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Introduction

These proceedings contain the papers presented at the 11th International Conference on Finite-State
Methods and Natural Language Processing (FSMNLP 2013), held in St Andrews, Scotland (UK), July
15–17, 2013.

This series of conferences is the premier forum of the ACL Special Interest Group on Finite-State
Methods (SIGFSM). It serves researchers and practitioners working on:

• natural language processing (NLP) applications or language resources,

• theoretical and implementational aspects, or

• their combinations

that have obvious relevance or an explicit relation to finite-state methods.

This volume contains the 8 long and 9 short papers presented at the conference. In total, 26 papers
(11 long and 15 short papers) were submitted and double-blind refereed. The overall acceptance rate
was 69%, noting one paper was withdrawn after acceptance. Each long paper was reviewed by at
least 3 programme committee members and each short paper by at least 2. The programme committee
was composed of internationally leading researchers and practitioners selected from academia, research
labs, and companies.

I would like to thank the programme committee for their hard work, the referees for their valuable
feedback, the invited speakers and the presenters of tutorials for their contributions and the many local
staff and students for their tireless efforts. We are particularly indebted to the Scottish Informatics
& Computer Science Alliance for their financial support. Most generous support was received from
VisitScotland.

MARK-JAN NEDERHOF

iii





Chair:

Mark-Jan Nederhof (University of St Andrews)

Local Organizing Committee:

Per Ola Kristensson (University of St Andrews)
Martin McCAffery (University of St Andrews)
Shyam Reyal (University of St Andrews)
Vinodh Rajan (University of St Andrews)

Invited Speakers:

Alexander Clark (King’s College London)
Bill Byrne (University of Cambridge)

Tutorials by:

Ruth Hoffmann (University of St Andrews)
Bevan Jones (University of Edinburgh)
Kousha Etessami (University of Edinburgh)

v



Program Committee:
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Abstract

The problem of finding the consensus / most
probable string for a distribution generated by
a probabilistic finite automaton or a hidden
Markov model arises in a number of natural
language processing tasks: it has to be solved
in several transducer related tasks like opti-
mal decoding in speech, or finding the most
probable translation of an input sentence. We
provide an algorithm which solves these prob-
lems in time polynomial in the inverse of the
probability of the most probable string, which
in practise makes the computation tractable in
many cases. We also show that this exact com-
putation compares favourably with the tradi-
tional Viterbi computation.

1 Introduction

Probabilistic finite state machines are used to de-
fine distributions over sets of strings, to model lan-
guages, help with decoding or for translation tasks.
These machines come under various names, with
different characteristics: probabilistic (generating)
finite state automata, weighted machines, hidden
Markov models (HMM s) or finite state transducers...

An important and common problem in all the set-
tings is that of computing the most probable event
generated by the machine, possibly under a con-
straint over the input string or the length. The typ-
ical way of handling this question is by using the
Viterbi algorithm, which extracts the most probable
path/parse given the requirements.

If in certain cases finding the most probable parse
is what is seeked, in others this is computed under
the generally accepted belief that the computation

of the most probable string, also called the consen-
sus string, is untractable and that the Viterbi score
is an acceptable approximation. But the probability
of the string is obtained by summing over the dif-
ferent parses, so there is no strong reason that the
string with the most probable parse is also the most
probable one.

The problem of finding the most probable
string was addressed by a number of authors, in
computational linguistics, pattern recognition and
bio-informatics [Sima’an, 2002, Goodman, 1998,
Casacuberta and de la Higuera, 1999, 2000, Lyngsø
and Pedersen, 2002]: the problem was proved to be
NP-hard; the associated decision problem isNP-
complete in limited cases only, because the most
probable string can be exponentially long in the
number of states of the finite state machine (a con-
struction can be found in [de la Higuera and Oncina,
2013]). As a corollary, finding the most probable
translation (or decoding) of some input string, when
given a finite state transducer, is intractable: the
set of possible transductions, with their conditional
probabilities can be represented as a PFA.

Manning and Schütze [1999] argue that the
Viterbi algorithm does not allow to solve the de-
coding problem in cases where there is not a one-
to-one relationship between derivations and parses.
In automatic translation Koehn [2010] proposes to
compute the topn translations from word graphs,
which is possible when these are deterministic. But
when they are not, an alternative in statistical ma-
chine translation is to approximate these thanks to
the Viterbi algorithm [Casacuberta and Vidal, 2004].
In speech recognition, the optimal decoding problem
consists in finding the most probable sequence of ut-
terances. Again, if the model is non-deterministic,
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this will usually be achieved by computing the most
probable path instead.

In the before mentioned results the weight of each
individual transition is between 0 and 1 and the score
can be interpreted as a probability. An interesting
variant, in the framework of multiplicity automata
or of acceptingprobabilistic finite automata (also
called Rabin automata), is the question, known as
thecut-point emptinessproblem, of the existence of
a string whose weight is above a specific threshold;
this problem is known to be undecidable [Blondel
and Canterini, 2003].

In a recent analysis, de la Higuera and Oncina
[2013] solved an associated decision problem: is
there a string whose probability is above a given
threshold? The condition required is that we are
given an upper bound to the length of the most
probable string and a lower bound to its probability.
These encouraging results do not provide the means
to actually compute the consensus string.

In this paper we provide three main results. The
first (Section 3) relates the probability of a string
with its length; as a corollary, given any fraction
p, either all strings have probability less thanp, or
there is a string whose probability is at leastp and

is of length at most(n+1)2

p wheren is the number
of states of the corresponding PFA. The second re-
sult (Section 4) is an algorithm that can effectively
compute the consensus string in time polynomial in
the inverse of the probability of this string. Our third
result (Section 5) is experimental: we show that our
algorithm works well, and also that in highly am-
biguous settings, the traditional approach, in which
the Viterbi score is used to return the string with the
most probable parse, will return sub-optimal results.

2 Definitions and notations

2.1 Languages and distributions

Let [n] denote the set{1, . . . , n} for eachn ∈ N.
An alphabetΣ is a finite non-empty set of sym-
bols calledletters. A string w over Σ is a finite
sequencew = a1 . . . an of letters. Letters will be
indicated bya, b, c, . . ., and strings byu, v, . . . , z.
Let |w| denote the length ofw. In this case we have
|w| = |a1 . . . an| = n. Theempty stringis denoted
by λ.

We denote byΣ⋆ the set of all strings and by

Σ≤n the set of those of length at mostn. When de-
composing a string into sub-strings, we will write
w = w1 . . . wn where∀i ∈ [n] wi ∈ Σ⋆.

A probabilistic languageD is a probability distri-
bution overΣ⋆. The probability of a stringx ∈ Σ⋆

under the distributionD is denoted asPrD(x) and
must verify

∑
x∈Σ⋆ PrD(x) = 1. If L is a language

(thus a set of strings, included inΣ⋆), andD a dis-
tribution overΣ⋆, PrD(L) =

∑
x∈L PrD(x).

If the distribution is modelled by some syntactic
machineM, the probability ofx according to the
probability distribution defined byM is denoted by
PrM(x). The distribution modelled by a machine
M will be denoted byDM and simplified toD if
the context is not ambiguous.

2.2 Probabilistic finite automata

Probabilistic finite automata (PFA) are generative
devices for which there are a number of possible def-
initions [Paz, 1971, Vidal et al., 2005]. In the sequel
we will useλ-free PFA: these do not have empty (λ)
transitions: this restriction is without loss of gen-
erality, as algorithms [Mohri, 2002, de la Higuera,
2010] exist allowing to transform, in polynomial
time, more general PFA into PFA respecting the fol-
lowing definition:

Definition 1. A λ-freeProbabilistic Finite Automa-
ton (PFA) is a tupleA = 〈Σ, Q, S, F, δ〉, where:

- Σ is the alphabet;

- Q ={q1,. . . ,q|Q|} is a finite set ofstates;

- S : Q → R ∩ [0, 1] (initial probabilities);

- F : Q → R ∩ [0, 1] (final probabilities);

- δ : Q × Σ × Q → R ∩ [0, 1] is the complete
transition function;δ(q, a, q′) = 0 can be in-
terpreted as “no transition fromq to q′ labelled
with a”.

S, δ andF are functions such that:

∑

q∈Q
S(q) = 1, (1)

and∀q ∈ Q,

F (q) +
∑

a∈Σ, q′∈Q
δ(q, a, q′) = 1. (2)

2



1 : q0

q1 q2

q3: 1

a 0.9

b 0.1

a 0.7

a 0.3

a 0.7

a 0.3

Figure 1: Graphical representation of a PFA.

An example of a PFA is shown in Fig. 1.
Given x∈Σ⋆, ΠA(x) is the set of all paths ac-

ceptingx: an acceptingx-path is a sequenceπ =
qi0a1qi1a2 . . . anqin wherex = a1 · · · an, ai ∈ Σ,
and∀j ∈ [n] such thatδ(qij−1 , aj , qij ) 6= 0.

The probability of the pathπ is defined as
PrM(π) = S(qi0) ·

∏
j∈[n] δ(qij−1 , aj , qij ) · F (qin)

and the probability of the stringx is obtained by
summing over the probabilities of all the paths in
ΠA(x). An effective computation can be done by
means of the Forward (or Backward) algorithm [Vi-
dal et al., 2005].

We denote by|A| the size ofA as one more than
the number of its states. Therefore, forA as repre-
sented in Figure 1, we have|A| = 5.

We do not recall here the definitions for hidden
Markov models. It is known that one can transform
an HMM into a PFA and vice-versa in polynomial
time [Vidal et al., 2005].

2.3 The problem

The goal is to find themost probable stringin a prob-
abilistic language. This string is also named thecon-
sensusstring.

Name: Consensus string (CS)
Instance: A probabilistic machineM
Question: Find x ∈ Σ⋆ such that∀y ∈ Σ⋆

PrM(x) ≥ PrM(y).

For example, for the PFA from Figure 1, the con-
sensus string isaaaaa. Note that the string having
the most probable single parse isb.

2.4 Associated decision problem

In [de la Higuera and Oncina, 2013] the following
decision problem is studied:

Name: Bounded most probable string (BMPS)
Instance: A λ-free PFA A, an integerp ≥ 0, an in-

tegerb
Question: Is there inΣ≤b a string x such that
PrA(x) > p?

BMPS is known to beNP-hard [Casacuberta and
de la Higuera, 2000]. De la Higuera and Oncina
[2013] present a construction proving that the most
probable string can be of exponential length: this
makes the bound issue crucial in order to hope to
solve CS. The proposed algorithm takesp and b
as arguments and solves BMPS in time complexity

O( b|Σ|·|Q|2
p ). It is assumed that all arithmetic opera-

tions are in constant time.
The construction relies on the following sim-

ple properties, which ensure that only a reasonable
amount of incomparable prefixes have to be scruti-
nized.

Property 1. ∀u ∈ Σ⋆, PrA(uΣ⋆) ≥ PrA(u).

Property 2. If X is a set of strings such that (1)
∀u ∈ X,PrA(uΣ⋆) > p and (2) no string inX is a
prefix of another different string inX, then|X| < 1

p .

3 Probable strings are short

Is there a relation between the lengths of the strings
and their probabilities? In other words, can we show
that a string of probability at leastp must be reason-
ably short? If so, theb parameter is not required: one
can compute the consensus string without having to
guess the boundb. Let us prove the following:

Proposition 1. LetA be aλ-freePFA with n states
andw a string.

Then|w| ≤ (n+1)2

PrA(w) .

As a corollary,

Corollary 1. LetA be aλ-freePFA with n states. If
there is a string with probability at leastp, its length

is at mostb = (n+1)2

p .

Proof. Let w be a string of lengthlen and
PrA(w) = p. A path is a sequenceπ =
qi0a1qi1a2 . . . alenqilen, with ai ∈ Σ.

LetΠj
A(w) be the subset ofΠA(w) of all pathsπ

for which stateqj is the most used state inπ.
If, for some pathπ, there are several valuesj such

thatqj is the most used state inπ, we arbitrarily add
π to theΠj

A(w) which has the smallest indexj.
Then, because of a typical combinatorial ar-

gument, there exists at least onej such that

3



PrA(Π
j
A(w)) ≥ p

n . Note that in any path inΠj
A(w)

stateqj appears at leastlen+1
n times. Consider any

of these pathsπ in Πj
A(w). Let k be the small-

est integer such thatqik = qj (ie the first time we
visit stateqj in pathπ is after having read the first
k characters ofw). Then for each valuek′ such that
qik′ = qj , we can shorten the pathπ by removing the
cycle betweenqik andqik′ and obtain in each case a
path for a new string, and the probability of this path
is at least that ofπ.

