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Abstract. The accepting runs of a fi-
nite automaton are represented as con-
cepts in a Description Logic, for vari-
ous systems of roles computed by finite-
state transducers. The representation
refines the perspective on regular lan-
guages provided by Monadic Second-
Order Logic (MSO), under the Büchi-
Elgot-Trakhtenbrot theorem. String
symbols are structured as sets to suc-
cinctly express MSO-sentences, with
auxiliary symbols conceived as vari-
ables bound by quantifiers.

1 Introduction

As declarative specifications of sets of strings ac-
cepted by finite automata (i.e. regular languages),
regular expressions are far and away more popular
than the formulas of Monadic Second-Order Logic
(MSO), which, by a fundamental theorem due to
Büchi, Elgot and Trakhtenbrot, pick out the regu-
lar languages (e.g. Thomas, 1997). Computational
semantics, however, can hardly ignore MSO’s
model-theoretic perspective on strings with its
computable notions of entailment. Furthermore,
regular expressions lack the succinctness that
MSO’s Boolean connectives support. Both nega-
tion and conjunction blow up the size of regu-
lar expressions by an exponential or two (Gelade
and Neven, 2008). A symptom of the problem
is the exponential cost of mapping a finite au-
tomaton A to a regular expression denoting the
language L(A) accepted by A (Ehrenfeucht and
Zeiger, 1976; Holzer and Kutrib, 2010). A more
economical declarative representation of L(A) is
afforded by pairing a string a1a2 · · · an in L(A)
with a string q1q2 · · · qn of A’s (internal) states qi
in the course of a run (by A) accepting a1a2 · · · an.
This representation involves expanding the alpha-
bet of the strings, and subsequently contracting the
alphabet. A simple way to carry this out is by

forming strings α1α2 · · ·αn of sets αi that we can,
for instance, intersect with a fixed set B, defining
a string homomorphism ρB for componentwise in-
tersection with B

ρB(α1 · · ·αn) := (α1 ∩B) · · · (αn ∩B).

For example, assuming no state qi belongs to the
alphabet Σ of L(A),

ρΣ( a1, q1 · · · an, qn ) = a1 · · · an

where we draw boxes instead of curly braces for
sets used as string symbols.

The homomorphisms ρB are linked below to the
treatment of variables in MSO. Given a finite al-
phabet A, MSOA-sentences are formed from a bi-
nary relation symbol S (encoding successor) and
a unary relation symbol Ua, for each a ∈ A. We
then interpret an MSOA-sentence against a string
over the alphabet 2A of subsets of A, deviating
ever so slightly from the custom of interpreting
against strings in A+. Expanding the alphabet
from A to 2A accommodates a form of underspec-
ification that, among other things, facilitates the
interpretation of MSOA-formulas relative to vari-
able assignments. As for the homomorphisms ρB ,
the idea is that B picks out a subset of A, leav-
ing each a ∈ A that is not in B as an “auxiliary
marker symbol” — a staple of finite-state language
processing (Beesley and Karttunen, 2003; Yli-Jyrä
and Koskenniemi, 2004; Hulden, 2009).

By focusing on the accepting runs of a finite au-
tomaton, the present paper strives to be relevant to
finite-state language processing in general. But to
understand its difference with say (Hulden, 2009),
a few words about the language applications moti-
vating it might be helpful. These applications con-
cern not morphology, phonology, speech or even
syntax but semantics — in particular, temporal se-
mantics. The convenience of equating succession
in a string with temporal succession is yet another
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reason to step from A up to 2A (reading a boxed
subset of A as a snapshot). It is a trivial enough
matter to build a finite-state transducer between
(2A)∗ and (A ∪ {[, ]})∗ unwinding say, the string

a, a′ a′ of length 2 over the alphabet 2{a,a
′}

to the string

[aa′][a′] of length 7 over the alphabet {a, a′, [, ]}

and if we are to apply ρB , it is natural to choose
the alphabet 2A over A ∪ {[, ]}. There are, in
any case, many more regular relations apart from
ρB to consider for temporal semantics (Fernando,
2011), including those that change string length
and the notion of temporal succession, i.e. gran-
ularity. A simple but powerful way of building a
regular language from a regular relation R is by
forming the inverse image of a regular language
L under R, which we write 〈R〉L, following dy-
namic logic (e.g. Fischer and Ladner, 1979). The
basic thrust of the present paper is to extend reg-
ular expressions by adding connectives for nega-
tion, conjunction and inverse images under certain
regular relations.

