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Abstract

This research analyzed the clinical notes
of epilepsy patients using techniques from
corpus linguistics and machine learning
and predicted which patients are can-
didates for neurosurgery, i.e. have in-
tractable epilepsy, and which are not.
Information-theoretic and machine learn-
ing techniques are used to determine
whether and how sets of clinic notes
from patients with intractable and non-
intractable epilepsy are different. The re-
sults show that it is possible to predict
from an early stage of treatment which pa-
tients will fall into one of these two cate-
gories based only on text data. These re-
sults have broad implications for develop-
ing clinical decision support systems.

1 Introduction and Significance

Epilepsy is a disease characterized by recurrent
seizures that may cause irreversible brain damage.
While there are no national registries, epidemiolo-
gists have shown that roughly three million Amer-
icans require $17.6 billion USD in care annually
to treat their epilepsy (Epilepsy Foundation, 2012;
Begley et al., 2000). Epilepsy is defined by the
occurrence of two or more unprovoked seizures
in a year. Approximately 30% of those individ-
uals with epilepsy will have seizures that do not
respond to anti-epileptic drugs (Kwan and Brodie,
2000). This population of individuals is said to
have intractable or drug-resistant epilepsy (Kwan
et al., 2010).

Select intractable epilepsy patients are candi-
dates for a variety of neurosurgical procedures that
ablate the portion of the brain known to cause the
seizure. On average, the gap between the ini-
tial clinical visit when the diagnosis of epilepsy
is made and surgery is six years. If it were pos-

sible to predict which patients should be consid-
ered candidates for referral to surgery earlier in the
course of treatment, years of damaging seizures,
under-employment, and psychosocial distress may
be avoided. It is this gap that motivates this re-
search.

In this study, we examine the differences be-
tween the clinical notes of patients early in their
treatment course with the intent of predicting
which patients will eventually be diagnosed as in-
tractable versus which will be amenable to drug-
based treatment. The null hypothesis is that
there will be no detectable differences between
the clinic notes of patients who go on to a di-
agnosis of intractable epilepsy and patients who
do not progress to the diagnosis of intractable
epilepsy (figure 1). To further elucidate the phe-
nomenon, we look at both the patient’s earli-
est clinical notes and notes from a progression
of time points. Here we expect to gain insight
into how the linguistic characteristics (and natu-
ral language processing-based classification per-
formance) evolve over treatment course. We also
study the linguistic features that characterize the
differences between the document sets from the
two groups of patients. We anticipate that this ap-
proach will ultimately be adapted for various clin-
ical decision support systems.

2 Background

2.1 Related work

Although there has been extensive work on build-
ing predictive models of disease progression and
of mortality risk, few models take advantage of
natural language processing in addressing this
task.

(Abhyankar et al., 2012) used univariate anal-
ysis, multivariate logistic regression, sensitivity
analyses, and Cox proportional hazards models to
predict 30-day and 1-year survival of overweight
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and obese Intensive Care Unit patients. As one of
the features in their system, they used smoking sta-
tus extracted from patient records by natural lan-
guage processing techniques.

(Himes et al., 2009) used a Bayesian network
model to predict which asthma patients would go
on to develop chronic obstructive pulmonary dis-
ease. As one of their features, they also used
smoking status extracted from patient records by
natural language processing techniques.

(Huang et al., under review) is the work most
similar to our own. They evaluated the ability of
a Naive Bayesian classifier to predict future diag-
noses of depression six months prior and twelve
months prior to the actual diagnoses. They used
a number of feature types, including fielded data
such as billing codes, ICD-9 CM diagnoses, and
others, as well as data drawn from natural lan-
guage processing.

In particular, they used an optimized version of
the NCBO Annotator (Jonquet et al., 2009) to rec-
ognize terms from 22 clinically relevant ontolo-
gies and classify them additionally as to whether
they were negated or related to the patient’s fam-
ily history. Their system demonstrated an ability
to predict diagnoses of depression both six months
and one year prior to the actual diagnoses at a rate
that exceeds the success of primary care practi-
tioners in diagnosing active depression.

Considering this body of work overall, natural
language processing techniques have played a mi-
nor role, providing only a fraction of a much larger
set of features—just one feature, in the first two
studies discussed. In contrast, in our work natu-
ral language processing is the central aspect of the
solution.