We have therefore at leastlen+1
n − 1 such alter-

native paths forπ.
We call Alt(π, j) the set of alternative paths forπ

andqj. Hence|Alt(π, j)| ≥ len+1
n − 1.

And therefore

PrA(Alt (π, j)) ≥
(
len+ 1

n
− 1

)
PrA(π).

We now want to sum this quantity over the dif-
ferentπ in Πj

A(w). Note that there could be a diffi-
culty with the fact that two different paths may share
an identical alternative that would be counted twice.
The following lemma (proved later) tells us that this
is not a problem.

Lemma 1. Let π and π′ be two different paths
in Πj

A(w), and π′′ be a path belonging both to
Alt(π, j) and to Alt(π′, j). Then PrA(π′′) ≥
PrA(π) + PrA(π′).

Therefore, we can sum and

∑

π∈Πj
A(w)

PrA(Alt (π, j)) ≥
(
len+ 1

n
− 1

)
p

n
.

The left hand side represents a mass of probabil-
ities distributed byA to other strings thanw. Sum-
ming with the probability ofw, we obtain:

(len+ 1

n
− 1

)
· p
n
+ p ≤ 1

(len+ 1− n) · p+ pn2 ≤ n2

(len+ 1− n) ≤ n2(1− p)

p

len ≤ n2(1− p)

p
+ n− 1

It follows thatlen ≤ (n+1)2

p .

Proof of the lemma.π′′ = πj andπ′′ = π′
j′. Neces-

sarily we havej = j′.
Now qi1k

wkqi1k+1
wk+1 . . . wk+tqi1k+t

and
qi2k

wkqi2k+1
wk+1 . . . wk+tqi2k+t

are the two frag-
ments of the paths that have been removed from
π and π′. These are necessarily different, but
might coincide in part. Leth be the first index for
which they are different, ie∀z < h, qi1z = qi2z and
qi1h

6= qi2h
.

We have:
P (qi1h−1

, wh, qi1h
)+P (qi2h−1

, wh, qi2h
) ≤ 1 and the

result follows.

We use Proposition 1 to associate with a given
stringw an upper bound over the probability of any
string havingw as a prefix:

Definition 2. ThePotential ProbabilityPP of a pre-
fix stringw is

PP(w) = min(PrA(wΣ⋆),
|A|2
|w| )

PP(w) is also an upper bound on the probability
of any string havingw as a prefix:

Property 3. ∀u ∈ Σ⋆ PrA(wu) ≤ PP(w)

Indeed,PrA(wu) ≤ PrA(wΣ⋆) and, because of

Proposition 1,PrA(wu) ≤ |A|2
|wu| ≤

|A|2
|w| .

This means that we can decide, for a given prefix
w, and a probability to be improved, ifw is viable,
ie if the best string havingw as a prefix can be better
than the proposed probability. Furtermore, given a
PFA A and a prefixw, computingPP(w) is simple.

4 Solving the consensus string problem

Algorithm 1 is given a PFA A and returns the most
probable string. The bounds obtained in the previ-
ous section allow us to explore the viable prefixes,
check if the corresponding string improves our cur-
rent candidate, add an extra letter to the viable prefix
and add this new prefix to a priority queue.

The priority queue (Q) is a structure in which the
time complexity for insertion isO(log |Q|) and the
extraction (Pop) of the first element can take place
in constant time. In this case the order for the queue
will depend on the valuePP(w) of the prefixw.
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Data: a PFA A
Result: w, the most probable string

1 Current Prob = 0;
2 Q = [λ];
3 Continue = true;
4 while not(Empty(Q))andContinue do
5 w = Pop(Q);
6 if PP(w) > Current Prob then
7 p = PrA(w);
8 if p > Current Prob then
9 Current Prob = p;

10 Current Best = w;

11 foreach a ∈ Σ do
12 if PP(wa) > Current Prob then
13 Insert(wa,PP(wa),Q)

14 else
15 Continue = false;

16 return Current Best
Algorithm 1: Finding the Consensus String

Analysis: Let popt be the probability of the con-
sensus string. LetViable be the set of all stringsw
such thatPP(w) ≥ popt.

• Fact 1. Letw be the first element ofQ at some
iteration. If PP(w) < popt, every other ele-
ment ofQ will also have smallerPP and the
algorithm will halt. It follows that until the con-
sensus string is found, the first elementw is in
Viable.

• Fact 2. If w ∈Viable,PP(w) ≥ popt, therefore
|A|2
|w| ≥ popt so|w| ≤ |A|2

popt
.

• Fact 3. There are at most 1
popt

pairwise
incomparable prefixes inViable. Indeed,
all elements of Viable have PP(w) =

min(PrA(wΣ⋆), |A|2
|w| ) ≥ popt so also have

PrA(wΣ⋆) ≥ popt and by Property 2 we are
done.

• Fact 4. There are at most1popt
· |A|2

popt
different

prefixes inViable, as a consequence of facts 2
and 3.

• Fact 5. At every iteration of the main loop at

most|Σ| new elements are added to the priority
queue.

• Fact 6. Therefore, since only the first elements
of the priority queue will cause (at most|Σ|)
insertions, and these (fact 1) are necesarily vi-
able, the total number of insertions is bounded
by |Σ| · |A|2

popt
· 1
popt

.

The time complexity of the algorithm is propor-
tional to the number of insertions in the queue and is
computed as follows:

• |Q | is at most|Σ|·|A|2
p2opt

;

• Insertion of an element intoQ is in

O
(
log

(
|Σ|·|A|2

p2opt

))
.

5 Experiments

From the theoretical analysis it appears that the new
algorithm will be able to compute the consensus
string. The goal of the experiments is therefore to
show how the algorithm scales up: there are domains
in natural language processing where the probabili-
ties are very small, and the alphabets very large. In
others this is not the case. How well does the algo-
rithm adapt to small probabilities? A second line of
experiments consists in measuring the quality of the
most probable parse for the consensus string. This
could obviously not be measured up to now (because
of the lack of an algorithm for the most probable
string). Finding out how far (both in value and in
rank) the string returned by the Viterbi algorithm is
from the consensus string is of interest.

5.1 Further experiments

A more extensive experimentation may consist in
building a collection of random PFA, in the line of
what has been done in HMM /PFA learning compe-
titions, for instance [Verwer et al., 2012]. A con-
nected graph is built, the arcs are transformed into
transitions by adding labels and weights. A normal-
isation phase takes place so as to end up with a dis-
tribution of probabilities.

The main drawback of this procedure is that, most
often, the consensus string will end up by being the
empty string (or a very short string) and any algo-
rithm will find it easily.
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Actually, the same will happen when testing on
more realistic data: a language model built fromn-
grams will often have as most probable string the
empty string.

An extensive experimentation should also com-
pare this algorithm with alternative techniques
which have been introduced:

A first extension of the Viterbi approximation is
called crunching [May and Knight, 2006]: instead
of just computing for a string the probability of the
best path, with a bit more effort, the value associated
to a string is the sum of the probabilities of then best
paths.

Another approach isvariational decoding [Li
et al., 2009]: in this method and alternatives like
Minimum Risk Decoding, a best approximation by
n-grams of the distribution is used, and the most
probable string is taken as the one which maximizes
the probability with respect to this approximation.
These techniques are shown to give better results
than the Viterbi decoding, but are not able to cope
with long distance dependencies.

Coarse-to-fine parsing[Charniak et al., 2006] is
a strategy that reduces the complexity of the search
involved in finding the best parse. It defines a se-
quence of increasingly more complex Probabilistic
Context-Free grammars (PCFG), and uses the parse
forest produced by one PCFG to prune the search of
the next more complex PCFG.

5.2 A tighter bound on the complexity

The complexity of the algorithm can be measured
by counting the number of insertions into the prior-
ity queue. This number has been upper-bounded by

|Σ| · |A|2
p2opt

. But it is of interest to get a better and

tighter bound. In order to have a difficult set of test
PFAs we built a family of models for which the con-
sensus string has a parametrized length and where an
exponentially large set of strings has the same length
and slightly lower probabilities than the consensus
string.

In order to achieve that, the states are organised
in levels, and at each level there is a fixed number
of states (multiplicity). One of the states of the first
level is chosen as initial state. All the states have
an ending probability of zero except for one unique
state of the last level; there is a transition from each

0.0 0.0 > 0.0

0.0 0.0 0.0

Figure 2: The topology of an automaton with 3 levels and
multiplicity 2

state of leveln to all states of leveln+ 1 but also to
all the states of levelk ≤ n.

An example of this structure, with 3 levels and
multiplicity 2 is represented in Fig. 2. The shortest
string with non-null probability will be of lengthn−
1 wheren is the number of levels.

A collection of random PFA was built with vocab-
ulary size varying from 2 to 6, number of levels from
3 to 5, and the multiplicity from 2 to 3. 16 different
PFA were generated for each vocabulary size, num-
ber of levels and multiplicity. Therefore, a total of
480 automata were built. From those 16 were dis-
carded because the low probability of the consensus
string made it impossible to deal with the size of the
priority queue. 464 automata were therefore consid-
ered for the experiments.

In the first set of experiments the goal was to test
how strong is the theoretical bound on the number
of insertions in the priority queue.

Fig. 3 plots the inverse of the probability of the
consensus string versus the number of insertions in
the priority queue. The bound from Section 4 is

|Q| ≤ |Σ| · |A|2
p2opt

Our data indicates that

|Q| ≤ 1

p2opt
≤ |Σ| · |A|2

p2opt

Furthermore, 2popt
seems empirically to be a better

bound: a more detailed mathematical analysis could
lead to prove this.
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5.3 How good is the Viterbi approximation?

In the literature the string with the most probable
path is often used as an approximation to the consen-
sus string. Using the same automata, we attempted
to measure the distance between the probability of
the string returned by the Viterbi algorithm, which
computes the most probable parse, and the probabil-
ity of the consensus string.

For each automaton, we have measured the proba-
bility of the most probable string (popt) and the prob-
ability of the most probable path (pp).

In 63% of the 464 PFA the consensus string and
the string with the most probable path were differ-
ent, and in no case does the probability of the con-
sensus string coincide with the probability of the
most probable path.

Figure 4 shows the relative error when using the
probability of the most probable path instead of the
probability of the consensus string. In other words
we measure and plotpopt−pp

popt
. It can be observed

that the relative error can be very large and increases
as the probability of the consensus string decreases.
Furthermore, we ran an experiment to compute the
rank of the string with most probable path, when or-
dered by the actual probability. Over the proposed
benchmark, the average rank is9.2 and the maxi-
mum is277.

6 Conclusion

The algorithm provided in this work allows to com-
pute the most probable string with its exact probabil-
ity. Experimentally it works well in settings where
the number of paths involved in the sums leading to
the computation of the probability is large: in arti-
ficial experiments, it allowed to show that the best
string for the Viterbi score could be outranked by
more that 10 alternative strings.

Further experiments in natural language process-
ing tasks are still required in order to understand in
which particular settings the algorithm can be of use.
In preliminary language modelling tasks two diffi-
culties arose: the most probable string is going to
be extremely short and of little interest. Further-
more, language models use very large alphabets, so
the most probable string of length 10 will typically
have a probability of the order of10−30. In our ex-
periments the algorithm was capable of dealing with
figures of the order of10−6. But the difference is
clearly impossible to deal with.

The proposed algorithm can be used in cases
where the number of possible translations and
paths may be very large, but where at least one
string (or translation) has a reasonable probability.
Other future research directions concern in lifting
the λ-freeness condition by taking into acountλ-
transitions on the fly: in many cases, the transforma-
tion is cumbersome. Extending this work to proba-
bilistic context-free grammars is also an issue.
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Abstract

Partially observable Markov decision Pro-
cesses provide an excellent statistical frame-
work to deal with spoken dialog systems that
admits global optimization and deal with un-
certainty of user goals. However its put in
practice entails intractable problems that need
efficient and suboptimal approaches. Alter-
natively some pattern recognition techniques
have also been proposed. In this framework
the joint probability distribution over some se-
mantic language provided by the speech un-
derstanding system and the language of ac-
tions provided by the dialog manager need
to be estimated. In this work we propose
to model this joint probability distribution by
stochastic regular bi-languages that have also
been successfully proposed for machine trans-
lation purposes. To this end a Probabilis-
tic Finite State Bi-Automaton is defined in
the paper. As an extension to this model we
also propose an attributed model that allows
to deal with the task attribute values. Valued
attributed are attached to the states in such a
way that usual learning and smoothing tech-
niques can be applied as shown in the paper.
As far as we know it is the first approach based
on stochastic bi-languages formally defined to
deal with dialog tasks.