This extension is dressed up below in Descrip-
tion Logic (DLs; Baader et al. 2003), with the
languages L(A) accepted by automata A as DL-
concepts (unary relations), and various regular re-
lations including ρB (for different sets B) as DL-
roles (binary relations). As in the attributive lan-
guage with complement ALC, DL-concepts C are
closed under conjunction C ∧ C ′, negation ¬C,
and inverse images under DL-roles R, the usual
DL notation for which, (∃R)C, we replace by
〈R〉C from dynamic logic, with

[[〈R〉C]] := {s | (∃s′ ∈ [[C]]) s[[R]]s′}.

Since DL-concepts and DL-roles in the present
context, have clear intended interpretations, we
will often drop the semantic brackets [[·]], conflat-
ing an expression with its meaning.

MSO is linked to DL by a mapping of MSO-
sentences ϕ to DL-concepts Cϕ that reduces
MSO-entailments |=MSO to concept inclusion

ϕ |=MSO ψ ⇐⇒ Cϕ ⊆ Cψ . (1)

Let us take care not to read (1) as stating MSO
is interpretable in DL in the sense of (Tarski et
al., 1953); no formal DL theory is mentioned in

(1), only a particular (intended) interpretation over
strings. What we vary is not the interpretation [[·]]
but the mapping ϕ 7→ Cϕ establishing (1). Many
different definitions of Cϕ will do, and the main
aim of the present work is to explore these possi-
bilities, expressed as particular DL concepts and
roles. In its account of regular languages, the
Büchi-Elgot-Trakhtenbrot theorem says nothing
about finite-state transducers, which are nonethe-
less instrumental in establishing the theorem. Be-
hind the move to Description Logics is the view
that the role of finite-state transducers in construct-
ing regular languages merits scrutiny.

To dispel possible confusion, it is perhaps worth
remarking that a relation computable by a finite-
state transducer may have a transitive closure that
no finite-state transducer can compute. A simple
example is the function f that leaves all strings
unchanged except those of the form 1n0m+22k

which it maps to 1n+10m2k+1. The intersection

1∗2∗ ∩ {fk(0n) | k, n ≥ 0}

is the non-regular language {1n2n | n ≥ 0}, pre-
cluding a finite-state transducer from computing
the transitive closure of f . Commenting on the
Description Logic counterpartALCreg to Proposi-
tional Dynamic Logic (Fischer and Ladner, 1979),
Baader and Lutz write

many of today’s most used concept lan-
guages do not include the role construc-
tors of ALCreg. The main reason is that
applications demand an implementation
of description logic reasoning, and the
presence of the reflexive-transitive clo-
sure constructor makes obtaining effi-
cient implementations much harder.

There should be no mistaking the interpreta-
tions of concepts and roles below for models of
ALCreg. Most every role considered below (from
ρB on) is, however, transitive and indeed can be
viewed as some notion of “part of.”

The remainder of this paper is organized as fol-
lows. The accepting runs of a finite automaton
are expressed as a DL-concept in section 2. This
is then used to present MSO’s semantic set-up in
section 3. A feature of that set-up is the expan-
sion of MSOA-models fromA+ to (2A)+, opening
up possibilities of underspecification which sec-
tion 4 explores alongside non-deterministic DL-
roles (in addition to the inverse of ρB). Section
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5 looks at more DL-roles that, unlike ρB , change
length, and section 6 concludes, returning to aux-
iliary symbols, which are subject not only to ρB
but the various regular relations formulated above
as DL-roles.