2.2 Theoretical background to the
approaches used in this work

In comparing the document sets from the two pa-
tient populations, we make use of two lines of in-
quiry. In the first, we use information-theoretic
methods to determine whether or not the contents
of the data sets are different, and if they are dif-
ferent, to characterize the differences. In the sec-
ond, we make use of a practical method from ap-
plied machine learning. In particular, we deter-
mine whether it is possible to train a classifier to
distinguish between documents from the two sets
of patients, given an appropriate classification al-
gorithm and a reasonable set of features.

From information-theoretic methods, we take
Kullback-Leibler divergence as a way to deter-
mine whether the contents of the two sets of docu-
ments are the same or different. Kullback-Leibler
divergence is the relative entropy of two probabil-
ity mass functions—“a measure of how different
two probability distributions (over the same event
space) are” (Manning and Schuetze, 1999). This
measure has been previously used to assess the
similarity of corpora (Verspoor et al., 2009). De-
tails of the calculation of Kullback-Leibler diver-
gence are given in the Methods section. Kullback-
Leibler divergence has a lower bound of zero; with
a value of zero, the two document sets would be
identical. A value of 0.005 is assumed to corre-
spond to near-identity.

From practical applications of machine learn-
ing, we test whether or not it is possible to train a
classifier to distinguish between documents from
the two document sets. The line of thought here is
that provided that we have an appropriate classifi-
cation algorithm and a reasonable feature set, then
if clinic notes from the two document sets are in-
deed different, it should be possible to train a clas-
sifier to distinguish between them with reasonable
accuracy.

3 Materials and methods

3.1 Materials

The experimental protocol was approved by our
local Institutional Review Board (#2012-1646).
Neurology clinic notes were extracted from the
electronic medical record system. Records were
sampled from two groups of patients: 1) those
with intractable epilepsy referred for and eventu-
ally undergoing epilepsy surgery and 2) those with
epilepsy who were responsive to medications and
never referred for surgical evaluation. They were
also sampled at three time periods before the “zero
point”, the date at which patients were either re-
ferred for surgery or the date of last seizure for the
non-intractable group. Table 1 shows the distribu-
tion of patients and clinic notes.

3.2 Methods

As described in the introduction, we applied
information-theoretic and machine learning tech-
niques to determine whether the two document
collections were different (or differentiable).
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Non-Intractable Intractable
-12 to 0 355 (127) 641 (155)
-6 to +6 453 (128) 898 (155)
0 to +12 months 454 (132) 882 (149)

Table 1: Progress note and patient counts (in
parentheses) for each time period. A minus sign
indicates the period before surgery referral date
for intractable epilepsy patients and before last
seizure for non-intractable patients. A plus sign
indicates the period after surgery referral for in-
tractable epilepsy patients and after last seizure for
non-intractable patients. Zero is the surgery refer-
ral date or date of last seizure for the two popula-
tions, respectively.

3.2.1 Feature extraction
Features for both the calculation of Kullback-
Leibler divergence and the machine learning
experiment were unigrams, bigrams, tri-
grams, and quadrigrams. We applied the
National Library of Medicine stopword list
http://mbr.nlm.nih.gov/Download/
2009/WordCounts/wrd_stop. All words
were lower-cased, all numerals were substituted
with the string NUMB for abstraction, and all
non-ASCII characters were removed.

3.3 Information-theoretic approach
Kullback-Leibler divergence compares probability
distribution of words or n-grams between different
datasets DKL(P ||Q). In particular, it measures
how much information is lost if distribution Q is
used to approximate distribution P . This method,
however, gives an asymmetric dissimilarity mea-
sure. Jensen-Shannon divergence is probably the
most popular symmetrization of DKL and is de-
fined as follows:

DJS =
1

2
DKL(P ||Q) +

1

2
DKL(Q||P ) (1)

where

DKL(P ||Q) =
∑

w∈P∪Q

(
p(w|cP ) log

p(w|cP )

p(w|cQ)

)
(2)

By Zipf’s law any corpus of natural language will
have a very long tail of infrequent words. To ac-
count for this effect we use DJS for the top N
most frequent words/n-grams. We use Laplace
smoothing to account for words or n-grams that
did not appear in one of the corpora.