1 Introduction

Spoken Dialogue Systems (SDS) aim to enable peo-
ple to interact with computers, using the spoken
language in a natural way (Young, 2000; Raux et
al., 2006). However, the management of an SDS
is a very complex task that involves many other

problems to be solved like the Automatic Speech
Recognition (ASR), semantic representation and un-
derstanding, answer generation, etc. According to
the information provided by the user and the his-
tory of previous dialogues the dialogue manager
must decide the next action to be taken. Due to
its complexity the design of dialogue managers has
been traditionally related to rules based methodolo-
gies (Lee et al., 2006), sometimes combined with
some statistical knowledge (Varges et al., 2009).
These methodologies have been successfully used
for specific tasks. But they are hard to be developed
and they lack sensitivity to changes present in real
tasks. Then plan-based and task-independent dia-
logue managers have been also proposed (Raux et
al., 2006; Bohus and Rudnicky, 2009). In addition,
statistical models based on Markov Decision Pro-
cesses can be found for dialogue managers (Levin
et al., 2000; Young, 2000).

Partially Observable Markov Decision Processes
(POMDP) provided an excellent statistical frame-
work that admits global optimization and deal with
uncertainty of user goals (Williams and Young,
2007). This formulation is now considered as the
state of the art of statistical SDSs. However, its
put in practice entails intractable problems that need
efficient and suboptimal approaches such as factor-
ization of the state space and partition of the dia-
logue state distributions (Williams and Young, 2007;
Williams, 2010; Lee and Eskenazi, 2012a; S. Young
and Williams, 2013).

On the other hand new and challenging natural
language processing tasks involving dialog are also
arising in the last years. Some examples include the
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analysis, or generation, of online debates (Walker
et al., 2012) and the story generation for games us-
ing film dialog corpora as training sample (Lin and
Walker, 2011).

In the pattern recognition framework statistical
models have also been proposed to represent SDS
(Georgila et al., 2006; Griol et al., 2008). Specif-
ically in the interactive pattern recognition frame-
work (Toselli et al., 2011; Torres et al., 2012) the
joint probability distribution over some semantic
language provided by the speech understanding sys-
tem and the hypotheses provided by the dialog man-
ager need to be estimated.

In this work we propose to model this joint
probability distribution by stochastic regular bi-
languages. These languages have also been success-
fully proposed to deal with machine translation (Tor-
res and Casacuberta, 2011). To this end a Probabilis-
tic Finite State Bi-Automaton is defined (PFSBA) in
the paper. As an extension to this model we also
propose an attributed model that allows to deal with
the task attribute values. Valued attributed are at-
tached to the states in such a way that usual learning
and smoothing techniques can be applied as shown
in the paper. As far as we know it is the first ap-
proach based on stochastic languages formally de-
fined to deal with dialog tasks. Section 2 presents
spoken dialog systems as a statistical, and interac-
tive, pattern recognition problem.

Section 3 summarizes basic concepts related to
stochastic regular bi-languages and then proposes
a probabilistic finite-state bi-automata to model di-
alogs. We then extend this proposal to define an at-
tributed model in Section 4. In Section 5 we deal
with learning and smoothing procedures as well as
with dialog generation and human-machine interac-
tion tasks. Finally some concluding remarks are pre-
sented in Section 6

2 Spoken Dialog Systems

A classical pattern recognition system derives an
hypothesis from some input stimulus, according to
some previously obtained model. Let us now con-
sider an SDS as an interactive pattern recognition
system (Toselli et al., 2011). Let h be the an hypoth-
esis or output that the dialog manager of an SDS pro-
poses. Then the user provides some feedback sig-

Model
Adaptative 
Learning

Dialog Manager
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f

h

h

ASR

d

d

Model Learning

Dialog manager
h

f

Learning

Simulated
 user

Model

h

ASR

d

d

Figure 1: a) Diagram of an SDS where a Dialog Manager
provides an hypothesis h given the previous hypothesis
and a decoding d of a user feedback f . b) In the next
interaction step a Simulated User provides the feedback
f given its previous feedback and the system hypothesis
h.

nals, f , which iteratively help the dialog manager to
refine or to improve its hypothesis until it is finally
accepted by the user, as the diagram in Figure 1 a)
shows. The hypotheses of the dialog manager are
usually called actions in SDS literature. These ac-
tions typically consist in machine turns that include
queries to a database to get the information required
by the user, questions to the user to complete the
data the system needs to fulfill user goals, strategies
to recover recognition or understanding errors, turns
providing information to the user as well as greeting
turns.

A basic simplification is to ignore the user feed-
back except for the last interaction or hypothesis h′.
Assuming the classical minimum-error criterion the
Baye’s decision rule is simplified to maximize the
posterior P (h|h′, f), and a best hypothesis ĥ is ob-
tained as follows:

ĥ = arg max
h∈H

P (h|h′, f) (1)

This maximization procedure defines the way the
dialog manager of an SDS chooses the best hypothe-
sis in the space of hypotheses H, i.e. the best action
at each interaction step, given the previous hypoth-
esis h′ and the user feedback f . However, alterna-
tive criteria could also be considered to make this
decision. In fact, the strategy of dialog managers
is usually based on maximizing the probability of
achieving the unknown user goals at the end of the
interaction procedure while minimizing the cost of
getting them (Williams and Young, 2007).
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In an SDS, the interpretation of the user feedback
f can not be considered a deterministic process. In
fact the space of decoded feedbacks D is the output
of an ASR system. Thus a best hypothesis can be
obtained as follows (Toselli et al., 2011; Torres et
al., 2012):

ĥ = arg max
h∈H

∑

d∈D
P (h, d|h′, f)

≈ arg max
h∈H

max
d∈D

P (h|d, h′)P (f |d)P (d|h′)

where f is the user turn, d is the decoding of the user
turn, h is the hypothesis or the output produced by
the system and h′ is the history of the dialog.

A suboptimal approach can be considered through
a two step decoding: find first an optimal user feed-
back d̂ and then, use d̂ to decode system hypothesis
ĥ as follows:

d̂ = arg max
d∈D

P (f |d)P (d|h′) (2)

ĥ ≈ arg max
h∈H

P (h|d̂, h′) (3)

Simulated User
The development of a complete SDS requires an on-
line learning to train the dialog manager strategy.
Therefore, a large amount of dialogues is needed to-
gether with real users with different goals, expecta-
tions and behaviors. Thus, statical dialog managers
are usually trained by simulated users (Levin et al.,
2000). A simulated user must provide the feedback
f to the system at each interaction step. The user
feedback f depends on its previous feedback f ′ ac-
cording to some unknown distribution P (f |f ′, h),
which represents the user response to the history of
system hypotheses and user feedbacks. This distri-
bution considers the user behavior and stands for the
user modelMU and can also be defined considering
now the user point of view. However, feedback f ′

produced by the user in the previous interaction is
not corrupted by any noisy channel, such as an ASR
system, before arriving to the user again. Thus, a
deterministic decoding d : F → D maps each user
turn signal into its corresponding unique decoding
d′ = d(f ′) before arriving to the user model. Con-
sequently the best decoded user feedback d̂ is the
one that maximizes the posterior PMU (d|d′, h)

d̂ = arg max
d∈D

P (d|d′, h) ≈ arg max
d∈D

PMU (d|d′, h)

(4)

Dialog
Manager

fi+1

ASR

MACHINE TURN USER TURN

Dialog
Manager

ASR

fi+2

di+2

hi+1hi hi+2

d(fi)
d(fi+1) d(fi+2)

MACHINE TURN USER TURN

di di+1

hi+1 hi+2

Figure 2: User-Manager interaction steps

where d̂ is estimated using only the hypothesis pro-
duced by the system and the feedback produced by
the user in the previous interaction step according to
its user model. Figure 1 b) shows a simulated user
interacting with a dialog manager according with a
model of the user behavior. Equation (4) represents
the way the user model decides the feedback to be
produced at each interaction step. As in the case
of the dialog manager, alternative criteria could be
also considered to simulate the user behavior. In
fact, many simulated user models can be found in
the bibliography related to SDSs (Levin et al., 2000;
Georgila et al., 2006; Lee and Eskenazi, 2012b).
Figure 2 shows some user-manager interaction steps.

3 Probabilistic Finite State Bi-Automata to
model Dialogs

In this section we are defining a probabilistic finite-
state model to deal with both the dialog manager hy-
pothesis probability distribution P (h|d, h′) and the
user feedback probability distribution P (d|h, d′).
The model will be able to generate dialogs as alter-
native sequences of dialog manager hypothesis h̃i
and decoding of user feedbacks d̃i as in Figure 2.

Some basic definitions

We first summarize the basic definitions of bi-string
and stochastic regular bi-language provided by Tor-
res and Casacuberta (2011). Let Σ and ∆ be two
finite alphabets and Σ≤m and ∆≤n, the finite sets
of sequences of symbols in Σ and ∆ of length up
to m and n respectively. Let Γ ⊆ (Σ≤m × ∆≤n)
be a finite alphabet (extended alphabet) consisting
of pairs of strings, that we call extended symbols,
(s1 . . . si : t1 . . . tj) ∈ Γ such that s1 . . . si ∈ Σ≤m

and t1 . . . tj ∈ ∆≤n with 0 ≤ i ≤ m and 0 ≤ j ≤ n.
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Definition 3.1. A bi-language is a set of strings over
an extended alphabet Γ, i.e., a set of strings of the
form b = b1 . . . bk such that bi ∈ Γ for 0 ≤ i ≤ k.
A string over an extended alphabet Γ will be called
bi-string.

Torres and Casacuberta (2011) defined a stochas-
tic bi-language as follows:

Definition 3.2. Given two finite alphabets Σ and ∆,
a stochastic bi-language B is a probability distribu-
tion over Γ∗ where Γ ⊆ (Σ≤m ×∆≤n), m,n ≥ 0.
Let z = z1 . . . z|z| be a bi-string such that zi ∈ Γ
for 1 ≤ i ≤ |z|. If PrB(z) denotes the probabil-
ity of the bi-string z under the distribution B then∑

z∈Γ∗ PrB(z) = 1.

Model definition

Let Σ be the finite alphabet of semantic symbols pro-
vided by some speech understanding system. Thus,
d̃i = d1 . . . d|d̃i| ∈ Σ≤m represents the decoding of
a user feedback f . Let now ∆ be the finite alpha-
bet of dialog acts that compose each of the hypothe-
ses h̃i = h1 . . . h|h̃i| ∈ ∆≤n provided by the dialog
manager. Let z be a bi-string over the extended al-
phabet Γ ⊆ Σ≤m ×∆≤n such as z : z = z1 . . . z|z|,
zi = (d̃i : h̃i) where d̃i = d1 . . . d|d̃i| ∈ Σ≤m

and h̃i = h1 . . . h|h̃i| ∈ ∆≤n. Extended symbols

(d̃i : h̃i) ∈ Γ have been obtained through some
alignment between Σ≤m and ∆≤n, i.e. between
pairs of user feedbacks decoding provided at a user
turn and dialog manager hypotheses provided at the
next machine turn.

Let us now define a Dialog Model DM as
a Deterministic and Probabilistic Finite-State Bi-
Automaton (Torres and Casacuberta, 2011) DM =
(Σ,∆,Γ, Q, δ, q0, Pf , P ) where

• Σ and ∆ are two finite alphabets representing
semantic symbols provided by the user and di-
alog acts provided by the dialog manager re-
spectively, Γ is an extended alphabet such that
Γ ⊆ (Σ≤m×∆≤n), m,n ≥ 0. ε represents the
empty symbol for both alphabets, i.e., ε ∈ Σ,
ε ∈ ∆ and (ε̃ : ε̃) ∈ Γ. To simplify let ε̃ be ε.

• Q = QM
⋃
QU is a finite set of states la-

belled by bi-strings (d̃i : h̃i) ∈ Γ. The set
QM includes machine states before a machine

turn providing an hypothesis and the set QU in-
cludes user states before providing a feedback.

