. The structure of the sentences created by radiol-
ogists differs significantly from the structure of
general German language. To model this language
an own (sublanguage) grammar is necessary.

2. Since the sentences are short in length, a relatively
small number of grammar rules can represent their
syntax. In particular, the omission of verbs allows
us to create and use a simplified grammar.

3. As already researched by (Friedman et al., 2002),
the sentences contain a limited number of seman-
tic classes which are combined into few rules.

These observations support the approach to create a
grammar with few rules to classify the sentences.

4.2 Overview of the building blocks of the text
analysis system

After having analyzed the linguistic characteristics, we
designed a text analysis system to extract the rele-
vant information from the reports. The classification is
based on a grammar whose components are setup first:
The grammar rules are created and lexicon is setup.
To overcome the incompleteness of the lexicon and to
enhance the grammar with probabilities, we introduce
an additional learning step. These first three steps can
be regarded as preparation steps for the subsequent in-
tegration steps: Finally, the system is able to classify
report sentences and extracts anatomical annotations
from the sentences classified as ’pathological’. In the
end, the semantic annotations from text and images are
linked across the data sources. The described steps of
the target system are shown in Figure 1.

This paper focuses on the details of the created gram-
mar: how the parsing algorithm is adapted to learn new
linguistic knowledge and how the probabilistic parsing
algorithm is used to derive a classification for an input
sentence.

Derive
grammar

Create
lexicon

Learn
from the

development set

Preparation steps

Classify
Extract

and
Link

Integration steps

Figure 1: Processing steps in text analysis system

The following sections describe the details of the in-
dividual processing steps.

4.3 Derive grammar
The core component of the text processing system is
the grammar. Our grammar has two functions:

1. It is used to describe the structure of a given input
sentence, and

2. using the results of the parsing process, an input
sentence can be classified as either ’pathological’
or ’non-pathological’.

We use a semantic grammar for the description of
the syntactic structure of the sentences. That means,
instead of mapping syntactic categories from part-
of-speech tags as non-terminal symbols, we use se-
mantic representations of the content. E.g., the term
Niere [spleen] gets assigned the non-terminal symbol
ANATOMIE.

Following the proposal of (Friedman et al., 1994),
we create semantic classes that represent the content
of the radiology reports. However, we do not need
their fine-grained semantic class definition. Our task of
pathology classification requires only a reduced num-
ber of classes. We drop classes that do not change the
pathology classification result (such as degree, quan-
tity, technique, etc.) and introduce the generalized se-
mantic classes MOD (modifier) and TERM. The list of
semantic classes derived is shown in Table 2.

The grammar has to fulfill one condition to be able to
classify sentences. Only non-terminal symbols used for
classification are directly derived from the start symbol
(S). We use the non-terminal symbols PATH for clas-
sifying sentences as ’pathological’ and NOPATH for
classifying as ’non-pathological’. Hence, the following
unary rules designate the classification in our grammar:

S → PATH

S → NOPATH

Any subsequent rules have to be hierarchically embed-
ded into those rules.
During the subsequent (manual) grammar derivation
process, we use the listed semantic classes as non-
terminal symbols and derive the grammar rules from
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Structural non-terminals
ROOT
S
KOMMA
ENUM
FIND CONNECT

Classification non-terminals
PATH Constituents

(sentence-level,
modifier and term)
with pathology
classification
information

NOPATH
MOD PATH
MOD NOPATH
TERM PATH
TERM NOPATH
FINDING NOPATH
FINDING PATH

Semantic non-terminals
LOCATION

Non-terminals
representing
constituents with
specific semantic
meaning

DATE
MEASUREMENT
ANATOMIE
NEGATION
DISEASE

Linguistic non-terminals
ARTICLE Article non-terminal
ARTICLE GENITIV
PREP DATE Preposition

non-terminals
indicating different
semantic units

PREP LOCATION
PREP MEASUREMENT

Mapping semantic class - regular expression
DATE VALUE
MEASUREMENT VALUE
IMAGE VALUE

Table 2: List of semantic non-terminals

the development corpus. Because of the limited num-
ber of semantic classes and the elliptical sentence style,
a small set of 238 grammar rules suffices to describe
the sentence syntax. The resulting grammar rules con-
sider the syntactic complexity of the sentences describ-
ing pathological findings: 52% of the rules model the
constituent structure of pathological sentences.

4.4 Create lexicon

The linguistic resource of our system is a lexicon, cre-
ated based on the German version of the RadLex tax-
onomy.