We also aim to uncover terms that distinguish
one corpus from another. We use a metamor-
phic DJS test, log-likelihood ratios, and weighted
SVM features. Log-likelihood score will help us
understand where precisely the two corpora differ.

nij =
kij

kiP + kiA
(3)

mij =
kPj + kQj

kQP + kPP + kQA + kPA
(4)

LL(w) = 2
∑
i,j

kij log
nij

mij
(5)

3.4 Machine learning

For the classification experiment, we used an im-
plementation of the libsvm support vector ma-
chine package that was ported to R (Dimitriadou
et al., 2011). Features were extracted as described
above in Section 3.2.1. We used a cosine kernel.
The optimal C regularization parameter was esti-
mated on a scale from 2−1 to 215.

3.5 Characterizing differences between the
document sets

We used a variety of methods to characterize
differences between the document sets: log-
likelihood ratio, SVM normal vector components,
and a technique adapted from metamorphic test-
ing.

3.5.1 Applying metamorphic testing to
Kullback-Leibler divergence

As one of our methods for characterizing differ-
ences between the two document sets, we used an
adaptation of metamorphic testing, inspired by the
work of (Murphy and Kaiser, 2008) on applying
metamorphic testing to machine learning applica-
tions. The intuition behind metamorphic testing is
that given some output for a given input, it should
be possible to predict in general terms what the
effect of some alternation in the input should be
on the output. For example, given some Kullback-
Leibler divergence for some set of features, it is
possible to predict how Kullback-Leibler diver-
gence will change if a feature is added to or sub-
tracted from the feature vector. We adapted this
observation by iteratively subtracting all features
one by one and ranking them according to how
much of an effect on the Kullback-Leibler diver-
gence its removal had.
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Figure 1: Two major paths in epilepsy care. At
the begining of epilepsy care two groups of pa-
tients are indistinguishable. Subsequently, the two
groups diverge.

4 Results

4.1 Kullback-Leibler (Jensen-Shannon)
divergence

Table 2 shows the Kullback-Leibler divergence,
calculated as Jensen-Shannon divergence, for
three overlapping time periods—the year preced-
ing surgery referral, the period from 6 months be-
fore surgery referral to six months after surgery re-
ferral, and the year following surgery referral, for
the intractable epilepsy patients; and, for the non-
intractable epilepsy patients, the same time peri-
ods with reference to the last seizure date.

As can be seen in the left-most column (-12 to
0), at one year prior, the clinic notes of patients
who will require surgery and patients who will
not require surgery cannot easily be discriminated
by Kullback-Leibler divergence—the divergence
is only just above the .005 near-identity threshold
even when 8000 unique n-grams are considered. If
the -6 to +6 and 0 to +12 time periods are exam-
ined, we see that the divergence increases as we
reach and then pass the period of surgery (or move
into the year following the last seizure, for the non-
intractable patients), indicating that the difference
between the two collections becomes more pro-
nounced as treatment progresses. The divergence
for these time periods does pass the assumed near-
identity threshold for larger numbers of n-grams,

n-grams -12 to 0
months

-6 to +6
months

0 to +12
months

125 0.00125 0.00193 0.00244
250 0.00167 0.00229 0.00286
500 0.00266 0.00326 0.00389
1000 0.00404 0.00494 0.00585
2000 0.00504 0.00618 0.00718
4000 0.00535 0.00657 0.00770
8000 0.00555 0.00681 0.00796

Table 2: Kullback-Leibler divergence (calculated
as Jensen-Shannon divergence) for difference be-
tween progress notes of the two groups of patients.
Results are shown for the period 1 year before, 6
months before and 6 months after, and one year
after surgery referral for the intractable epilepsy
patients and the last seizure for non-intractable pa-
tients. 0 represents the date of surgery referral for
the intractable epilepsy patients and date of last
seizure for the non-intractable patients.

largely accounted for by terms that are unique to
one notes set or the other.

4.2 Classification with support vector
machines

Table 3 shows the results of building support vec-
tor machines to classify individual notes as be-
longing to the intractable epilepsy or the non-
intractable epilepsy patient population. Three time
periods are evaluated, as described above. The
number of features is varied by row. For each
cell, the average F-measure from 20-fold cross-
validation is shown.