• δ ⊆ Q × Γ × Q is the union of two sets of
transitions δ = δM

⋃
δU as follows:

– δM ⊆ QM × Γ × QU is a set of tran-
sitions of the form (q, (ε : h̃i), q

′) where
q ∈ QM, q′ ∈ QU and (ε : h̃i) ∈ Γ

– δU ⊆ QU ×Γ×QM is a set of transitions
of the form (q, (d̃i : ε), q′) where q ∈ QU ,
q′ ∈ QM and (d̃i : ε) ∈ Γ

• q0 ∈ QM is the unique initial state and it is
labelled as (ε : ε).

• Pf : Q → [0, 1] is the final-state probability
distribution

• P : δ → [0, 1] defines transition probability
distributions (P (q, b, q′) ≡ Pr(q′, b|q) for b ∈
Γ and q, q′ ∈ Q) such that:

Pf (q) +
∑

b∈Γ,q′∈Q
P (q, b, q′) = 1 ∀q ∈ Q (5)

where a transition (q, b, q′) is completely de-
fined by q and b. Thus, ∀q ∈ Q, ∀b ∈ Γ
|{q′ : (q, b, q′)}| ≤ 1

Let z be a bi-string over the extended alphabet
Γ ⊆ Σ≤m × ∆≤n such as z : z = z1 . . . z|z|, zi =

(d̃i : h̃i) . z represents a dialog when zi is of the
form zi = (ε : h̃i) for machine turns mi and zi =
(d̃i : ε) for user turns ui. Both, user and machine
turns can also be null bi-strings of the form (ε : ε).
Let now θ = (q0, z1, q

′
1, z2, q2, . . . , q

′
|z|−1, z|z|, q|z|),

qi ∈ QM, q′i ∈ QU , be a path for z in DM. The
probability of generating θ is:

PrDM(θ) =



|z|∏

j=1

P (qj−1, zj , q
′
j)


 · Pf (q|z|) (6)

DM is unambiguous. Then, a given bi-string z can
only be generated by DM through a unique valid
path θ(z). Thus, the probability of generating z with
DM is PrDM(z) = PrDM(θ(z)).

Figure 3 shows a DM where bold lines define
path θ matching some bi-string.
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Figure 3: Probabilistic bi-automata DM defined in Sec-
tion 3. Bold lines show a path θ matching some bi-string

Example Consider a simple railway infor-
mation system where the alphabet of se-
mantic units provided by the speech un-
derstanding system is defined as Σ =

{Question, Sched, dest, orig, confirm y, confirm n,

want, . . . } and the alphabet of dialog acts pro-
vided by the dialog manager is defined as ∆ =

{Open,Close, Consult, Inf dest, Ask confirm,Ask
day, . . . }. Figure 4 shows a piece of a dia-

log labelled by sequences of symbols of Σ and
∆. This dialog is represented by the bi-string
z = {([ε] : [Open]) ([Question][Sched][dest] : [ε]) ([ε] :

[Consult sched][Inf dest][Ask confirm]) ([Confirm y]

[want][orig] : [ε]) ([ε] : [Ask day]) ([Confirm y][day] :

[ε])}.

Machine: Welcome to the railway information system.
Can I help you?
M:[Open]
User: I would like some information on train schedules
to Edinburgh.
U:[Question][Sched][dest]
Machine: OK. I am looking for train schedules to Edin-
burgh. Is that ok?
M: [Consult sched][Inf dest] [Ask confirm]
User: Yes. I would like to travel from London.
U:[Confirm y][want][orig]
Machine: Are you traveling today?
M: [Ask day]
User: Yes, today
U: [Confirm y][day]
......

Figure 4: An example of a dialog in a railway information
task. Machine turns are labelled as sequences h̃i ∈ ∆≤n

and User turns are labelled as sequences of decoding units
d̃i ∈ Σ≤m

Let us now consider a dialog model DM inferred

from a training corpus consisting of dialogs of the
railway information task such as the one shown in
Figure 4. The sequence of states that correspond
to the generation of the bi-string z is shown in
the first column of Table 1. The second column
shows the corresponding state labels as well as
the next machine or user turn. The probability of
bi-string z being generated by DM is calculated as
PrDM(z) = PrDM(θ(z)) according to Equation
6 where θ is the path for z in DM, i.e. θ =
(q0, z1, q1, z2, q2, z3, q3, z4, q4, z5, q5, z6, q6, . . . ),
q0, q2, q4, q6 ∈ QM, q1, q3, q5 ∈ QU as shown
in Table 1, z1, z3, z5 represent dialog manager
hypotheses of the form zi = (ε : h̃i) and z2, z4, z6

represent user feedback decodings of the form
zi = (d̃i : ε).

4 Attributed model

The Dialog Model DM defined in Section 3 con-
siders actions proposed by the dialog manager, i.e.
sequences of dialog acts h̃i and sequences of decod-
ing of user feedbacks d̃i. Additionally, each machine
and/or user state need to be labelled with the values
of all relevant internal variables, which can be up-
dated after each user turn. Thus, an additional alpha-
bet appears to represent valued attributes of these in-
ternal variables, thus leading to an attributed model.

Attributed finite automata were proposed for syn-
tactic pattern recognition in the nineties (Koski et
al., 1995). The concept of attributed automata
is a generalization of a finite automaton with at-
tributes attached to states and contextual conditions
as well as computational relations attached to tran-
sitions (Meriste, 1994). A transition is labelled
with an input symbol, a context condition and an
attribute evaluation function. Attributed automata
specify context-sensitive languages. However in
cases of finite domains of attributes an attributed
automaton can be transformed to a finite automa-
ton which simulates its external behavior, i.e. the
attributed recognizer. This simulation is based on
homomorphisms (Meriste, 1994). Stochastic ver-
sions of attributed grammar were then developed
(Abney, 1997). However Abney (1997) showed that
attribute-value grammars cannot be modeled ade-
quately using statistical techniques which assume
that statistical dependencies are accidental. More-
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Table 1: The sequence of states along with their state labels that correspond to the generation of the bi-string z = {([ε] :

[Open]) ([Question][Sched][dest] : [ε]) ([ε] : [Consult sched][Inf dest][Ask confirm]) ([Confirm y][want][orig] : [ε]) ([ε] :

[Ask day]) ([Confirm y][day] : [ε])}. This bi-string represents the dialog in the Example

state state label (d̃i : h̃i) and turn state attributes
q0 ∈ QM ([ε] : [ε]) none

M:[Open]
q1 ∈ QU ([ε] : [Open]) none

U:[Question][Sched][dest]
q2 ∈ QM ([Question][Sched][dest] : [Open]) Sched 0.75 dest 0.25

M: [Consult sched][Inf dest] [Ask confirm]
q3 ∈ QU ([Question][Sched][dest] : [Consult sched][Inf dest][Ask confirm]) Sched 0.75 dest 0.25

U:[Confirm y][want][orig]
q4 ∈ QM ([Confirm y][want][orig] : [Consult sched][Inf dest][Ask confirm]) Sched c dest c orig 0.75

M: [Ask day]
q5 ∈ QU ([Confirm y][want][orig] : [Ask day]) Sched c dest c orig 0.75

U: [Confirm y][day]
q6 ∈ QM ([Confirm y][day] : [Ask day]) Sched c dest c orig c day 0.50

......

over, hard computational problems arise that need
specific parser methods (Osborne, 2000; Malouf and
van Noord, 2004).

In this section we propose an extension of
the Dialog Model previously defined by adding
a new alphabet of attributes. Assuming only
discrete domains for the attributes they can be
easily represented by a third string to be added
to the state labels. Let us consider a dialog task
characterized by a discrete set of internal variables
such as date, hour, time, dest, .... These internal
variables are a subset of the semantic decoding
set, i.e. the subset of Σ set that consists of task
dependent symbols. These internal variables
can lead to simple known, unknown attributes
that can just be represented by the presence or
absence of the attribute at each state. Thus, the
new alphabet represents just the knowledge of the
value as Ω = {day, hour, time, dest, ...}. But we
may desire a more detailed description of these
values, such as confirmed, known to some extend,
unknown,... where known to some extend can be
quantified by a short set of confidence scores. Thus,
the new alphabet is now Ω = {day c, day 0.75,
day 0.5, day 0.25, hour c, hour 0.75, hour 0.5,
hour 0.25, ...} where day c means that the value of
attribute day is confirmed and day 0.75, day 0.5
and day 0.25 represent different confidence scores
for the attribute value.

The model DM previously defined in Section 3
can now be extended to get an attributed model

A DM by just adding another finite alphabet as fol-
lows A DM = (Σ,∆,Γ,Ω, Q, δ, q0, Pf , P ) where

• Σ and ∆ are two finite alphabets representing
semantic symbols provided by user and dialog
acts provided by the dialog manager respec-
tively, as defined in Section 3. Ω is a new finite
set of symbols representing discrete valued at-
tributes related with the dialog task.

• Q = QM
⋃
QU is a finite set of states labelled

by bi-strings (d̃i : h̃i) ∈ Γ where now the val-
ued attributes are also included w̃i ∈ Ω∗ as fol-
lows: [(d̃i : h̃i), w̃i]

• δ ⊆ Q × Γ × Q is the union of two sets of
transitions δ = δM

⋃
δU , as defined in Section

3.

• q0 ∈ QM is the unique initial state and it is
labelled as [(ε : ε), ε]

• Pf : Q → [0, 1] and P : δ → [0, 1] define the
final and transition probability distributions as
before in Section 3.

The knowledge of the attributes leads to different
strategies for the dialog manager. A score of 0.25
would lead to a ask confirm dialog act whereas a
confirmed value wouldn’t need such a confirmation.
Thus, the transition function δ ⊆ Q × Γ × Q and
the transition probability distribution P : δ → [0, 1]
have a strong dependency of internal attributed at-
tached to the states.
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Example Let A DM be an attributed model
inferred from a training corpus consisting
of dialogs of the railway information task
such as the one shown in Figure 4 where
the attribute alphabet has been defined as
Ω = {Sched c, ..., Sched 0.25, dest c, ...., orig c,
orig 0.25, . . . }. Third column in Table 1 shows the
attributes attached to each state of the path θ for
the bi-tring z when generated by the A DM. The
attributes first appear after the first user turn, which
ask for schedules and inform about destination. But
the ASR provides low confidence about the recog-
nized values. Thus, the next machine hypothesis is
an Ask confirm dialog act. Finally machine state
q6 has attached two confirmed attributes and one
more with some confidence score.

5 Putting models to work

In this section we deal with practical issues related
to the use of the proposed models. We first deal with
the learning and smoothing procedures. We then
show two different application tasks: dialog genera-
tion and human-machine interaction.

Learning and smoothing models

Get a dialog corpus consisting of pairs of user and
system turns. Then get the model topology as well as
an initial maximum likelihood estimation of the pa-
rameters of both dialog manager and simulated user
probability distributions. This model needs to deal
also with unseen events, i.e. unknown situations at
training corpus. The dialog manager can provide an
hypothesis (ε : h̃i) that does not lead to any of the
existing states created when trained form the dialog
corpus. In the same way simulated user can provide
a user feedback (d̃i : ε) not appearing in the training
corpus, so not in the model. The model needs to be
generalized in order to deal with any hypothesis or
user feedback. Thus a back-off smoothing strategy
needs to be carried out. This strategy creates new
edges to existing nodes, when possible. Alterna-
tively it searches for similar nodes to create the new
edges (Torres et al., 2012). Thus the similarity be-
tween pairs of states needs to be estimated. States of
the proposed models are labelled by [(d̃i : h̃i), w̃i],
(d̃i : h̃i) ∈ Γ ⊆ Σ≤m × ∆≤n and w̃i ∈ Ω∗. In
practice, a string consisting of the concatenation of

d̃i, h̃i and w̃i is used. As a consequence string met-
rics like Levenshtein distance can be easily used to
measure similarity between pairs of states (Georgila
et al., 2006).

Generating dialogs: cooperative models

Figure 3 shows the way to generate dialogs with the
proposed model. Let us train two models, one acts
as a dialog manager and provides hypotheses ac-
cording to Equation 3 and the other one acts as a
simulated user according to Equation 4. However,
different strategies can be defined in order to get a
higher variability of dialogs. As an example Tor-
res et al. (2012) proposes a random user feedback
choice of decoded signals among the one defined in
each state. Preliminary experiments were carried to
generate a set of dialogs by training a model from di-
alog corpus representing real man machine dialogs
aimed to get bus information systems. These exper-
iments showed manageable model sizes, good task
completion rates and good model behaviors.