2 Accepting runs as a DL-concept

One half of the aforementioned Büchi-Elgot-
Trakhtenbrot theorem turns finite automata to
MSO-sentences. This section adapts the idea
behind that half in a DL setting, deferring de-
tails about MSO to the next section. An ac-
cepting run of a finite automaton A is a string
a1, q1 a2, q2 · · · an, qn such that

q0
a1
; q1

a2
; q2

a3
; · · · an; qn ∈ F

where q0 is A’s initial state, ; is A’s set of tran-
sitions (labeled by symbols), and F is A’s set of
final/accepting states. (Note A may be identified
with such a triple 〈;, q0, F 〉.) Let us assume that
A’s set Q of states is disjoint from the alphabet Σ,
and treat ai, qi as a 2-element subset of Σ ∪ Q,
making an accepting run a string over the alpha-
bet 2Σ∪Q of subsets of Σ ∪ Q. Clearly, for any
finite automaton A, the set AccRuns(A) of accept-
ing runs of A is regular — simply modify A’s tran-
sitions to

{(q, a, q′ , q′) | q a
; q′} .

The language L(A) accepted by A can then be
formed applying ρΣ to A’s accepting runs (setting
aside the cosmetic difference between a and a)

L(A) ≈ {ρΣ(s) | s ∈ AccRuns(A)}
= 〈ρΣ

−1〉 AccRuns(A) .

It remains to express the language AccRuns(A)
through conjunctions and negations of a small
number of languages 〈R〉L for certain (particu-
larly simple) choices of R and L. One such R
is componentwise inclusion � between strings of
sets of the same length

� := {(α1 · · ·αn, β1 · · ·βn) | αi ⊇ βi
for 1 ≤ i ≤ n}

(Fernando, 2004). For example, s � ρB(s) for all
strings s of sets, and α� for all sets α. Returning
to AccRuns(A), let us collect

(i) strings with final position containing an A-
final state in

LF := 〈�〉
∑

q∈F

∗ q

(ii) strings whose first position contains a pair
a, q such that q0

a
; q in

Lq0; := 〈�〉
∑

q0
a
;q

a, q ∗

and

(iii) (bad) strings containing q a, q′ , for some
triple (q, a, q′) ∈ Q × Σ × Q outside the set
; of transitions in

L6; := 〈�〉
∑

q 6 a;q′

∗
q a, q′

∗

Also, for any set B, let Spec(B) be the set

Spec(B) := 〈ρB〉(
∑

b∈B
b )∗

of strings with exactly one element of B in each
string position.

Proposition 1. Let A be a finite automaton with
transitions ; ⊆ Q × Σ × Q, final states F ⊆ Q
and initial state q0, The set AccRuns(A) − {ε} of
non-null accessible runs of A is

Spec(Σ) ∩ Spec(Q) ∩ LF ∩ Lq0; − L6;

intersected with the set (2Σ∪Q)∗ of strings over the
alphabet 2Σ∪Q of subsets of the finite set Σ ∪Q.

Given any finite set A, the restrictions to (2A)∗ of
the relations ρB and �

ρAB := ρB ∩ ((2A)∗ × (2A)∗)

�A := � ∩ ((2A)∗ × (2A)∗)

are computable by finite-state transducers. That is,
the intersection mentioned in Proposition 1 with
(2Σ∪Q)∗ can be built into the relations ρΣ, ρQ and
� for a characterization of AccRuns(A) as well
as L(A) within a description logic, all concepts
in which are regular languages, and all roles in
which are computable by finite-state transducers
(keeping 〈R〉L regular). The obvious question is
how that characterization compares with MSO, to
which we turn next.
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3 MSO-models and reducts from ρB

Given a finite set A, let us agree that an MSOA-
model M is a tuple 〈[n], Sn, {[[Ua]]}a∈A〉 for some
positive integer n > 0,1 where

(i) [n] is the set {1, 2 . . . , n} of positive integers
from 1 to n

(ii) Sn is the relation encoding the successor/next
relation on [n]

Sn := {(i, i+ 1) | i ∈ [n− 1]}

and for each a ∈ A,

(iii) [[Ua]] is a subset of [n] interpreting the unary
relation symbol Ua.