As can be seen in the left-most column (-12 to
0), at one year prior to referral to surgery refer-
ral date or last seizure, the patients who will be-
come intractable epilepsy patients can be distin-
guished from the patients who will become non-
intractable epilepsy patients purely on the basis of
natural language processing-based classification
with an F-measure as high as 0.95. This supports
the conclusion that the two document sets are in-
deed different, and furthermore illustrates that this
difference can be used to predict which patients
will require surgical intervention.

4.3 Characterizing the differences between
clinic notes from the two patient
populations

Tables 4 and 5 show the results of three meth-
ods for differentiating between the document col-
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n-grams -12 to 0
months

-6 to +6
months

0 to +12
months

125 0.8885 0.9217 0.9476
250 0.8928 0.9297 0.9572
500 0.9107 0.9367 0.9667
1000 0.9245 0.9496 0.9692
2000 0.9417 0.9595 0.9789
4000 0.9469 0.9661 0.9800
8000 0.9510 0.9681 0.9810

Table 3: Average F1 for the three time periods
described above, with increasing numbers of fea-
tures. Values are the average of 20-fold cross-
validation. See Figure 2 for an explanation of the
time periods.

lections representing the two patient populations.
The methodology for each is described above. The
most strongly distinguishing features when just
the 125 most frequent features are used are shown
in Table 4, and the most strongly distinguishing
features when the 8,000 most frequent features are
used are shown in Table 5. Impressionistically,
two trends emerge. One is that more clearly clini-
cally significant features are shown to have strong
discriminatory power when the 8,000 most fre-
quent features are used than when the 125 most
frequent features are used. This result is sup-
ported by the Kullback-Leibler divergence results,
which demonstrated the most divergent vocabular-
ies with larger numbers of n-grams. The other
trend is that the SVM classifier does a better job
of picking out clinically relevant features. This
has implications for the design of clinical decision
support systems that utilize our approach.

5 Discussion

5.1 Behavior of Kullback-Leibler divergence

Kullback-Leibler divergence varies with the num-
ber of words considered. When the vocabularies
of two document sets are merged and the words
are ordered by overall frequency, the further down
the list we go, the higher the Kullback-Leibler
divergence can be expected to be. This is be-
cause the highest-frequency words in the com-
bined set will generally be frequent in both source
corpora, and therefore carry similar probability
mass. As we progress further down the list of
frequency-ranked words, we include progressively
less-common words, with diverse usage patterns,
which are likely to reflect the differences between

the two document sets, if there are any. Thus, the
Kullback-Leibler divergence will rise.

To understand the intuition here, imagine look-
ing at the Kullback-Leibler divergence when just
the 50 most-common words are considered. These
will be primarily function words, and their distri-
butions are unlikely to differ much between the
two document sets unless the syntax of the two
corpora is radically different. Beyond this set of
very frequent common words will be words that
may be relatively frequent in one set as compared
to the other, contributing to divergence between
the sets.

In Table 2, the observed behavior for our two
document collections follows this expected pat-
tern. However, the divergence between the vocab-
ularies remains close to the assumed near-identity
threshold of 0.005, even when larger numbers of
n-grams are considered. The divergence never ex-
ceeds 0.01; this level of divergence for larger num-
bers of n-grams is consistent with prior analyses of
highly similar corpora (Verspoor et al., 2009).

We attribute this similarity to two factors. The
first is that both document sets derive from a single
department within a single hospital; a relatively
small number of doctors are responsible for au-
thoring the notes and there may exist specific hos-
pital protocols related to their content. The second
is that the clinical contexts from which our two
document sets are derived are highly related, in
that all the patients are epilepsy patients. While we
have demonstrated that there are clear differences
between the two sets, it is also to be expected that
they would have many words in common. The
nature of clinical notes combined with the shared
disease context results in generally consistent vo-
cabulary and hence low overall divergence.

5.2 Behavior of classifier

Table 3 demonstrates that classifier performance
increases as the number of features increases. This
indicates that as more terms are considered, the
basis for differentiating between the two different
document collections is stronger.