On the other hand this formulation also suggests
the joint decoding of user and machine turns. Find
first a suboptimal best path θ̂ with a maximization
approach and then estimate the best bi-string as fol-
lows:

θ̂ ≈ arg max
θ∈g(z)

PrA DM(θ) (7)

ẑ = arg max
z
PrA DM(θ̂(z)) (8)

where g(z) denotes the set of possible paths in
A DMmatching z and ẑ = z1 . . . z|z|, zi = (d̃ : h̃i)
represents the best estimated dialog consisting of bi-
strings zi of the form zi = (ε : h̃i) for machine turns
and on the form zi = (d̃i : ε) for user turns.

Human machine interaction

The proposed models can also be used to model
SDS. The first model obtained from a dialog corpus
would need to be improved by defining different dia-
log manager strategies and simulated user behaviors.
Error recovery strategies need also be defined to deal
with ASR errors. Then run the system until desired
dialog goals are successfully achieved for different
simulated user behaviors. Finally run the SDS with
real users and use adaptive learning to obtain a dia-
log manager adapted to real interaction feedbacks.
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6 Concluding remarks and future work

Some statistical pattern recognition techniques have
been proposed to deal with spoken dialog systems.
Specifically in the interactive pattern recognition
framework the joint probability distribution over
some semantic language provided by the speech
understanding system and the language of actions
provided by the dialog manager need to be esti-
mated. In this work we have proposed to model
this joint probability distribution by stochastic reg-
ular bi-languages that have also been successfully
used for machine translation purposes. To this end
a Probabilistic Finite State Bi-Automaton has been
defined in the paper. As an extension to this model
we have also proposed an attributed model that al-
lows to deal with the task attribute values. Valued
attributed are attached to the states in such a way
that usual learning and smoothing techniques can be
applied. As far as we know it is the first approach
based on stochastic bi-languages formally defined to
deal with dialog tasks.
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Abstract

We present a finite state technology based sys-
tem capable of performing metrical scansion
of verse written in English. Scansion is the
traditional task of analyzing the lines of a
poem, marking the stressed and non-stressed
elements, and dividing the line into metrical
feet. The system’s workflow is composed of
several subtasks designed around finite state
machines that analyze verse by performing
tokenization, part of speech tagging, stress
placement, and unknown word stress pattern
guessing. The scanner also classifies its input
according to the predominant type of metrical
foot found. We also present a brief evaluation
of the system using a gold standard corpus of
human-scanned verse, on which a per-syllable
accuracy of 86.78% is reached. The program
uses open-source components and is released
under the GNU GPL license.

1 Introduction

Scansion is a well-established form of poetry anal-
ysis which involves marking the prosodic meter of
lines of verse and possibly also dividing the lines
into feet. The specific technique and scansion nota-
tion may differ from language to language because
of phonological differences. Scansion is tradition-
ally done manually by students and scholars of po-
etry. In the following, we present a finite-state based
software tool—ZeuScansion— for performing this
task with English poetry, and provide a brief evalua-
tion of its performance on a gold standard corpus of
poetry in various meters.

1.1 Scansion

Conventionally, scanning a line of poetry should
yield a representation where every syllable is
marked with a level of stress—typically two or more
levels are used—and groups of syllables are divided
into units of feet. Consider, for example, the follow-
ing line from John Keats’ poem To autumn.

To swell the gourd, and plump the hazel shells

Here, a natural analysis is as follows:

- ’ - ’ - ’ - ’ - ’
To swell |the gourd |and plump |the haz|el shells

We use the symbol ’ to denote marked (ictic) syl-
lables, and - to denote unmarked ones (non-ictic).
That is, we have analyzed the line in question to fol-
low a stress pattern

DE-DUM DE-DUM DE-DUM DE-DUM DE-DUM

and also to consist of five feet of two syllables each
in the order unstressed-stressed. Indeed, this is the
most common meter in English poetry: iambic pen-
tameter.

The above example is rather clear-cut. How a par-
ticular line of verse should be scanned, however, is
often a matter of contention. Consider a line from
the poem Le Monocle de Mon Oncle by Wallace
Stevens:

I wish that I might be a thinking stone
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Here, matters are much more murky. Regarding
the ambiguity in this line, the poet Alfred Corn notes
that

. . . there is in fact room for disagree-
ment about the scansion of this line. But
Stevens is among the most regular of the
metrists, and he probably heard it as five
iambic feet.1 Still, an alternative scansion
is: one iamb, followed by a pyrrhic foot,2

followed by two strong stresses, followed
by two iambs.

In line with the above commentary, the following
represents several alternative analyses of the line in
question:

Examp.: I wish that I might be a thinking stone

1st: - ’ - ’ - ’ - ’ - ’

2nd: - ’ - - ’ ’ - ’ - ’

3rd: - ’ - ’ ’ ’ - ’ - ’

4th: - ’ - - - ’ - ’ - ’

The first variant is the meter (probably) intended
by the author. The second line is Corn’s alternative
scansion. The third and fourth lines show the out-
put of the software tools Scandroid and ZeuScan-
sion, respectively.

In short, evaluating the output of automatic scan-
sion is somewhat complicated by the possibility of
various good interpretations. As we shall see below,
when evaluating the scansion task, we use a gold
standard that addresses this and accepts several pos-
sible outputs as valid.

2 The output of ZeuScansion

As there exist many different established systems
of scansion, especially as regards minor details, we
have chosen a rather conservative approach, which
also lends itself to a fairly mechanical, linguistic rule
based implementation. In the system, we distinguish
three levels of stress, and mark each line with a stress
pattern, as well as make an attempt to analyze the

1Iambic foot: A weak-stressed syllable followed by a
strong-stressed syllable.

2Pyrrhic foot: Two syllables with weak stress.

Disyllabic feet

- - pyrrhus
- ’ iamb
’ - trochee
’ ’ spondee

Trisyllabic feet

- - - tribrach
’ - - dactyl
- ’ - amphibrach
- - ’ anapest
- ’ ’ bacchius
’ ’ - antibacchius
’ - ’ cretic
’ ’ ’ molossus

Table 1: Metrical feet used in English poetry

predominant format used in a poem. The follow-
ing illustrates the analysis produced by our tool of a
stanza from Lewis Carroll’s poem Jabberwocky:

1 He took his vorpal sword in hand:
2 Long time the manxome foe he sought-
3 So rested he by the Tumtum tree,
4 And stood awhile in thought.

1 - ’ - ‘- ’ - ’
2 ’ ’ - ‘’ ’ - ’
3 ’ ‘- - - - ‘- ’
4 - ’ -’ - ’

In addition to this, the system also analyzes the
different types of feet that make up the line (dis-
cussed in more detail below). ZeuScansion sup-
ports most of the common types of foot found in En-
glish poetry, including iambs, trochees, dactyls, and
anapests. Table 1 shows a more complete listing of
the type of feet supported.

2.1 Metrical patterns
Once we have identified the feet used in a line, we
can analyze for each line the most likely meter used.
This includes common meters such as:

• Iambic pentameter: Lines composed of 5
iambs, used by Shakespeare in his Sonnets.

• Dactylic hexameter:3 Lines composed of 6
3Also known as heroic hexameter
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dactyls, used by Homer in the Iliad.

• Iambic tetrameter: Lines composed of 4 iambs,
used by Robert Frost in Stopping by Woods on
a Snowy Evening.

For example, if we provide Shakespeare’s Sonnets
as input, ZeuScansion classifies the work as iambic
pentameter in its global analysis (line-by-line output
omitted here):

Syllable stress _’_’_’_’_’
Meter: Iambic pentameter

3 Related work

There exist a number of projects that attempt to au-
tomate the scansion of English verse. In this section,
we present some of them.

Scandroid (2005) is a program that scans En-
glish verse in iambic and anapestic meter, written by
Charles O. Hartman (Hartman, 1996). The source
code is available.4 The program can analyze poems
and check if their stress pattern is iambic or anapes-
tic. But, if the input poem’s meter differs from
those two, the system forces each line into iambic
or anapestic feet, i.e. it is specifically designed to
only scan such poems.

AnalysePoems is another tool for automatic scan-
sion and identification of metrical patterns written
by Marc Plamondon (Plamondon, 2006). In contrast
to Scandroid, AnalysePoems only identifies patterns;
it does not impose them. The program also checks
rhymes found in the input poem. It is reportedly
developed in Visual Basic and the .NET framwork;
however, neither the program nor the code appear to
be available.

Calliope is another similar tool, built on top of
Scandroid by Garrett McAleese (McAleese, 2007).
It is an attempt to use linguistic theories of stress
assignment in scansion. The program seems to be
unavailable.

Of the current efforts, (Greene et al., 2010) ap-
pears to be the only one that uses statistical meth-
ods in the analysis of poetry. For the learning pro-
cess, they used sonnets by Shakespeare, as well as
a number of others works downloaded from the In-
ternet.5 Weighted finite-state transducers were used

4http://oak.conncoll.edu/cohar/Programs.htm
5http://www.sonnets.org

for stress assignment. As with the other documented
projects, we have not found an implementation to re-
view.

4 Method

Our tool is largely built around a number of rules
regarding scansion developed by Peter L. Groves
(Groves, 1998). It consists of two main components:

(a) An implementation of Groves’ rules of
scansion—mainly a collection of POS-based
stress-assignment rules.

(b) A pronunciation lexicon together with an out-
of-vocabulary word guesser.

(a) Groves’ rules
Groves’ rules assign stress as follows:

1. Primary step: Mark the stress of the primarily
stressed syllable in content words.6

2. Secondary step: Mark the stress of (1) the sec-
ondarily stressed syllables of polysyllabic con-
tent words and (2) the most strongly stressed
syllable in polysyllabic function words.7

In section 5 we present a more elaborate example
to illustrate how Groves’ rules are implemented.

(b) Pronunciation lexicon
To calculate the basic stress pattern of words nec-
essary for step 1, we primarily use two pronuncia-
tion dictionaries: The CMU Pronouncing Dictionary
(Weide, 1998) and NETtalk (Sejnowski and Rosen-
berg, 1987). Each employs a slightly different nota-
tion, but they are similar in content: they both mark
three levels of stress, and contain pronunciations and
stress assignments:
NETTALK format:
abdication @bdIkeS-xn 2<>0>1>0<<0

CMU format:
INSPIRATION IH2 N S P ER0 EY1 SH AH0 N

The system uses primarily the smaller NETtalk
dictionary (20,000 words) and falls back to use
CMU (125,000 words) in case a word is not found

6Content words are nouns, verbs, adjectives, and adverbs.
7Function words are auxiliaries, conjunctions, pronouns,

and prepositions.
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Figure 1: Structure of ZeuScansion

in NETtalk. The merged lexicon, where NETtalk
pronunciations are given priority, contains some
133,000 words.

5 ZeuScansion: Technical details

The structure of the system is divided into the sub-
tasks shown in figure 1. We begin with preprocess-
ing and tokenization, after which words are part-of-
speech tagged. Following that, we find the default
stresses for each word, guessing the stress patterns
if words are not found in the dictionary. After these
preliminaries, we apply the steps of Groves’ scan-
sion rules and perform some cleanup of the result.

The toolchain itself is implented as a chain
of finite-state transducers using the foma8 toolkit
(Hulden, 2009), save for the part-of-speech tagger
which is a Hidden Markov Model (HMM) imple-
mentation (Halácsy et al., 2007). We use Perl as a
glue language to communicate between the compo-
nents.

8http://foma.googlecode.com

Preparation of the corpus
After tokenization,9 we obtain the part of speech
tags of the words of the poem. For the POS-tagger,
we trained Hunpos10 (Halácsy et al., 2007) with the
Wall Street Journal English corpus (Marcus et al.,
1993). While other more general corpora might be
more suitable for this task, we only need to distin-
guish between function and non-function words, and
thus performance differences would most likely be
slight.

Once the first process is completed, the system
starts applying Groves’ rules, which we have en-
coded as finite-state transducers. To apply the rules,
however, we must know the stress pattern of each
word. The main problem when assigning patterns
is that the pronunciation of some words will be un-
known, even though the dictionaries used are quite
large. This often occurs because a word is either
misspelled, or because the poem is old and uses ar-
chaic vocabulary or spellings.