We can form MSOA-models from strings over the
alphabets A and (2A) as follows. Given a string
s = a1a2 · · · an ∈ An, let Mod(s) be the MSOA-
model 〈[n], Sn, {[[Ua]]}a∈A〉 interpreting Ua as the
set of string positions i occupied by a

[[Ua]] = {i ∈ [n] | ai = a}

for each a ∈ A. Expanding the alphabet A to 2A,
a string α1α2 · · ·αn ∈ (2A)n induces the MSOA-
model 〈[n], Sn, {[[Ua]]}a∈A〉 interpreting Ua as the
set of positions i filled by boxes containing a

[[Ua]] = {i ∈ [n] | a ∈ αi}

for each a ∈ A. Conversely, given an MSOA-
model M = 〈[n], Sn, {[[Ua]]}a∈A〉, let str(M) be
the string α1 · · ·αn ∈ (2A)n where

αi := {a ∈ A | i ∈ [[Ua]]} .

That is, for all a ∈ A and i ∈ [n],

a ∈ αi ⇐⇒ i ∈ [[Ua]]

making the mapM 7→ str(M) a bijection between
MSOA-models and (2A)+.

Proposition 2. Given an MSOA-model M , the
following are equivalent.

(i) M is Mod(s) for some s ∈ A+

1There is, of course, a rich theory of infinite MSO-models,
given by infinite strings (e.g. Thomas, 1997). We focus here
on finite models/strings, which suffice for many applications;
more in section 6 below.

(ii) M satisfies the MSOA-sentence

(∀x)
∨

a∈A
(Ua(x) ∧

∧

a′∈A−{a}
¬Ua′(x))

(saying the non-empty [[Ua]]’s partition the
universe)

(iii) str(M) ∈ Spec(A)

(iv) str(M) = a1 · · · an for some a1 · · · an ∈
A+.

While the Büchi-Elgot-Trakhtenbrot theorem
(BET) concerns MSOA-models Mod(s) given by
strings s ∈ A+, the wider class of MSOA-models
(isomorphic to (2A)+) is useful for encoding vari-
able assignments crucial to the second half of
BET, asserting the regularity of MSO-sentences.
More precisely, the remainder of this section is
devoted to defining regular languages LA(ϕ) for
MSOA-sentences ϕ establishing

Proposition 3. For every MSOA-sentence ϕ, there
is a regular language LA(ϕ) such that for every
MSOA-model M ,

M |= ϕ ⇐⇒ str(M) ∈ LA(ϕ).

Insofar as the models Mod(s) given by strings
s ∈ A+ differ from those given by strings over
(2A) via str−1, Proposition 3 differs from the half
of BET saying MSO-sentences define regular lan-
guages. There is no denying, however, that the
difference is slight.

Be that as it may, I claim the expansion of A to
2A leads to a worthwhile simplification, as can be
seen by proving Proposition 3 as follows. Given
a positive integer n, an n-variable assignment f
is a function whose domain is a finite set Var =
Var1 ∪ Var2 of first-order variables x ∈ Var1 that
f maps to an integer f(x) ∈ [n] and second-order
variables X ∈ Var2 that f maps to a set f(X) ⊆
[n]. Then if M is a MSOA-model over [n],

M,f |= Ua(x) ⇐⇒ f(x) ∈ [[Ua]]

and

M,f |= X(x) ⇐⇒ f(x) ∈ f(X).
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We can package the pair M,f as the MSOA∪V ar-
model Mf over [n] identical to M on Ua’s for a ∈
A, with interpretations

[[UX ]] = f(X) for X ∈ Var2

[[Ux]] = {f(x)} for x ∈ Var1.

