
Proceedings of the 11th International Conference on Finite State Methods and Natural Language Processing, pages 30–34,
St Andrews–Sctotland, July 15–17, 2013. c©2013 Association for Computational Linguistics

Processing Structured Input with Skipping Nested Automata

Dominika Pawlik
University of Warsaw

Institute of Mathematics

Aleksander Zabłocki
University of Warsaw

Institute of Informatics
{dominika, olekz}@mimuw.edu.pl, b.zaborowski@ipipan.waw.pl

Bartosz Zaborowski
Polish Academy of Sciences

Institute of Computer Science

Abstract

We propose a new kind of finite-state au-
tomata, suitable for structured input char-
acters corresponding to unranked trees of
small depth. As a motivating applica-
tion, we regard executing morphosyntactic
queries on a richly annotated text corpus.

1 Introduction

Efficient lookup in natural language corpora be-
comes increasingly important, correspondingly to
the growth of their size. We focus on complex
queries, involving regular expressions over seg-
ments and specifying their syntactic attributes (e.g.
“find all sequences of five nouns or gerunds in
a row”). For such queries, indexing the corpus is
in general not sufficient; finite-state devices come
then as the natural tool to use.

The linguistic annotation of the text seems to be
getting still more complex. To illustrate that, Ger-
man articles in the IMS Workbench are annotated
with sets of readings, i.e. possible tuples of the
grammatical case, number and gender (an exam-
ple is shown in Fig. 1a). Several other big corpora
are stored in XML files, making it easy to extend
their annotation in the future if so desired.

Hence, we consider a general setting where
the segments are tree-shaped feature structures
of fixed type, with list-valued attributes allowed
(see Fig. 1a). A corpus query in this model should
be a regular expression over segment specifi-
cations, being in turn Boolean combinations of
attribute specifications, with quantifiers used in
the case of list-valued attributes. We may also
wish to allow specifying string-valued attributes
by regular expressions. For instance, der Tisch
/the tablemasculine/ is a match for the expression1

1This example query is rather useless by itself; however,
it compactly demonstrates several features which (variously
combined) have been found needed in NLP applications.

[
(POS != N ∨ WORD = ".*sch")

∧ ∃i∈READ (i.GEND = m ∧ i.NUMB = sg)
]∗

describing sequences of segments having
a masculine-singular reading, in which all nouns
end with sch.

In this paper, we propose an adjustment of exist-
ing finite-state solutions suited for queries in such
model. Our crucial assumption is that the input, al-
though unranked, has a reasonably bounded depth,
e.g. by 10. This is the case in morphosyntactic
analysis (but often not in syntactic parsing).

2 Related Work

There are two existing approaches which seem
promising for regex matching over structured al-
phabets. As we will see, each has an advantage
over the other.

FSAP model. The first model relies on finite-
state automata with predicates assigned to their
edges (FSAP, (van Noord and Gerdemann, 2001)).
(A FSAP runs as follows: in a single step, it tests
which of the edges leaving the current states are la-
beled with a predicate satisfied by the current input
symbol, and non-deterministically follows these
edges). In our case, pattern matching can be re-
alized by a FSAP over the infinite alphabet of seg-
ments: one segment becomes one input symbol,
and segment specifications become predicates.

As showed by van Noord and Gerdemann,
FSAPs are potentially efficient as they admit
determinization. However, this involves some
Boolean operations on the predicates used; as
a result, testing predicates for segments might
become involved. For example, a non-optimized
(purely syntax-driven) evaluation of
∃x∈READ x.CASE =N∧∃y∈READ y.CASE =G (1)

would consist of two iterations over all the read-
ings (one looking for N and another for G), al-
though in fact one iteration is clearly sufficient. As

30

(a)

se
gm

en
t

26666666664

WORD ‘der’ =

lis
t

n
d, e, r

o
POS D

READ

lis
t

8>><>>:

re
ad

in
g

264GEND m
CASE N
NUMB sg

375,

re
ad

in
g

264GEND f
CASE G
NUMB sg

375
9>>=>>;