RadLex (RSNA, 2012) is a taxonomy published by
the Radiological Society of North America (RNSA) in
order to deliver a uniform controlled vocabulary for in-
dexing and retrieval of radiology information sources.
The current English version 3.8 contains 39976 classes.
A German version has been worked-out (Marwede et
al., 2009) in 2007. The contained terms are organized
in 13 major categories: anatomical entity as one among
others such as treatment, image observation and imag-

ing observation characteristics. But as the development
of the German language version has been stopped, the
latest version 2.0 contains only a subset of classes
(n=10003). This lack in terminology is an obstacle to
overcome.

Linguistic resource From the German RadLex we
created a lexicon (n=9479), which we use as linguistic
resource. Each entry is represented by a list of proper-
ties.

Besides the structural properties label and RID, we
apply several steps of linguistic and semantic process-
ing to enrich the lexical entries. The normalized stem
of each entry results from an own tokenization, normal-
ization and stemming algorithm.

The normalization aligns German and Latin style
spellings (e.g. Karzinom/Carzinom, Okzipitallappen/-
Occipitallappen). The stemmer adapts the German
Porter stemmer and incorporates additional rules for
suffixes and inflection that are derived from Latin and
Greek. E.g., this extension enabled the mapping of Me-
diastinum and mediastinal to the same stem mediastin-,
which would not have been possible with the German
Porter stemmer.

Furthermore, during lexicon setup each entry is en-
riched with semantic classification information. The
semantic class is used during parsing. We use rea-
soning methods and the hierarchical is-a structure of
the RadLex taxonomy in order to deduct a semantic
class for each entry from the major categories. For ex-
ample, this mechanism enables us to assign to deduct
the semantic class ANATOMIE for sub-entities of the
major category ’Anatomical entity’ (such as Prostata
[prostate]).

We apply a similar reasoning mechanism for the
pathology classification. As the lexicon entries are ini-
tially unclassified according to their pathological in-
formation, we analyzed them and found the following
mechanism: It is feasible to classify each of the major
categories unambiguously either as ’pathological’ or
’non-pathological’. For example, entries with semantic
class ANATOMIE are classified as ’non-pathological’.
This pathological classification information is added to
10 out of 13 major RadLex categories and inferred to
all hyponyms. For three of the categories, the classifi-
cation is ambiguous. The determination of the pathol-
ogy classification results in the distribution shown in
Table 3.

Classification #
non-pathological 6001 63.3%
pathological 1714 18.1%
not to be determined 1764 18.6%

9479 100%

Table 3: Results of the initial pathology classification
of RadLex-based lexicon entries

The algorithm is able to classify 81.4 % of the lexicon
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S→ PATH
S→ NOPATH
PATH→ FIND PATH
NOPATH→ FIND NOPATH
FIND PATH→MOD PATH ANATOMIE
FIND NOPATH→MOD NOPATH ANATOMIE

? → vergrößert
ANATOMIE→ Prostata

Vergrößerte
(enlarged)

Prostata
(prostate)

MOD PATH MOD NOPATH ANATOMIE

FIND PATH
PATH

FIND NOPATH
NOPATH

S

Figure 2: Learning lexical knowledge from sentence Vergrößerte Prostata (enlarged prostate)

entries. We have to find a way to classify the remain-
ing unclassified entries. Only when all the lexical en-
tries are classified, the sentence classification algorithm
produces reliable results.

The finally derived lexical resource contains 9479
entries with 23588 tokens of which 6326 are distinct.
Comparing this number with the distinct word types
used in the development set (n=3172), one assumes that
the lexicon could cover the vocabulary used in the re-
ports. However, this is not the case. Important terms
that occur quite frequently in the development set and
have high relevance for the pathology classification are
either not included in the lexicon (e.g. Läsion/lesion)
or are included but are not classified (e.g. sklerosiert |
RID 5906 [sclerosing]).

That is why we argue that an additional corpus-based
learning step to extend the vocabulary and its classifi-
cation is mandatory.

4.5 Learn from the development set

We introduce an additional learning step to extend the
lexicon with missing items and to classify existing
item missing a pathology classification. At the same
time, the probabilities of the grammar rules are trained
during this step. The learning is conducted using an
adapted probabilistic CKY algorithm.

Extending the lexical resource How parsing is
adapted to learn from the sentences is illustrated in Fig-
ure 2. The sentence Vergrößerte Prostata [Enlarged
prostate] is input to the learning. From the sentence’s
annotation, we know that this sentence describes a
pathological finding (PATH). The subset of the gram-
mar necessary to parse this sentence is shown on the
left-hand side of the figure. The non-terminal mapping
of the words is shown below the grammar rules. Cur-
rently, only the mapping of the word Prostata to the
non-terminal symbol ANATOMIE can be derived from
the lexicon. Mapping vergrößert is not possible. The
lexical entry has a semantic classification (Modifier) as-
signed, but no pathology classification. However, in
this case both information items are necessary to deter-
mine the non-terminal mapping. In order to learn the
missing pathology classification of this word, we apply
an adapted CKY parsing algorithm.