Note [[Ux]] intersects [[UX ]] if M,f |= X(x),
which is to say X(x) entails the negation of
spec({X,x}), where spec(A) is the MSOA-
sentence that Proposition 2 mentions in (ii)

(∀x)
∨

a∈A
(Ua(x) ∧

∧

a′∈A−{a}
¬Ua′(x)).

In other words, to treat a pair M,f as an
MSOA∪V ar-model (and an MSOA-formula ϕwith
free variables in Var as an MSOA∪V ar-sentence),
the step from A to 2A is essential. Turning model
expansions around, given B ⊆ A, we define the
B-reduct of an MSOA-modelM to be the MSOB-
modelMB obtained fromM after throwing out all
interpretations [[Ua]] for a ∈ A − B. It is easy to
see that the homomorphisms ρB yield B-reducts:

str(MB) = ρB(str(M))

(for all MSOA-modelsM ). Proceeding now to the
languagesLA(ϕ) in Proposition 3, observe that we
can picture Ua(x) as the language

L(a, x) := ( + a )∗ a, x ( + a )∗

inasmuch as

M,f |= Ua(x) ⇐⇒ ρA∪V ar{a,x} (str(Mf ))

∈ L(a, x).

For the remainder of this section, letA′ ⊆ A∪Var.
We put, for a, x ∈ A′,

LA′(Ua(x)) := 〈ρA′
{a,x}〉 L(a, x).

Similarly, for X,x ∈ A′, let LA′(X(x)) be

〈ρA′
{X,x}〉 ( + X )∗ X,x ( + X )∗

and for x, y ∈ A′,

LA′(x = y) := 〈ρA′
{x,y}〉 ∗ x, y ∗

LA′(S(x, y)) := 〈ρA′
{x,y}〉 ∗ x y ∗.

We also put

LA′(ϕ ∧ ψ) := LA′(ϕ) ∩ LA′(ψ)

LA′(¬ϕ) := (2A
′
)+ − LA′(ϕ).

As for quantification, for v ∈ Var, let σA
′

v be the
inverse of ρA

′∪{v}
A′ ,2 and set

LA′(∃X.ϕ) := 〈σA′
X 〉 LA′∪{X}(ϕ)

LA′(∃x.ϕ) := 〈σA′
x 〉 (LA′∪{x}(ϕ) ∩
LA′∪{x}(x = x))

where the intersection with LA′∪{x}(x = x) in-
sures that x is treated as a first-order variable in ϕ
(occurring in exactly one string position).

Taking stock, to define the regular language
LA(ϕ) required by Proposition 3 for an MSOA-
sentence ϕ with variables from a finite set Var of
variables, we form ALC-concepts from

(i) the primitive concepts

L(a, x), L(X,x),
∗ x, y ∗, ∗ x y ∗, (2B)+

for a ∈ A and x,X, y ∈ Var and

B ⊆ A ∪ Var, and

(ii) the roles
ρA

′
B , σ

A′
v

for B ⊆ A′ ⊆ A ∪ Var and v ∈ Var.

4 B-specified strings and containment w
Recall that spec(B) is the MSOB-sentence saying
every string position has exactly one symbol from
B

(∀x)
∨

b∈B
(Ub(x) ∧

∧

b′∈B−{b}
¬Ub′(x))

and observe that there is no trace of σAx or comple-
mentation or intersection (interpreting ¬∃x and ∧)
in the language

SpecA(B) := 〈ρAB〉(
∑

b∈B
b )∗

of strings encoding MSOA-models satisfying
spec(B), for B ⊆ A. That is, although SpecA(B)
and LA(spec(B)) from the previous section spec-
ify the same set of strings, they differ as expres-
sions, suggesting different automata. Section 2
provides yet more expressions for automata, draw-
ing on a different pool of primitive concepts and
roles.