37777777775

(b) ˛̨
J
˛̨

ggggggggggggg
ppppp 88˛̨

J
˛̨

{{{�� ++
˛̨
D
˛̨ ˛̨

J
˛̨

mmmmmmm CCC
˛̨
K
˛̨˛̨

d
˛̨ ˛̨

e
˛̨ ˛̨

r
˛̨ ˛̨

K
˛̨ ˛̨

J
˛̨

{{{�� ++
˛̨
J
˛̨

{{{�� ++
˛̨
K
˛̨˛̨

m
˛̨˛̨

N
˛̨̨̨
sg
˛̨˛̨

K
˛̨ ˛̨

f
˛̨ ˛̨

G
˛̨̨̨
sg
˛̨˛̨

K
˛̨

(c) 0

1

2

3

J
J

d e r K D J
J

m Nsg K
J

f Gsg K
K

K # (d) 0

1

2

3

J # J D J K
d e r K J J K

m Nsg K f Gsg K

Figure 1: A sample segment for the German ambiguous article der, which can be masculine nominative
as well as feminine genitive (for brevity, other its readings are ignored), presented as a typed feature
structure (a) and as an unranked tree (b). Note that strings are treated as lists, which ensures finiteness
of the alphabet. We adjust the tree representation by labeling every non-leaf with J and appending a new
leaf labeled with K to its children. Parts (c) and (d) show respectively the prefix-order and breadth-first
linearizations of the tree. For legibility, we display them stratified wrt. the original depth.

we will see, the other approach is free of this prob-
lem.

VPA model. Instead of treating segments as
single symbols, we might treat our input as a
bounded-depth ordered unranked tree over a fi-
nite alphabet (see Fig. 1b), which is a common
perspective in the theory of XML processing and
tree automata. Recently, several flavours of deter-
minizable tree automata for unranked trees have
been proposed, see (Comon et al., 2007), (Mu-
rata, 2001) and (Gauwin et al., 2008). Under our
assumptions, all these models are practically cov-
ered by the elegant notion of visibly pushdown au-
tomata (VPA; see (Alur and Madhusudan, 2004)).
As explained in (Alur and Madhusudan, 2009), ex-
ecuting a VPA on a given tree may be roughly un-
derstood as processing its prefix-order lineariza-
tion (see Fig. 1b–c) with a suitably enhanced clas-
sical FSA. We omit the details as they are not im-
portant for the scope of this paper.

Discussion. FSAPs and VPAs both have poten-
tial advantages over each other. For the example
rule (1), a naive FSAP will scan the input two
times while a deterministic VPA will do it only
once. On the other hand, the VPA will read all
input symbols, including the irrelevant values of
POS, GEND and NUMB, while a FSAP will simply
skip over them.

We would like to combine these two advan-
tages, that is, design a flavour of tree automata al-
lowing both determinization and skipping in the
above sense (see Fig. 2b for an example). Al-
though this might be seen as a minor adjustment

of the FSAP model (or one of the tree-theoretic
models cited above), it looks to us that it has not
been mentioned so far in the literature.2

Finally, we mention concepts which are only
seemingly related. Some authors consider jump-
ing or skipping for automata in different mean-
ings, e.g. simply moving from a state to another,
or compressing the input to the list of gap lengths
between consecutive occurrences of a given sym-
bol (Wang, 2012), which is somehow related but
far less general. In some important finite-state
frameworks, like XFST (Beesley and Karttunen,
2003) and NooJ, certain substrings (like +Verb)
can be logically treated as single input symbols.
However, what we need is nesting such clusters,
combined with a choice for an automaton whether
to inspect the contents of a cluster or to skip it over.