The strategy we used to analyze such words was
to find a ‘close’ neighboring word in the dictionary,
relying on an intuition that words that differ very lit-

9https://code.google.com/p/foma/wiki/FAQ
10https://code.google.com/p/hunpos
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tle in spelling from the sought-after word are also
likely pronounced the same way.

Finding the closest word
In order to find what we call the ‘closest word’

in the dictionary, we construct a finite-state trans-
ducer from the existing dictionaries in such a way
that it will output the most similar word, according
to spelling, using a metric of word distances that we
have devised for the purpose. Among other things,
the metric assigns a higher cost to character changes
toward the end of the word than to those in the be-
ginning (which reflect the onset of the first syllable),
and also a higher cost to vowel changes. Naturally,
fewer changes overall also result in a lower cost. For
example, in the following line from Shakespeare’s
Romeo and Juliet:

And usest none in that true use indeed

we find the word usest, which does not appear in our
lexicon.11 Indeed, for this word, we need to make
quite a few changes in order to find a good ‘close’
match: wisest.

Groves’ rules
Once we have obtained the stress pattern for each

word, we begin to apply Groves’ rules: to stress the
primarily stressed syllable in content words. This is
implemented with a finite state transducer built from
replacement rules (Beesley and Karttunen, 2003)
that encode the steps in the rules. In our Hamlet
example, for instance, our input to this stage looks
like this:

to+-+TO be+’+VB or+-+CC not+’+RB to+-+TO ...
that+-+IN is+-+VBZ the+-+DT question+’-+NN

the+-+DT uncertain+-’-+JJ sickly+‘-+JJ
appetite+’--+NN to+-+TO please+’+VB

Next, we apply the second rule—that is, we mark
the secondarily stressed syllables of polysyllabic
content words and the most strongly stressed sylla-
ble in polysyllabic function words:
to+-+TO be+’+VB or+-+CC not+’+RB to+-+TO ...
that+-+IN is+-+VBZ the+-+DT question+’-+NN

the+-+DT uncertain+‘’-+JJ sickly+‘-+JJ
appetite+’-‘+NN to+-+TO please+’+VB

11The archaic second-person singular simple present form of
the verb use.

The last step is to remove all the material not
needed to work with stress patterns. In this part, we
get as input a sequence of tokens with a specified
structure:

inspiration+‘-’-+NN

For the cleanup process, we use a transducer that
removes everything before the first + character and
everything after the second + character. It next re-
moves all the + characters, so that the only result we
get is the stress structure of the input word.

Global analysis
After the stress rules are applied, we attempt to

divide lines into feet in order to produce a global
analysis of the poem. Since foot-division can be am-
biguous, this is somewhat non-trivial. Consider, for
instance, the meter:

-’--’--’--’-

which could be analyzed as consisting mainly of (1)
amphibrachs [-’-], (2) trochees [’-] and (3) iambs [-
’]. All three patterns appear four times in the line.
For such cases, we have elaborated a scoring sys-
tem for selecting the appropriate pattern: we give
a weight of 1.0 for hypothetical disyllabic patterns,
and a weight of 1.5 for trisyllabic ones. In this exam-
ple, this would produce the judgement that the struc-
ture is amphibrachic tetrameter (1.5 × 4 matches =
6).

Foot Pattern No matches Score

Amphibrach -’- 4 6
Iamb -’ 4 4
Trochee ’- 4 4
Anapest ’– 3 4.5
Dactyl ’– 3 4.5
Pyrrhus - - 3 3

6 Evaluation

As the gold standard material for evaluation, we
used a corpus of scanned poetry, For Better For
Verse, from the University of Virginia.12 We ex-
tracted the reference analyses from this website,
which originally was built as an interactive on-line
tutorial to train people in the scansion of English po-
etry in traditional meter. Sometimes several analyses

12http://prosody.lib.virginia.edu

22



Scanned lines Correctly scanned

No CWF 759 173
With CWF 759 199
No CWF Accuracy: 22.79%
With CWF Accuracy: 26.21%

Scanned sylls. Correctly scanned

No CWF 7076 5802
With CWF 7076 5999
No CWF Accuracy: 81.995%
With CWF Accuracy: 86.78%

Table 2: ZeuScansion evaluation results against the For
better or Verse corpus. The CWF label indicates whether
the closest word finder was used for assigning stress to
unknown words.

are given as correct. The results of the evaluation
are given in table 2. As seen, 86.78% of syllables
are scanned correctly in the best configuration. We
include scores produced without the word guesser
component to show its significance in the process.

For checking the number of correctly scanned syl-
lables on each line, we use Levenshtein distance in
comparing against the gold standard. We do this
in order not to penalize a missing or superfluous
syllable—which are sometimes present—with more
than 1 count. For example, the two readings of
Stevens’ poem mentioned in the introduction would
be encoded in the corpus as

-+-+-+-+-+|-+--++-+-+

while our tool marks the line in question as

-+---+-+-+

after conversion to using only two levels of stress
from the original three-level marking. Here, the
minimum Levenshtein distance between the analy-
sis and the reference is one, since changing one -
to a + in the analysis would equal the first ‘correct’
possibility in the gold standard.

Closest word finder

Since the closest word finder has some impact on the
overall quality of the system, we have evaluated that

component separately. Figure 2 shows a graph illus-
trating the increasing coverage of words depending
on distance to the neighboring word used as a pro-
nunciation guide for out-of-vocabulary items. The
first column of the graph (NC) represents the per-
centage of the corpus that could be read using only
the dictionaries, while in the following ones, we
show the improvements we get in terms of cover-
age using various substitutions. The codes that ap-
pear in the lower part of figure 2 refer to the allowed
changes. The first letter can be either B or E. If it is
B, the changes will be made in the beginning of the
word. The character following the hyphen describes
the changes we allow subsequently: for example, VC
corresponds to the change of one vowel and one con-
sonant.

Figure 2: Evaluation of the closest word finder

7 Discussion and future work

In this work, we have presented a basic system for
scansion of English poetry. The evaluation results
are promising: a qualitative analysis of the remain-
ing errors reveals that the system, while still con-
taining errors vis-à-vis human expert judgements,
makes very few egregious errors. The assignment
of global meter to entire poems is also very robust.
We expect to develop the system in several respects.
Of primary concern is to add statistical information
about the global properties of poems to resolve un-
certain cases in a manner consistent with the over-
all structure of a given poem. Such additions could
resolve ambiguous lines and try to make them fit
the global pattern of a poem. Secondly, there is
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still room for improvement in unknown word per-
formance. Also, the part-of-speech tagging process
may be profitably replaced by a deterministic FST-
based tagger such as Brill’s tagger, as presented in
Roche and Schabes (1995). This would allow the
representation of the entire tool as a single FST.

We believe that the availability of a gold-standard
corpus of expert scansion offers a valuable improve-
ment in the quantitative assessment of the perfor-
mance of future systems and modifications.
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Abstract

We propose a novel approach for the max-
string problem in acyclic nondeterminis-
tic weighted FSA’s, which is based on
a convexity-related notion of domination
among intermediary results, and which
can be seen as a generalization of the usual
dynamic programming technique for find-
ing the max-path (a.k.a. Viterbi approxi-
mation) in such automata.

1 Introduction

Let A be an acyclic weighted finite-state automa-
ton (WFSA) on a vocabulary V with weights in the
(extended) set of non-negative reals R∞+ = [0,∞],
which we assume to be combined multiplicatively.

We can consider two problems. The first one,
max-path, is to find the path π of maximum weight
in the automaton, that is, the path that maximizes
the product of the weights associated with its tran-
sitions; the second one, max-string, is to find the
string x in V ∗ that maximizes the sum of the
weights of all the paths that yield x. While the
max-string problem is often the most important in
principle, it is much more difficult to solve than
the max-path problem; in fact (Casacuberta and
de la Higuera, 2000) show that the problem is NP-
hard: they describe a class of acyclic weighted
automata that encode the Satisfiability problem
(SAT) in such a way that identifying the max-
string in such automata in polynomial time would
imply a polynomial solution to SAT. In practice,
one tends to use the max-path solution as a proxy
to the max-string solution; this approximation em-
ploys the Viterbi algorithm (Viterbi, 1967), and is
widely used in speech recognition, machine trans-
lation and other NLP tasks. The contribution of

this paper is to propose a novel approach for the
max-string problem over the “sum-times” semir-
ing Ks ≡ (R∞+ ,+, ·, 0, 1), involving a generaliza-
tion of the Viterbi procedure.

A naive approach to the max-string problem
would consist in enumerating all the paths, sum-
ming the weights of paths corresponding to the
same string, and outputting the maximum string.

Another, more appealing, approach consists
in noting that in the case of a deterministic
weighted automaton A′, the max-string and max-
path problems coincide, and therefore in trying
to determinize A, and then apply the standard
Viterbi algorithm. However, while existing tech-
niques for determinizing a weighted automaton
(Mohri, 1997; Mohri, 2009) work reasonably
well in some practical cases over the “max-times”
semiring (R∞+ ,max, ·, 0, 1),1 they often — rather
counter-intuitively — lead to combinatorial ex-
plosion when working in the sum-times semir-
ing, even in cases where the automaton is acyclic
and where the classical (unweighted) determiniza-
tion of A does not explode (Buchsbaum et al.,
1998).2 While the applications of determinization
cited in (Mohri, 2009) to such domains as speech
recognition tend to focus on the max-times semir-
ing, we are aware of one application where de-
terminization is based on the sum-times semiring,
but in a slightly different formal situation (May
and Knight, 2006). In this paper, the authors gen-
eralize the determinization technique of (Mohri,
1997) from string to tree automata, and then ad-
dress the question of determinizing a weighted tree

1This semiring is isomorphic to the more common “trop-
ical” semiring, through a logarithmic mapping.

2A simple example of a cyclic automaton over the sum-
times semiring which is not determinizable at all is given in
(Aminof et al., 2011).
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automaton generating a set of trees, where each
tree represents a possible translation of a fixed
source sentence, in the context of a syntax-based
SMT system (they also present an application to
data-oriented parsing). In this way they are of-
ten able, at least for short sentences, to find the
translation tree of maximum total weight in rea-
sonable time. A similar technique, directly based
on (Mohri, 1997), but using the sum-times semir-
ing over a string automaton, could presumably
be tempted for the weighted lattices produced by
a phrase-based translation system such as Moses
(Koehn et al., 2007), but we are not aware of any
such attempt.

The novelty of our approach to the max-string
problem is that it bypasses the need for a prelim-
inary determinization of the automaton before ap-
plying Viterbi, but instead proposes to apply a gen-
eralization of Viterbi directly to the original non-
deterministic automaton. Let us now describe this
approach.

Elements of V are called symbols, elements of
V ∗ strings. It will be convenient to assume that
the automaton A has a special form: (i) it has ex-
actly one initial state q0 and one final state qf , (ii)
there is a special “end-of-string” symbol $ in V ,
(iii) $ only appears on transitions to qf , and no
other symbol can appear on such a transition, (iv)
transitions labeled with $ have weight 1 or 0.3

In a nutshell and informally, the main idea
is then the following. Consider a string x =
a1a2 . . . ak. If A were deterministic, then, start-
ing from q0, this string would end in a single state
q and would assign to this state a certain weight
w equal to the product of the weights associated
with the transitions of x; then, if some other string
x′ also ended in q, but with a higher weight w′,
then we would know that x could not be a prefix of
the max-string for A; this observation contains the
essence of the Viterbi procedure: for each state q,
it is sufficient to only “remember” the prefix string
producing the highest weight at q. Now, when A
is non-deterministic, the string x can end in sev-
eral states q1, ..., qm simultaneously, with weights
w1, ..., wm; in this case, if it happens that some

3These conditions are not restrictive, as it is easy to trans-
form any A into this form, by adding to each final state of the
original automaton an outgoing edge of weight 1 with label
$ and target qf . It can be verified that the weight of a string
of symbols a1a2 . . . ak relative to the original automaton is
equal to that of the string a1a2 . . . ak$ relative to the trans-
formed automaton.

other string x′ ends in the same states, but with
weights w′1, ..., w

′
m s.t. w′1 > w1, ..., w

′
m > wm,

then it can be shown that x cannot be a prefix of
the max-string for A, and we can then discard x;
as we will see, we can also discard x under weaker
“domination” conditions, namely when the weight
vector w = (w1, ..., wm) associated with x be-
longs to a certain kind of convex hull of “dom-
inating” vectors associated with a set S of pre-
fix strings. Using this observation, we only need
to explicitely store the set S of dominating prefix
strings; whatever the suffix used to go to the final
state, at least one of these dominating prefixes will
lead to a better result with this suffix than using a
dominated prefix x with the same suffix.