The standard CKY algorithm (Kasami, 1965) oper-
ates bottom-up and uses two complete components to
determine the parse tree of a given input sentence:

1. A complete lexicon to determine the non-terminal
mapping of the words, and

2. a complete list of all grammar rules.

Our setting is missing the complete lexicon. That is
why we adapt the standard algorithm and introduce a
top-down analysis in order to extend the linguistic re-
source while parsing.

There are two possible non-terminal mappings for
the word vergrößert: MOD PATH (indicating a mod-
ifier for pathologies) or MOD NOPATH (indicating a
modifier not describing pathologies). Both of the op-
tions are used to determine the parse tree of the sen-
tence. The ambiguity is resolved at the top-most pars-
ing level: The sentence is annotated as ’pathological’,
hence, only rewritings that include the corresponding
non-terminal symbol PATH are allowed. Finally, the
parse tree of the sentence can be derived (as shown in
Figure 3).

S

PATH

FIND PATH

MOD PATH

Vergrößerte
(enlarged)

ANATOMIE

Prostata
(prostate)

Figure 3: Parse tree derived from sentence Vergrößerte
Prostata (Enlarged prostate)

In addition, the (formerly unknown) non-terminal
mapping of the word vergrößert to MOD PATH is de-
ducted from the parse tree and the corresponding lexi-
cal entry is updated. Using this algorithm, we are also
able to learn vocabulary that was not available in the
lexicon before.
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Training the grammar’s probabilities The parse
tree is also used as input for extending the grammar
to a probabilistic context-free grammar. Each of the
grammar rules used to form the parse tree is used to
re-calculate the probabilities of the grammar rules.

After the learning step, the lexicon is extended to
10344 entries (before 9479). But even more impor-
tant, the overall amount of lexicon entries classified as
’pathological’ increased by 18.8 % to now 2036 entries
(before 1714). We consider this a key success of the
learning, as our classification depends on this encoded
knowledge.

4.6 Classify
After conducting the previous steps,

1. the extended lexicon,

2. the trained P-CFG, and

3. the standard probabilistic CKY parsing algorithm

are applied to parse unclassified sentences.
The sentence classification is conducted based on the

lexicon and the grammar rules. The lexicon helps to as-
sign non-terminal symbols to the words in the sentence.
Depending on non-terminal symbols assigned and the
grammar rules applied during the subsequent parsing
process, the parse tree will reveal the classification of
the sentence.

As parsing algorithm we apply the standard prob-
abilistic CKY (P-CKY) algorithm. It resolves both
syntactic and classification ambiguities. In case, the
sentence contains unknown words, the probabilistic
parsing feature helps to disambiguate the non-terminal
assignment. The derived parse tree describes both
the syntactic structure of the sentence and the derived
pathology classification.

4.7 Extract and Link
Finally, in case a sentence is classified as ’patholog-
ical’, the contained anatomical entities are extracted.
The sentences are annotated with the extracted anatom-
ical information. An external system combines the
anatomical annotations from images and reports. Thus,
links are created successfully and the correlating im-
age positions for pathological findings can be accessed
from the text.

5 Evaluation
We evaluate the classification system using 40
randomly-chosen reports containing 1296 sentences.

5.1 Precision and recall measurements
We evaluate the classification results and the success
of the alignment of radiology reports and images using
precision and recall values. Only for sentences classi-
fied as ’pathological’, the contained anatomical entities
are extracted and anatomical annotations are created.

That is why we prefer high recall values. If sentences
are misclassified as ’pathological’ – although they de-
scribe non-pathological findings (FP) – this is a minor
issue. This misclassification results in alignment of
anatomical entities in text and images without patho-
logical findings. We accept lower precision values that
yield those additional, but not intended alignments.

5.2 Baseline evaluation

We compare the evaluation results of the classifica-
tion system with the results of a semantically-informed
baseline algorithm. This algorithm detects nega-
tions and classifies the containing sentences as ’non-
pathological’. Sentences containing diseases (deter-
mined based on Latin suffixes such as -itis, -ose, etc.)
or a pathological RadLex concepts (as determined dur-
ing the lexicon creation step) are classified as ’patho-
logical’. Any remaining sentences are assumed to de-
scribe non-pathological findings.