3 Skipping nested automata

Let Σ be a finite alphabet, augmented with ad-
ditional symbols J, K, # (see Fig. 1). We fol-
low the definitions and notation for unranked Σ-
trees from (Comon et al., 2007, Sec. 8), in partic-
ular, we identify a Σ-tree t with its labeling func-
tion t : N∗ ⊇ Pos(t) → Σ. For p ∈ Pos(t), we
denote its depth (i.e. its length as a word) by d(p).

Let p ∈ Pos(t), d ≤ d(p) + 1 and s > 0. We
define the (d, s)-successor of p, denoted p[d, s],

2A sort of skipping is allowed in tree walking au-
tomata (Aho and Ullman, 1971), which can be roughly de-
scribed as Turing machines for trees. However, they do not
allow skipping over several siblings at once. Also, as shown
in (Bojańczyk and Colcombet, 2006), they may be not deter-
minizable.

31

to be the s-th vertex at depth d following p in the
prefix order3, and leave it undefined if this vertex
does not exist. We also set p[d(p), 0] = p.

A skipping nested automaton (SNA) over Σ is
a tuple A = (Q,QI , QF , δ, d), where Q (resp.
QI , QF) is the set of all (resp. initial, final)
states, d : Q → N is the depth function and
δ ⊆ Q×Σ×Q×N+ is a finite set of transitions,
such that

d(q) = 0 for q ∈ QI ,

d(q′) ≤ d(q) + 1 for (q, σ, q′, s) ∈ δ.

(The intuitive meaning of d(q) is the depth of the
next symbol to be read when q is the current state,
which leads to some kind of skipping. Introduc-
ing s will allow performing more general skips).

A run of A on a Σ-tree t is a sequence ρ =(
(pi, qi)

)n
i=0
⊆ Pos(t) × Q such that p0 = t(ε),

q0 ∈ QI and for every i < n there is s ∈ N
such that (qi, t(pi), qi+1, s) ∈ δ and pi+1 =
pi[d(qi+1), s]. We say that ρ reads pi and skips
over all positions between pi and pi+1 in the pre-
fix order. We say that ρ is accepting if qn ∈ QF .
A tree is accepted byA if there is an accepting run
on it. An example is shown in Fig. 2.

A run ρ =
(
(pi, qi)

)n
i=0

is crashing if there
is (qn, t(pn), qn+1, s) ∈ δ such that pn[d(qn+1), s]
is undefined. (Intuitively, this means jumping to
a non-existent node). We say that A processes t
safely if all its runs on t are not crashing. This
property turns out to be important for determiniza-
tion (see Section 4). A tree t is accepted safely if
it is processed safely and accepted.

In practice, safe processing of trees coming
from typed feature structures (as in Fig. 1) can be
ensured with the aid of analyzing the types. For
example, the SNA shown in Fig. 2 can assume
state q2 only at (the start of) a reading, which must
have four children; hence the skipping transition
from q2 to q3 is safe. On the other hand, we can-
not use e.g. a transition from q1 to q2 with s = 3
because a list (here, of readings) may turn out to
have only one child. We omit a general formal
treatment of this issue since it trivialises in our in-
tended applications.

3This is the s-th child of p if d = d(p) + 1, and the s-
th right sibling of the

`
d(p)− d

´
-fold parent of p otherwise.

(Note that in the second case d(p)− d must be non-negative;
for d(p)− d = 0, the “0-fold parent” of p means simply p).

4 (Quasi-)determinization

A SNA A = (Q,QI , QF , δ, d) is determin-
istic if, for every q and σ, there is at most
one (q, σ, q′, s) ∈ δ. By quasi-determinization
we mean building a deterministic SNA A =
(Q,QI , QF , δ, d) which accepts safely the same
trees which A does.