2 Preliminaries

Automata and transition matrices Let us de-
fine U = V \ {$}. The weighted automaton A
can be viewed as associating, with each symbol
a ∈ U a transition matrix, that we will also call a,
of dimension D × D over the non-negative reals
R∞+ , where D is the number of non-final states in
A; the coordinate aij of that matrix is equal to the
weight of the transition of label a between qi and
qj , this weight being null if there is no such tran-
sition. The initial state q0 of the automaton can
be identified with the D-dimensional line vector
(1, 0, ..., 0), and the distribution of weights over
the (non-final) states of A after having consumed
the string a1a2 . . . ak is then given by the D-
dimensional line vector (1, 0, ..., 0) ·a1 ·a2 . . . ·ak,
where the a1, . . . , ak’s are identified with their
matrices.

Due to our assumptions on the symbol $, we can
identify $ with a D-dimensional column vector
(w0, w1, ..., wD−1)>, where wi is equal to 1 or to
0. The weight relative to the automaton of a string
of the form a1a2 . . . ap$ is then obtained by com-
puting the scalar value (1, 0, ..., 0)·a1 ·a2 · · ··ap ·$,
which can also be viewed as a scalar product of a
line vector with the column vector $.

Convex, ortho and ortho-convex hulls We now
need to introduce the notions of convex, ortho, and
ortho-convex hulls. Let d be a positive integer, and
let S be a set (finite or not) of d-dimensional vec-
tors over the non-negative reals. We say that:

• The vector u is in the convex-hull (or c-hull)
of S iff we can write u as a finite sum u =∑

j αjsj , with sj ∈ S, j ∈ [1,m],
∑

j αj =
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Figure 1: The sets {1, 2, 3, 6, 7} [left pane], {1, 2, 3, 4} [middle pane], and {1, 2, 3} [right pane] are
subsets of dominators of the set W = {1, 2, 3, 4, 5, 6, 7}, respectively relative to the notions of convex-
hull, ortho-hull, and ortho-convex hull.

1, αj ≥ 0. This is the standard notion.
• The vector u is in the ortho-hull (or o-hull) of
S iff there exists a v ∈ S s.t. u ≤ v, where
the inequality is interpreted to hold for each
coordinate. The ortho-hull is in general not
convex.
• The vector u is in the ortho-convex-hull (or

oc-hull) of S iff u is in the ortho-hull of the
convex-hull of S. It is easy to check that the
ortho-convex-hull is convex.4

When a set W of d-vectors is contained in the hull
of some subset S ⊂ W , then we will say that S
is a set of “dominators” of W , relative to the spe-
cific notion of hull used. Figure 1 illustrates these
notions for dimension d = 2.

Lemma If x is in the convex-hull (resp. ortho-
hull, ortho-convex-hull) of S, and if z is a non-
negative d-vector, then there exists s ∈ S such that
x.z ≤ s.z, where . denotes scalar product.5

3 Algorithm

Algorithm 1 is our main algorithm. The integer k
corresponds to a stage of the algorithm. W is a set
of pairs of the form (prefix, vector), where prefix
is a string not ending in $, and vector is the D-
dimensional vector associated with this prefix; for

4Our notion of oc-hull is related to that of anti-blocking
polyhedra in the LP literature (Schrijver, 1998).

5Proof sketch. Suppose by contradiction that for all s ∈
S, we have s.z < x.z. But now (i) if x is in the convex-
hull of S, then x can be written as the convex combina-
tion x =

∑
i αisi of elements si in S; therefore x.z =∑

i αisi.z < x.z, a contradiction; (ii) if x is in the ortho-
hull of S, then there exists s ∈ S s.t. x ≤ s coordinate-wise,
hence x.z ≤ s.z by the non-negativity of z, again a contra-
diction; (iii) if x is in the ortho-convex-hull of S, then there
exists x′ s.t. x ≤ x′ and x′ can be written as x′ =

∑
i αisi,

and we can combine the two previous arguments to again
reach a contradiction.

each stage k of the algorithm, W = Wk contains
only prefixes of length k, and S = Sk is a subset of
dominators of Wk; F = Fk is either the empty set
or is a singleton set containing a pair of the form
(string, number), where string is a string ending in
$ and number is a scalar.

Algorithm 1 MAIN

1: k ← 0, F ← ∅,W ← {(ε, (1, 0, . . . , 0)}
2: while W 6= ∅ do
3: S ← DOMINATORS(W )
4: k ← k + 1
5: (W,F )← FORWARD(S, F )
6: return F

On line 1, we initialize F to the empty set, and
W to the empty string prefix ε together with a vec-
tor carrying weight 1 on q0 and weight 0 on the
other states. On line 2, we loop until W is empty.
On line 3, we extract a subset S of dominators
from W , according to one of the three hull vari-
ants we have described. We then increment k, and
on line 5, we compute through the FORWARD pro-
cedure the next version ofW and F corresponding
to strings of length k + 1. Lastly, on line 6, we re-
turn the final result F , which is either empty (when
A does not recognize any string), or contains a pair
(string, number) where string is a6 max-string for
A and number its total weight. The loop in line
2 terminates because the automaton is acyclic: all
prefixes above a certain length will eventually be
mapped to the null D-vector which will result in
producing at a certain point an empty Wk.

6The max-string is not always unique: several strings may
reach the same maximum.
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Algorithm 2 FORWARD(S, F )

1: W ← ∅
2: for (prefix, vector) ∈S do
3: F ← MAX(F, (prefix.$, vector.$))
4: for a ∈ U and vector.a 6= 0 do
5: W ←W ∪ {(prefix.a, vector.a)}
6: return (W,F )

Algorithm 2 defines the FORWARD procedure.
We start by initializing W to the empty set, then
for each pair (prefix, vector) in S we do the fol-
lowing. On line 3, we compute the concatenated
string prefix.$ along with its weight, given by the
scalar product vector.$; If vector.$ is equal to
0, then MAX does not modify F , if F is empty
MAX returns the singleton set (prefix.$, vector.$),
and finally if F = {(string, number)} it returns
either {(string, number)} or {(prefix.$, vector.$)}
according to which of number or vector.$ is the
largest. On line 4, for each symbol a inU such that
vector.a is not null, we add to W the pair consist-
ing of the prefix string prefix.a and of the vector
vector.a. Finally we return the pair (W,F ).

Theorem Whatever the notion of hull used for
defining DOMINATORS in Algorithm 1, if the re-
sult F is empty, then the language of the automa-
ton is empty; otherwise F = {(string, number)},
where ‘number’ is the maximum weight of a string
relative to the automaton A, and where ‘string’
ends in $ and is of weight ‘number’.7

We still need to explain how we define the
DOMINATORS procedure in Algorithm 1, depend-
ing on which notion of hull is chosen. Line 3 of the
algorithm consists in pruning the set of prefixesW
to get the subset S, and the efficiency of the algo-
rithm as a whole depends on pruning as much as
possible at each level k, thus it is in our interest
to extract a small set of dominators from W . To
simplify the description here, we will pretend that
an element (prefix, vector) of W is identified with
its second component vector, and will identify W

7Proof sketch. Let T be the set of strings (often, this set
is actually a singleton) ending in $ which do reach the actual
max-string weight relative to the automaton. Call “rank” of
a string t ∈ T the largest number k such that a prefix of t
appears in Sk, and let us focus on a t which has maximal
rank k relative to the other elements of T , and on its prefix x
of length k. In case t = x.$, then t “makes it” to F in line 5
of Algorithm 1, and we are done. Otherwise t can be written
as t = x.a.z, with a ∈ U , and with x.a 6∈ Sk+1. But then,
by the Lemma, there exists s ∈ Sk+1 s.t., in vectorial terms,
x.a.z ≤ s.z, and therefore, because of the definition of T ,
the string s.z also belongs to T ; but s.z has rank k + 1, a
contradiction.

to a set of vectors; we can easily recover the pre-
fix associated with each vector at the end of the
process. Let us start with the simplest case, that
of the ortho-hull. In that case, the minimal set of
dominators forW is easily shown to be simply the
set of all vectors that survive after eliminating any
w ∈ W s.t. there exists another w′ ∈ W with
w ≤ w′; a straightforward quadratic algorithm in
the size of W can be designed for that purpose.
If the hull is the convex-hull, the minimal set of
dominators is the set of so-called extreme points
from W , for which there exist several algorithms
(Helbling, 2010). Overall, the ortho-convex hull
is more effective at pruning than both the ortho-
and the convex-hull. Let us therefore give some
indications on how to compute a minimal set of
dominators relative to the oc-hull.

Similar to the o-hull case, we want to elimi-
nate any w from W which is in the oc-hull of
the remaining vectors w1, ..., wn of W . Such a
vector is determined by the condition that one
can find a convex combination

∑
i αiwi such that

w ≤ ∑
i αiwi. We can directly map this prob-

lem into a Linear Programming format, for which
a large number of solvers are available: the solver
is asked to decide whether the following LP, in the
variables α1, ..., αn, is feasible:8

∑

i

αi = 1,
∑

i

αiwi − w ≥ 0,

αi ≥ 0,∀i.

The complexity of this oc-hull algorithm is on the
order of n+1 times the complexity for solving one
instance of the LP above, which cannot be charac-
terized simply and depends on the type of solver
used (simplex vs. interior-point based). However,
the preliminary experiments we have conducted
indicate that it is more efficient to first prune W
relative to the o-hull notion, which already elim-
inates many points and only then prune this in-
termediary result using the LP formulation above
(this can be shown to preserve the notion of oc-
dominators).

8This LP is our adaptation to the ortho-convex-hull case
of a similar program described by (Helbling, 2010) for the
convex-hull case, of which more sophisticated versions are
also proposed.

28



4 Conclusion

The procedure that we have described can be seen
as a generalization of the standard Viterbi tech-
nique. Viterbi (even in the case of an original
non-deterministic automaton) can be formulated
in terms of a max-string problem over a certain
deterministic automaton. For such a deterministic
automaton, our procedure only produces vectors
that are each placed on a single axis of RD, corre-
sponding to the single state reached by the corre-
sponding prefix. In this case it can be checked that
o-dominators and oc-dominators lead to the same
result, namely to keeping the maximum point on
each axis separately, which exactly corresponds to
the Viterbi procedure, which keeps the maximum
on each state independently of other states.

It should also be noted that pruning the space of
prefixes using the oc-hull construction appears to
be the best we can hope to achieve if we are not
allowed to use heuristics that look forward in the
automaton: it can be shown that by appropriately
choosing the weights of transitions not yet seen at
level k, the max-string can be made to “select” any
of the oc-dominators from Wk — this is however
not true for the c-dominators or the o-dominators.

We believe the method to have potential appli-
cations to such domains as speech recognition or
phrase-based statistical machine translation; the
latter in particular tends to produce large word lat-
tices where many paths can correspond to the same
string; there the main object of interest is the max-
string, to which the Viterbi best-path is only an
approximation. More generally, the method could
be of interest for doing inference with Hidden
Markov Models, when the objects of real interest
are not the hidden paths in the HMM, but rather
the projections of these paths onto sequences of
directly interpretable labels.
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Abstract

We propose a new kind of finite-state au-
tomata, suitable for structured input char-
acters corresponding to unranked trees of
small depth. As a motivating applica-
tion, we regard executing morphosyntactic
queries on a richly annotated text corpus.

1 Introduction

Efficient lookup in natural language corpora be-
comes increasingly important, correspondingly to
the growth of their size. We focus on complex
queries, involving regular expressions over seg-
ments and specifying their syntactic attributes (e.g.
“find all sequences of five nouns or gerunds in
a row”). For such queries, indexing the corpus is
in general not sufficient; finite-state devices come
then as the natural tool to use.

The linguistic annotation of the text seems to be
getting still more complex. To illustrate that, Ger-
man articles in the IMS Workbench are annotated
with sets of readings, i.e. possible tuples of the
grammatical case, number and gender (an exam-
ple is shown in Fig. 1a). Several other big corpora
are stored in XML files, making it easy to extend
their annotation in the future if so desired.