The results of the baseline classification are shown
in Table 4. The headings denote ’non-pathological’
sentences (NOPATH) respectively ’pathological’ sen-
tences (PATH).

expected classification
PATH NOPATH

observed PATH 17 0
classification NOPATH 446 833

Table 4: Classification results using baseline algorithm

This baseline approach has the advantage of 100% pre-
cision value. However, it produces a low recall value
of 3.67 %, which shows that this approach is not appli-
cable for the alignment of text and images. The results
show that the identification of pathologies is not feasi-
ble by only using (1) suffixes to determine diseases and
(2) available pathology descriptions from the RadLex
taxonomy.

5.3 Evaluation of the parsing-based classification
results

Table 5 shows the system results of classifying the 1296
report sentences using the syntacto-semantic parsing
approach.

expected classification
PATH NOPATH

observed PATH 344 288
classification NOPATH 119 545

Table 5: Sentence classification results using syntacto-
semantic parsing approach

Taking into account the impact of the (still) incom-
plete lexicon, the recall value of 74.3 % indicates that
the chosen approach to classify pathological sentences
is successful. However, the precision value of 54.4 %
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indicates that the classification of almost half of the
’pathological’ sentences is incorrect.

Compared to the baseline, the acquisition of addi-
tional, pathology classified vocabulary and its incorpo-
ration into a parsing-based approach significantly im-
proves the recall value. That is why we regard the en-
richment of the lexicon at the crucial step for (further)
improvement of the classification results. However, a
large amount of sentences was classified incorrectly as
’pathological’. The error analysis will reveals some
causes.

5.4 Error analysis
We identified four error types that produce incorrectly
classified results.

1. Some of the pathology classification of the seman-
tic knowledge acquired during learning is incor-
rect.

Terms that do not describe pathological proper-
ties such as Voraufnahme [previous examination]
or Lymphknoten [lymph node] were classified as
’pathological’; also, pathological findings such as
Läsion [lesion] or Infiltrat [infiltrate] could not be
classified correctly. Because of their high usage
frequency (26, 116, 20, 7 times), these four terms
are accountable for 169 of the misclassified sen-
tences (both FP and FN) from the evaluation.

The disambiguation of (word-level) pathology
classification using sentence-level annotations is
obviously very vague and imprecise. In order to
improve the terminology acquisition results, we
will include distribution information and proba-
bilistic features into the learning process as future
work.

2. The terminology acquisition leads to an extended
lexicon, but still, terminology remains uncovered.
In particular, the description of pathological find-
ings requires a richer language, its lack inhibits
their correct classification. Even though our cor-
pus is limited to reports of lymphoma patients
(i.e., contains limited medical vocabulary), still,
the test set contains vocabulary that is not used in
the training set. For a further elaborated lexicon,
the training set has to be extended in size and also
in content.

3. Furthermore, the majority of long sentences is
not successfully parsed because of missing gram-
mar rules. Those long sentences are more likely
describing pathological findings, which leads to
false negatives. We found that sentences longer
than 8 tokens are rather incorrectly classified than
correctly; nevertheless, this concerns only 8 %
(99/1296) of all sentences. Thus, we regard this
as a minor issues.

4. Finally, our assumption of covering the seman-
tics with a limited number of non-terminals was

disproven. The oversimplification of semantic
classes is insufficient to parse the complex sen-
tence structures in the reports. In particular, the
structure of long sentences requires a wider range
of non-terminals (and more grammar rules) in or-
der to disambiguate the pathology classification.
E.g., the defined semantic classes do nor distin-
guish modifiers of locations or size for anatomi-
cal entities or temporal modifier for pathologies.
Their introduction will increase the resolution of
dependencies in complex sentences and the over-
all classification.

The learning step is the crucial step for improvement
of the classification results. It enriches the vocabulary.
If the pathology classification of the learned vocabulary
is optimized, the system will deliver even better results.
The optimization of the vocabulary learning step will
be future work.

6 Conclusion
We designed and implemented a system that aligns
findings from radiology reports to findings in images
based on semantic annotations. Providing the system,
we assume to reduce the time necessary to find corre-
lating descriptions of one finding in heterogeneous data
sources.

We build our system on tailored NLP algorithms
that extract relevant anatomical annotations with patho-
logical findings. To identify sentences that describe
pathological findings, we introduce a new, semantic
grammar-based classification approach. To bridge the
gap of the incomplete German terminology, a vocabu-
lary acquisition step is introduced. Incorporating this
newly learned vocabulary, the grammar-based classifi-
cation delivers a recall value of 74.3%.

We identified a major issue relevant for further work
on German clinical texts: The evaluation results reveal
a large gap in coverage between the vocabulary used in
non-English radiology texts and the controlled vocabu-
lary delivered by RadLex. Furthermore, we believe that
lexicons will be crucial resources for language process-
ing in the medical domain. We will focus our future
work on enriching existing lexicons and establishing
new resources for linguistic analysis.
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