2We could instead move the inverse out of the relation R,
allowing 〈R〉 to go not only to the left of L as in 〈R〉L but
also to its right for the image L〈R〉 of L under R.
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In addition to componentwise inclusion � (a
non-deterministic generalization of the functions
ρB that dispenses with the subscript B), it is use-
ful to define relations between strings of different
lengths, including those that pick out prefixes

prefixA := {(ss′, s) | s, s′ ∈ (2A)∗}

and suffixes

suffixA := {(ss′, s′) | s, s′ ∈ (2A)∗}.

Leaving out the subscripts A = Σ ∪ Q for nota-
tional simplicity, we can describe three of the lan-
guages in Proposition 1 (section 2) as

LF = 〈�〉〈suffix〉
∑

q∈F
q

Lq0; = 〈�〉〈prefix〉
∑

q0
a
;q

a, q

L6; = 〈�〉〈suffix〉〈prefix〉
∑

q 6 a;q′

q a, q′

zeroing in on the substrings of length ≤ 2 that
are of interest. It is convenient to abbreviate
〈�〉〈suffix〉〈prefix〉L (equivalently, 〈�〉 ∗L ∗))
to 〈w〉L , effectively defining containment w to be
the relational composition of componentwise in-
clusion � with suffix and prefix

w := � ; suffix ; prefix

(and wA as �A; suffixA; prefixA). Writing EA(x)
for the set

EA(x) := LA(x = x)

of strings in (2A)+ in which x occurs exactly once,
we have

LA(Ua(x)) = EA(x) ∩ 〈w〉 a, x
LA(X(x)) = EA(x) ∩ 〈w〉 X,x
LA(x = y) = EA(x) ∩ EA(y) ∩ 〈w〉 x, y
LA(S(x, y)) = EA(x) ∩ EA(y) ∩ 〈w〉 x y

and apart from EA(x), primitive concepts given by
strings of length≤ 2 will do. The locality (in such
short strings) is obscured in our ρAB-based analysis
of LA(ϕ) in the previous section, under which

EA(x) = 〈ρA{x}〉 ∗ x ∗

= 〈wA〉 x − 〈w〉 x ∗ x . (2)

An existence predicate of sorts, EA(x) is pre-
suppositional in the same way for MSO that
SpecA(B) is for the accepting runs of finite au-
tomata; EA(x) and SpecA(B) are general, non-
local background requirements imposed indis-
criminately on models and automata, in contrast to
assertions (in the foreground) that focus on short
substrings, picking out specific models and au-
tomata.

An instructive test case is provided by the tran-
sitive closure < of S; an MSO{x,y}-sentence say-
ing that x < y is

∃X ((∀u, v)(X(u) ∧ S(u, v) ⊃ X(v))

∧X(y) ∧ ¬X(x)).

Second-order quantification aside, the obvious
picture to associate with x < y is x ∗ y , which
is built into the representation

LA(x < y) = EA(x) ∩ EA(y)∩
〈w〉 x ∗ y (3)

of MSOA-models satisfying x < y (with x, y ∈
A). In both lines (2) and (3) above, arbitrarily long
substrings from ∗ occur, that we will show how
to compress next.

5 Intervals and compression

Given e ∈ A, we can state that the set [[Ue]] repre-
sented by a symbol e ∈ A is an interval through
the MSO{e}-sentence

∃x Ue(x) ∧ ¬∃y gape(y) (4)

where gape(y) abbreviates the MSO{e,y}-sentence

¬Ue(y)∧∃u∃v (u < y∧y < v∧Ue(u)∧ Ue(v)).

We can translate (4) into a regular language, ap-
plying the recipes above. But a more concise and
perspicuous representation is provided by defining
a function bc that compresses a string s as follows.
Let bc(s) compress blocks βn of n > 1 consec-
utive occurrences in s of the same symbol β to a
single β, leaving s otherwise unchanged

bc(s) :=





bc(βs′) if s = ββs′

α bc(βs′) if s = αβs′ with α 6= β
s otherwise.