Examining the SVM normal vector components
(SVMW) in Tables 4 and 5, we find that unigrams,
bigrams and trigrams are useful in differentiation
between the two patient populations. While no
quadrigrams appear in this table, they may in fact
contribute to classifier performance. We will per-
form an ablation study in future work to quantify

5



JS metamorphic test (JSMT) Log-likelihood ratio (LLR) SVM normal vector compo-
nents (SVMW)

family = -0.000114 none = 623.702323 bilaterally = -19.009380
normal = -0.000106 family = -445.117177 age.NUMB = 17.981459
seizure = -0.000053 NUMB.NUMB.NUMB.NUMB

= 422.953816
review = 17.250652

problems = -0.000053 normal = -244.603033 based = -14.846495
none = 0.000043 problems = -207.021130 family.history = -14.659653
detailed = -0.000037 left = 176.434519 NUMB = -14.422525
including = -0.000036 bid = 142.105691 lower = -13.553434
risks = -0.000033 NUMB = 136.255678 mother = -13.436694
NUMB = 0.000032 detailed = -133.012908 first = -13.001744
concerns = -0.000032 right = 120.453596 including = -12.800433
NUMB.NUMB.NUMB.NUMB
= 0.000031

seizure = -120.047686 extremities = 11.709199

additional = -0.000029 including = -119.061518 documented = -11.441394
brain = -0.000026 risks = -116.543250 awake = -11.418535
NUMB.NUMB = 0.000022 concerns = -101.366110 hpi = 11.121019
minutes = -0.000021 additional = -95.880792 follow = -10.550802
NUMB.minutes = -0.000020 clear = 83.848170 neurology = -10.533895
reviewed = -0.000018 brain = -74.267220 call = -10.422606
history = -0.000017 seizures = 71.937757 effects = 10.298221
noted = -0.000017 one = 65.203819 brain = -9.900864
upper = -0.000017 epilepsy = 46.383564 weight = 9.819712
well = -0.000015 hpi = 45.932630 patient.s = -9.603531
side = -0.000015 minutes = -45.278770 discussed = -9.473544
bilaterally = -0.000014 NUMB.NUMB.NUMB =

43.320354
today = 9.390896

motor.normal = -0.000014 negative = 42.914770 allergies = -9.346146
notes = -0.000014 NUMB.minutes = -42.909968 NUMB.NUMB.NUMB.NUMB

= 9.342800
Spearman correlation between
JSMT and LLR = 0.912454

Spearman correlation between
LLR and SVMW = 0.086784

Spearman correlation between
SVMW and JSMT = 0.101965

Table 4: Comparison of three different methods for finding the strongest differentiating features. This
table shows features for the -12 to 0 periods with the 125 most frequent features. The JSMT and LLR
statistics give values greater than zero. We add sign to indicate which corpus has higher relative fre-
quency of the feature: a positive value indicates that the relative frequency of the feature is greater in the
intractable group, while a negative value indicates that the relative frequency of the feature is greater in
the non-intractable group. The last row shows the correlation between two different ranking statistics.
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JS metamorphic test (JSMT) Log-likelihood ratio (LLR) SVM normal vector compo-
nents (SVMW)

family = -0.000118 family = -830.329965 john = -4.645071
normal = -0.000109 normal = -745.882086 lamotrigine = 4.320412
seizure = -0.000057 problems = -386.238711 surgery = 4.299546
problems = -0.000057 seizure = -369.342334 jane = 4.091609
none = 0.000047 none = 337.461504 epilepsy.surgery = 4.035633
including = -0.000040 detailed = -262.240496 janet = -3.970101
detailed = -0.000040 including = -255.076808 excellent.control = -3.946283
additional.concerns = -0.000038 additional.concerns.noted =

-246.603655
excellent = -3.920620

additional.concerns.noted =
-0.000038

concerns.noted = -246.603655 NUMB.seizure = -3.886997

concerns.noted = -0.000038 additional.concerns = -
243.353912

mother = -3.801364

NUMB = -0.000036 NUMB.NUMB.NUMB.NUMB
= 238.065700

jen = 3.568809

concerns = -0.000036 risks = -232.741511 back = -3.319477
risks = -0.000036 concerns = -228.805299 visit = -3.264600
NUMB.NUMB.NUMB.NUMB
= 0.000035

additional = -204.462411 james = 3.174763

additional = -0.000033 brain = -182.413340 NUMB.NUMB.NUMB.normal
= -3.024471

brain = -0.000030 NUMB = -162.992065 continue = -3.011293
NUMB.NUMB = -0.000026 surgery = 153.646067 idiopathic.localization = -