Let S denote the highest value of s appearing
in A. We say that (q, r) ∈ Q × [0, S] is an option
for A at p wrt. p0 if there is a run ρ of A on t
which ends in (p0[d(q), r], q) such that p either is
the final position of ρ or is skipped over by ρ in
its last step. A state of A will be a set of possible
options for A at a given position wrt. itself.

We define:

Q = 2Q×[0,S], QI =
{
{(q, 0)}

∣∣ q ∈ QI

}
,

QF =
{
X ∈ Q

∣∣X ∩ (QF × {0}) 6= ∅
}
.

d(X) = max
(q,r)∈X

d(q) for X ∈ Q.

It remains to define δ. For each X ∈ Q, σ ∈ Σ, it
shall contain a tuple

(
X,σ,X ′′, s

)
, where X ′′, s

are computed by setting d = d(X), computing

X ′ =
{

(q, r) ∈ X : d(q) < d ∨ r > 0
}
∪

{(q′, r′) : (q, σ, q′, r′) ∈ δ, (q, 0) ∈ X, d(q) = d},
(intuitively, this is the set of options for A at
p′ = p[d(p), 1] wrt. p, provided that p′ exists),
then setting d′ = d(X ′) and finally

s = min
{
r : (q, r) ∈ X ′, d(q) = d′

}
,

X ′′ =
{

(q, r) ∈ X ′ : d(q) < d′
}
∪{

(q, r − s) : (q, r) ∈ X ′, d(q) = d′
}
.

(Explanation: p′′ = p[d′, s] is the nearest (wrt. the
prefix order) ending position of any of the runs
corresponding to the options from X ′; hence A
may jump directly to p′′; the options at p′′ wrt. p
are the same as at p′, i.e. X ′; hence, the target X ′′

is obtained from X ′ by “re-basing” from p to p′′.)
While the trees accepted safely by A and A

coincide, this is not true for simply accepted trees.
For example, the tree t corresponding (in the
prefix order) to JaK# is accepted by A defined as

q0

0

q1

1

J q2

1

a

(2)
q3

0a

(there is a run ending in q3) but not by A because
for X = {(q1, 0)} and σ = a we obtain d(X ′′) =
d(X ′) = 1 and s = 2, leading to a crash in the
only run of A on t.

32

(a)
q0

0

q1

1

J
(3)

q2

2

J
q3

3

J
(2)

Σ \ {K,G}
q4

0

G

q5

0

#
(b)

0

1

2

3

q0J
J

d e r K
D
q1J

q2J
m
q3

N sg K

q2J
f
q3
Gsg K

K
K

q4
#
q5

Figure 2: A SNA accepting a segment followed by # (end of input) and having a genitive reading (a), and
its run on the segment from the previous figure (b). In part (a), numbers above states are their depths;
numbers above dotted arcs are the values of s (not shown when s = 1). In part (b), the black symbols
are read while the gray symbols are skipped over; this corresponds to the continuous and dotted arcs.

5 Practical use

In order to make SNA applicable, we should ex-
plain how to build SNAs corresponding to typical
corpus queries, and also how skipping should be
efficiently performed in practice.

It is straightforward to build a non-skipping
SNA for a regular expression e over Σ provided
that e does not contain J or K inside ?, ∗ or +, and
all their occurrences are well-matched inside ev-
ery branch of |. Under our assumption of bounded
input depth, every regular expression can be trans-
formed to an equivalent one of that form.

Skipping SNAs in our applications are defined
by an additional regex construct _, matching any
single sub-tree of the input. This is compiled into
s uΣ

(with d ≡ 0), which makes a skip if the
input starts with J. To enhance even longer skips,
patterns of the form _{n} and Je_∗K are suitably
optimized. For example, the SNA of Fig. 2 recog-
nizes J_ _J_∗J_G_∗K_∗K_∗K#.