For example,

bc( e e e, y e ) = e e, y e
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and in general, bc outputs only stutter-free strings,
where a string β1β2 · · ·βn is stutter-free if βi 6=
βi+1 for i from 1 to n− 1. Observe that [[Ue]] is an
interval precisely if

bc(ρ{e}(str(M))) ∈ ( + ε) e ( + ε).

Compressing further, we can delete initial and fi-
nal empty boxes through unpad

unpad(s) :=





unpad(s′) if s = s′ or
else s = s′

s otherwise

and collect all strings in (2A)+ representing
MSOA-models in which e is an interval in

IntervalA(e) := 〈ρA{e}〉〈bc〉〈unpad〉 e .

Defining πAB to be the composition of ρAB with bc
and unpad

πAB(s) := unpad(bc(ρAB(s)))

we have

IntervalA(e) = 〈πA{e}〉 e

and, as promised at the end of section 4, we can
eliminate ∗ from (2)

EA(x) = 〈πA{x}〉 x − 〈w〉 x x

and from (3)

LA(x < y) = EA(x) ∩ EA(y) ∩
〈π{x,y}〉 ( x y + x y )

(dropping the superscriptA on πAB when possible).
Stepping from one interval e to a finite set E of
such, let

Interval(E) := {πEE (s) | (∀e ∈ E)

πE{e}(s) = e }
= 〈unpad−1〉〈bc−1〉

⋂

e∈E
〈πE{e}〉 e

so that Interval({e}) = e , and for e 6= e′, the set
Interval({e, e′}) consists of thirteen strings, one
per interval relation in (Allen, 1983). We can or-
ganize these strings as follows (Fernando, 2012).
For any finite set E, a string s ∈ Interval(E) de-
termines a triple 〈E,©s,≺s〉with binary relations
on E of overlap e©s e

′ when πE{e,e′}(s) is one of

the nine strings in Interval({e, e′}) that contain the
pair e, e′

©s := {(e, e′) | πE{e,e′}(s) ∈ ( e + e′ + ε)

e, e′ ( e + e′ + ε)}

and precedence e ≺s e′ when πE{e,e′}(s) is either

e e′ or e e′

≺s := {(e, e′) | πE{e,e′}(s) ∈ e e′ + e e′ }

leaving the two other strings in Interval({e, e′})
for e′ ≺s e. The triple 〈E,©s,≺s〉 satisfies
the axioms for an event structure in the sense of
(Kamp and Reyle, 1993), and conversely, every
such event structure over E can be obtained as
〈E,©s,≺s〉 for some s ∈ Interval(E).

6 Discussion: simplifying where possible

Few would argue against representing information
as simply as possible. Among strings, there is
nothing simpler than the null string ε, and ε is the
starting point for refinements given by the system
of string functions πAB insofar as

ε = πAB(α1 · · ·αn) for all α1 · · ·αn ∈ (2A)∗

such that B ∩
n⋃

i=1

αi = ∅ .

We have taken pains above to motivate the con-
struction of πAB := ρAB; bc; unpad from

(i) ρAB , linked in section 3 to MSO and regular
languages via the Büchi-Elgot-Trakhtenbrot
theorem

and from

(ii) bc and unpad, linked in section 5 to event
structures for the Russell-Wiener construc-
tion of temporal moments from events (or
temporal intervals).

A familiar example is provided by a calendar year,
represented as the string

yearmo := Jan Feb · · · Dec

of length 12, one box per month from the set
mo := {Jan, Feb, Mar, . . ., Dec}. A finer-grained
representation is given by the string

yearmo,dy := Jan,d1 Jan,d2 · · · Jan,d31

Feb,d1 · · · Dec,d31
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of length 365, one box per day, featuring un-
ordered pairs from mo and dy := {d1, d2, . . .,
d31}. As the homomorphisms ρAB see only what is
in B,