2.998177
minutes = -0.000025 minutes = -142.761961 idiopathic.localization.related =

-2.998177
surgery = 0.000024 NUMB.minutes = -134.048116 increase = 2.948187
NUMB.minutes = -0.000023 diff = -131.388230 diastat = -2.937431
diff = -0.000023 NUMB.NUMB = -125.067347 taking = -2.902673
history = -0.000021 reviewed = -116.013417 lamictal = 2.898987
reviewed = -0.000021 noted = -114.241532 going = 2.862764
noted = -0.000021 idiopathic = -112.331060 described = 2.844830
upper = -0.000020 shaking = -112.186858 epilepsy = 2.745872
Spearman correlation between
JSMT and LLR = 0.782918

Spearman correlation between
LLR and SVMW = 0.039860

Spearman correlation between
SVMW and JSMT = 0.165159

Table 5: Comparison of three different methods for finding the strongest differentiating features. This
table shows features for the -12 to 0 periods with the 8,000 most frequent features. The JSMT and
LLR statistics give values greater than zero. We add sign to indicate which corpus has higher relative
frequency of the feature: a positive value indicates that the relative frequency of the feature is greater in
the intractable group, while a negative value indicates that the relative frequency of the feature is greater
in the non-intractable group. The last row shows the correlation between two different ranking statistics.
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the contribution of the different feature sets. In ad-
dition, we find that table 5 shows many clinically
relevant terms, such as seizure frequency (“ex-
cellent [seizure] control“), epilepsy type (“local-
ization related [epilepsy]”), etiology classification
(“idiopathic [epilepsy]”), and drug names (“lamot-
rigine”, “diastat”, “lamictal”), giving nearly com-
plete history of the present illness.

6 Conclusion

The classification results from our machine learn-
ing experiments support rejection of the null hy-
pothesis of no detectable differences between the
clinic notes of patients who will progress to the
diagnosis of intractable epilepsy and patients who
do not progress to the diagnosis of intractable
epilepsy. The results show that we can predict
from an early stage of treatment which patients
will fall into these two classes based only on tex-
tual data from the neurology clinic notes. As intu-
ition would suggest, we find that the notes become
more divergent and the ability to predict outcome
improves as time progresses, but the most impor-
tant point is that the outcome can be predicted
from the earliest time period.

SVM classification demonstrates a stronger re-
sult than the information-theoretic measures, uses
less data, and needs just a single run. However, it
is important to note that we cannot entirely rely
on the argument from classification as the sole
methodology in testing whether or not two doc-
ument sets are similar or different. If the find-
ing is positive, i.e., it is possible to train a classi-
fier to distinguish between documents drawn from
the two document sets, then interpreting the re-
sults is straightforward. However, if documents
drawn from the two document sets are not found
to be distinguishable by a classifier, one must
consider the possibility of multiple possible con-
founds, such as selection of an inappropriate clas-
sification algorithm, extraction of the wrong fea-
tures, bugs in the feature extraction software, etc.
Having established that the two sets of clinical
notes differ, we noted some identifying features of
clinic notes from the two populations, particularly
when more terms were considered.

The Institute of Medicine explains that “. . . to
accommodate the reality that although profes-
sional judgment will always be vital to shaping
care, the amount of information required for any
given decision is moving beyond unassisted hu-

man capacity (Olsen et al., 2007).” This is surely
the case for those who care for the epileptic pa-
tient. Technology like natural language processing
will ultimately serve as a basis for stable clinical
decision support tools. It, however, is not a deci-
sion making tool. Decision making is the respon-
sibility of professional judgement. That judge-
ment will labor over such questions as: what is
the efficacy of neurosurgery, what will be the long
term outcome, will there be any lasting damage,
are we sure that all the medications have been
tested, and how the family will adjust to a poor
outcome. In the end, it is that judgement that will
decide what is best; that decision will be supported
by research like what is presented here.
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