Proceeding to skipping in practice, we assume
that, as a result of pre-processing, we are given
the breadth-first linearization t̃ ∈ Σ∗ of the in-
put (see Fig. 1d), stored physically as an array (for
a given i, accessing t̃[i] takes a constant time), and
that any occurrence of J at position i is equipped
with the pointer L(i) to its left-most child.4 More-
over, we equip a deterministic SNA A with an ar-
ray S such that, when A stays at p of depth d,
S[i] should point to the (i, 1)-successor of p for all
i < d.5 In this setting, the (d, s)-successor of the
current position has index S[d] + (s− 1), which is
computable in constant time. Hence, we are able
to run A efficiently (Fig. 3 shows an example). In
particular, the running time is independent of the
number of input symbols skipped over.

4Note that this is the way in which the original structure
would be stored in memory by a standard C implementation.

5Upkeeping this requires only one memory access for ev-
ery J processed; cf. (Alur and Madhusudan, 2004).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0
J
3

4
#
5 J

7

D
1

2

J
11

K
d e r K

2

2

6

J
14

2

2

6

J
18

K
m
3

2

6

12

N sg K f
3

2

6

13

G sg K

Figure 3: A run of the SNA from Fig. 2 on the in-
put from Fig. 1d. The numbers above J are point-
ers to their left-most children. The bottom num-
ber in each frame indicates the current state; the
remaining ones show the stack S (S[i] appears at
depth i).

6 Evaluation and conclusion

A preliminary version of our method has been
used for finding the matches of relatively com-
plex hand-written patterns aimed at shallow pars-
ing and correcting errors in the IPI Corpus of Pol-
ish (Przepiórkowski, 2004). As a result, although
the input size grew by about 30% due to introduc-
ing J and K nodes, over 75% of the obtained in-
put was skipped, leading to an overall speed-up by
about 50%. Clearly, empirical results may depend
heavily on the particular input and queries. Hence,
our solution may turn out to be narrowly scoped as
well as to be useful in various aspects of XML pro-
cessing. Note that, although the expressive power
of SNAs as presented is rather weak, it seems to
be easily extendable by integrating our main idea
with the general VPA model.6

References
Alfred V. Aho and Jeffrey D. Ullman. 1971. Trans-

lations on a context-free grammar. Information and
6This would require some technical adjustments, incl. re-

placing absolute depths of states with relative jump heights
of transitions, and bounding these by 1. We skip the details
due to space limitations. For very shallow inputs (including
the Spejd’s case), these modifications would be rather disad-
vantageous.

33

Control, 19(5):439–475.

Rajeev Alur and P. Madhusudan. 2004. Visibly push-
down languages. In Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing,
pages 202–211, New York, NY, USA. ACM.

Rajeev Alur and P. Madhusudan. 2009. Adding nest-
ing structure to words. J. ACM, 56(3):16:1–16:43.

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite
State Morphology. CSLI Studies in Computational
Linguistics. CSLI Publications.

Mikołaj Bojańczyk and Thomas Colcombet. 2006.
Tree-walking automata cannot be determinized.
Theor. Comput. Sci., 350(2-3):164–173.

H. Comon, M. Dauchet, R. Gilleron, C. Löding,
F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-
masi. 2007. Tree automata techniques and applica-
tions. http://www.grappa.univ-lille3.
fr/tata. release October, 12th 2007.

Olivier Gauwin, Joachim Niehren, and Yves Roos.
2008. Streaming tree automata. Inf. Process. Lett.,
109(1):13–17.

Makoto Murata. 2001. Extended path expressions for
XML. In Peter Buneman, editor, PODS. ACM.

Gertjan van Noord and Dale Gerdemann. 2001. Fi-
nite state transducers with predicates and identities.
Grammars, 4(3):263–286.

Adam Przepiórkowski. 2004. Korpus IPI PAN. Wer-
sja wstępna. Institute of Computer Science, Polish
Academy of Sciences, Warsaw.

Xiaofei Wang. 2012. High Performance Stride-based
Network Payload Inspection. Dissertation, Dublin
City University.

34