ρmo∪dymo (yearmo,dy) = Jan
31

Feb
28 · · · Dec

31

which πmo∪dymo then compresses to

bc( Jan
31

Feb
28 · · · Dec

31
) = yearmo

making πmo∪dymo (yearmo,dy) = yearmo. If ρAB
provides the key to establishing the regularity of
MSO-formulas, block compression bc captures the
essence of the slogan ”no time without change”
behind the Russell-Wiener conception of time.
Whereas ρAB limits what can be observed to what is
in B, bc minimizes the time (space) over which to
make these observations. Note that there are finite-
state transducers that compute ρAB and bc (over a
finite alphabet). Thus, we may form the inverse
image of a regular language under either ρAB or bc
without worrying if the result is still regular. (It
is.)

Were we to leave unpad out and make do with
bcAB := ρAB; bc, we need only start our bcAB-based
refinements from the string of length one con-
sisting of the empty set (rather than ε, as in the
case of πAB) insofar as

= bcAB(α1 · · ·αn) for all α1 · · ·αn ∈ (2A)+

such that B ∩
n⋃

i=1

αi = ∅ .

Indeed, has the advantage over ε of qualifying
as a model of MSO, which ε does not, under the
usual convention that models of predicate logic
have non-empty domains.

And even if one were to construct temporal
spans from (say, closed intervals of) the real line R
as in (Klein, 2009), the string is a fine (enough)
representation of R, unbroken and virgin. The in-
fluential analysis of tense and aspect in (Reichen-
bach, 1947) positions the speech s and described
event e relative to a reference time r. For instance,
in the simple past (e.g. it rained), r coincides with
e but precedes s

simplePast(e, r, s) := e, r s + e, r s

while in the present perfect (e.g. it has rained), r
comes after e but coincides with s

presentPerfect(e, r, s) := e s, r + e s, r .

Factoring out the reference time, the simple past
and present perfect become identical

ρ
{e,r,s}
{e,s} (simplePast(e, r, s)) = e s + e s

= ρ
{e,r,s}
{e,s} (presentPerfect(e, r, s)).

e s + e s is a simple example of “the ex-
pression of time in natural language” relating
“a clause-internal temporal structure to a clause-
external temporal structure” (Klein, 2009, page
75). The clause-internal structure e and clause-
external structure s can be far more complex,
subject to elaborations from lexical and grammat-
ical aspect. Elaborations in interval temporal logic
made in (Dowty, 1979) are formulated in terms of
strings in (Fernando, 2013).

The finiteness and discreteness of strings ar-
guably mirrors the bounded granularity of nat-
ural language statements (rife with talk of “the
next moment”). Boundaries drawn to analyze,
for example, telicity become absurd if they sep-
arate arbitrarily close pairs of real numbers (as
they would, applied to the real line). It is cus-
tomary to view a model M as an index that the
Carnap-Montague intension of a formula ϕ maps
to one of two truth values, indicating whether or
notM |= ϕ. But the construal of a string as an un-
derspecified representation suggests viewing it not
only as an index but also as an extension (or deno-
tation) of ϕ (Fernando, 2011). In this connection,
a proposal from (Bach, 1986) is worth recalling
— namely, that we associate an event type such
as KISSING with a function EXT(KISSING) that
maps histories to subparts that are temporal mani-
festations of KISSING (with input histories as in-
dices, and output manifestations as extensions).
Relativizing notions of indices and extensions to
a bounded granularity, it is natural to assume at
the outset not indices but extensions, which are
then enlarged, as required, to more detailed and
larger indices. The relation EXT(KISSING) then
becomes a relation between strings (contained in
w) which a finite-state transducer might compute.
For refinements of granularity, we start with an un-
differentiated piece (viz. ε or ) rather than a mul-
titude of fully fleshed out possible histories. From
ε or , the ingredients we require are a set of auxil-
iary symbols, and a suitable system RAB of regular
relations, for finite sets A and B ⊆ A of auxiliary
symbols, projecting indices over the alphabet 2A

to indices over 2B — e.g., bcAB or, as in (Fernando,
2013), πAB .
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