Hence, we consider a general setting where
the segments are tree-shaped feature structures
of fixed type, with list-valued attributes allowed
(see Fig. 1a). A corpus query in this model should
be a regular expression over segment specifi-
cations, being in turn Boolean combinations of
attribute specifications, with quantifiers used in
the case of list-valued attributes. We may also
wish to allow specifying string-valued attributes
by regular expressions. For instance, der Tisch
/the tablemasculine/ is a match for the expression1

1This example query is rather useless by itself; however,
it compactly demonstrates several features which (variously
combined) have been found needed in NLP applications.

[
(POS != N ∨ WORD = ".*sch")

∧ ∃i∈READ (i.GEND = m ∧ i.NUMB = sg)
]∗

describing sequences of segments having
a masculine-singular reading, in which all nouns
end with sch.

In this paper, we propose an adjustment of exist-
ing finite-state solutions suited for queries in such
model. Our crucial assumption is that the input, al-
though unranked, has a reasonably bounded depth,
e.g. by 10. This is the case in morphosyntactic
analysis (but often not in syntactic parsing).

2 Related Work

There are two existing approaches which seem
promising for regex matching over structured al-
phabets. As we will see, each has an advantage
over the other.

FSAP model. The first model relies on finite-
state automata with predicates assigned to their
edges (FSAP, (van Noord and Gerdemann, 2001)).
(A FSAP runs as follows: in a single step, it tests
which of the edges leaving the current states are la-
beled with a predicate satisfied by the current input
symbol, and non-deterministically follows these
edges). In our case, pattern matching can be re-
alized by a FSAP over the infinite alphabet of seg-
ments: one segment becomes one input symbol,
and segment specifications become predicates.

As showed by van Noord and Gerdemann,
FSAPs are potentially efficient as they admit
determinization. However, this involves some
Boolean operations on the predicates used; as
a result, testing predicates for segments might
become involved. For example, a non-optimized
(purely syntax-driven) evaluation of
∃x∈READ x.CASE =N∧∃y∈READ y.CASE =G (1)

would consist of two iterations over all the read-
ings (one looking for N and another for G), al-
though in fact one iteration is clearly sufficient. As
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Figure 1: A sample segment for the German ambiguous article der, which can be masculine nominative
as well as feminine genitive (for brevity, other its readings are ignored), presented as a typed feature
structure (a) and as an unranked tree (b). Note that strings are treated as lists, which ensures finiteness
of the alphabet. We adjust the tree representation by labeling every non-leaf with J and appending a new
leaf labeled with K to its children. Parts (c) and (d) show respectively the prefix-order and breadth-first
linearizations of the tree. For legibility, we display them stratified wrt. the original depth.

we will see, the other approach is free of this prob-
lem.

VPA model. Instead of treating segments as
single symbols, we might treat our input as a
bounded-depth ordered unranked tree over a fi-
nite alphabet (see Fig. 1b), which is a common
perspective in the theory of XML processing and
tree automata. Recently, several flavours of deter-
minizable tree automata for unranked trees have
been proposed, see (Comon et al., 2007), (Mu-
rata, 2001) and (Gauwin et al., 2008). Under our
assumptions, all these models are practically cov-
ered by the elegant notion of visibly pushdown au-
tomata (VPA; see (Alur and Madhusudan, 2004)).
As explained in (Alur and Madhusudan, 2009), ex-
ecuting a VPA on a given tree may be roughly un-
derstood as processing its prefix-order lineariza-
tion (see Fig. 1b–c) with a suitably enhanced clas-
sical FSA. We omit the details as they are not im-
portant for the scope of this paper.

Discussion. FSAPs and VPAs both have poten-
tial advantages over each other. For the example
rule (1), a naive FSAP will scan the input two
times while a deterministic VPA will do it only
once. On the other hand, the VPA will read all
input symbols, including the irrelevant values of
POS, GEND and NUMB, while a FSAP will simply
skip over them.

We would like to combine these two advan-
tages, that is, design a flavour of tree automata al-
lowing both determinization and skipping in the
above sense (see Fig. 2b for an example). Al-
though this might be seen as a minor adjustment

of the FSAP model (or one of the tree-theoretic
models cited above), it looks to us that it has not
been mentioned so far in the literature.2

Finally, we mention concepts which are only
seemingly related. Some authors consider jump-
ing or skipping for automata in different mean-
ings, e.g. simply moving from a state to another,
or compressing the input to the list of gap lengths
between consecutive occurrences of a given sym-
bol (Wang, 2012), which is somehow related but
far less general. In some important finite-state
frameworks, like XFST (Beesley and Karttunen,
2003) and NooJ, certain substrings (like +Verb)
can be logically treated as single input symbols.
However, what we need is nesting such clusters,
combined with a choice for an automaton whether
to inspect the contents of a cluster or to skip it over.

3 Skipping nested automata

Let Σ be a finite alphabet, augmented with ad-
ditional symbols J, K, # (see Fig. 1). We fol-
low the definitions and notation for unranked Σ-
trees from (Comon et al., 2007, Sec. 8), in partic-
ular, we identify a Σ-tree t with its labeling func-
tion t : N∗ ⊇ Pos(t) → Σ. For p ∈ Pos(t), we
denote its depth (i.e. its length as a word) by d(p).

Let p ∈ Pos(t), d ≤ d(p) + 1 and s > 0. We
define the (d, s)-successor of p, denoted p[d, s],

2A sort of skipping is allowed in tree walking au-
tomata (Aho and Ullman, 1971), which can be roughly de-
scribed as Turing machines for trees. However, they do not
allow skipping over several siblings at once. Also, as shown
in (Bojańczyk and Colcombet, 2006), they may be not deter-
minizable.
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to be the s-th vertex at depth d following p in the
prefix order3, and leave it undefined if this vertex
does not exist. We also set p[d(p), 0] = p.

A skipping nested automaton (SNA) over Σ is
a tuple A = (Q,QI , QF , δ, d), where Q (resp.
QI , QF ) is the set of all (resp. initial, final)
states, d : Q → N is the depth function and
δ ⊆ Q×Σ×Q×N+ is a finite set of transitions,
such that

d(q) = 0 for q ∈ QI ,

d(q′) ≤ d(q) + 1 for (q, σ, q′, s) ∈ δ.

(The intuitive meaning of d(q) is the depth of the
next symbol to be read when q is the current state,
which leads to some kind of skipping. Introduc-
ing s will allow performing more general skips).

A run of A on a Σ-tree t is a sequence ρ =(
(pi, qi)

)n
i=0
⊆ Pos(t) × Q such that p0 = t(ε),

q0 ∈ QI and for every i < n there is s ∈ N
such that (qi, t(pi), qi+1, s) ∈ δ and pi+1 =
pi[d(qi+1), s]. We say that ρ reads pi and skips
over all positions between pi and pi+1 in the pre-
fix order. We say that ρ is accepting if qn ∈ QF .
A tree is accepted byA if there is an accepting run
on it. An example is shown in Fig. 2.

A run ρ =
(
(pi, qi)

)n
i=0

is crashing if there
is (qn, t(pn), qn+1, s) ∈ δ such that pn[d(qn+1), s]
is undefined. (Intuitively, this means jumping to
a non-existent node). We say that A processes t
safely if all its runs on t are not crashing. This
property turns out to be important for determiniza-
tion (see Section 4). A tree t is accepted safely if
it is processed safely and accepted.

In practice, safe processing of trees coming
from typed feature structures (as in Fig. 1) can be
ensured with the aid of analyzing the types. For
example, the SNA shown in Fig. 2 can assume
state q2 only at (the start of) a reading, which must
have four children; hence the skipping transition
from q2 to q3 is safe. On the other hand, we can-
not use e.g. a transition from q1 to q2 with s = 3
because a list (here, of readings) may turn out to
have only one child. We omit a general formal
treatment of this issue since it trivialises in our in-
tended applications.

3This is the s-th child of p if d = d(p) + 1, and the s-
th right sibling of the

`
d(p)− d

´
-fold parent of p otherwise.

(Note that in the second case d(p)− d must be non-negative;
for d(p)− d = 0, the “0-fold parent” of p means simply p).

4 (Quasi-)determinization

A SNA A = (Q,QI , QF , δ, d) is determin-
istic if, for every q and σ, there is at most
one (q, σ, q′, s) ∈ δ. By quasi-determinization
we mean building a deterministic SNA A =
(Q,QI , QF , δ, d) which accepts safely the same
trees which A does.

Let S denote the highest value of s appearing
in A. We say that (q, r) ∈ Q × [0, S] is an option
for A at p wrt. p0 if there is a run ρ of A on t
which ends in (p0[d(q), r], q) such that p either is
the final position of ρ or is skipped over by ρ in
its last step. A state of A will be a set of possible
options for A at a given position wrt. itself.

We define:

Q = 2Q×[0,S], QI =
{
{(q, 0)}

∣∣ q ∈ QI
}
,

QF =
{
X ∈ Q

∣∣X ∩ (QF × {0}) 6= ∅
}
.

d(X) = max
(q,r)∈X

d(q) for X ∈ Q.

It remains to define δ. For each X ∈ Q, σ ∈ Σ, it
shall contain a tuple

(
X,σ,X ′′, s

)
, where X ′′, s

are computed by setting d = d(X), computing

X ′ =
{

(q, r) ∈ X : d(q) < d ∨ r > 0
}
∪

{(q′, r′) : (q, σ, q′, r′) ∈ δ, (q, 0) ∈ X, d(q) = d},
(intuitively, this is the set of options for A at
p′ = p[d(p), 1] wrt. p, provided that p′ exists),
then setting d′ = d(X ′) and finally

s = min
{
r : (q, r) ∈ X ′, d(q) = d′

}
,

X ′′ =
{

(q, r) ∈ X ′ : d(q) < d′
}
∪{

(q, r − s) : (q, r) ∈ X ′, d(q) = d′
}
.

(Explanation: p′′ = p[d′, s] is the nearest (wrt. the
prefix order) ending position of any of the runs
corresponding to the options from X ′; hence A
may jump directly to p′′; the options at p′′ wrt. p
are the same as at p′, i.e. X ′; hence, the target X ′′

is obtained from X ′ by “re-basing” from p to p′′.)
While the trees accepted safely by A and A

coincide, this is not true for simply accepted trees.
For example, the tree t corresponding (in the
prefix order) to JaK# is accepted by A defined as

q0

0

q1

1

J q2

1

a

(2)
q3

0a

(there is a run ending in q3) but not by A because
for X = {(q1, 0)} and σ = a we obtain d(X ′′) =
d(X ′) = 1 and s = 2, leading to a crash in the
only run of A on t.
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Figure 2: A SNA accepting a segment followed by # (end of input) and having a genitive reading (a), and
its run on the segment from the previous figure (b). In part (a), numbers above states are their depths;
numbers above dotted arcs are the values of s (not shown when s = 1). In part (b), the black symbols
are read while the gray symbols are skipped over; this corresponds to the continuous and dotted arcs.

5 Practical use

In order to make SNA applicable, we should ex-
plain how to build SNAs corresponding to typical
corpus queries, and also how skipping should be
efficiently performed in practice.

It is straightforward to build a non-skipping
SNA for a regular expression e over Σ provided
that e does not contain J or K inside ?, ∗ or +, and
all their occurrences are well-matched inside ev-
ery branch of |. Under our assumption of bounded
input depth, every regular expression can be trans-
formed to an equivalent one of that form.

Skipping SNAs in our applications are defined
by an additional regex construct _, matching any
single sub-tree of the input. This is compiled into
s uΣ

(with d ≡ 0), which makes a skip if the
input starts with J. To enhance even longer skips,
patterns of the form _{n} and Je_∗K are suitably
optimized. For example, the SNA of Fig. 2 recog-
nizes J_ _J_∗J_G_∗K_∗K_∗K#.

Proceeding to skipping in practice, we assume
that, as a result of pre-processing, we are given
the breadth-first linearization t̃ ∈ Σ∗ of the in-
put (see Fig. 1d), stored physically as an array (for
a given i, accessing t̃[i] takes a constant time), and
that any occurrence of J at position i is equipped
with the pointer L(i) to its left-most child.4 More-
over, we equip a deterministic SNA A with an ar-
ray S such that, when A stays at p of depth d,
S[i] should point to the (i, 1)-successor of p for all
i < d.5 In this setting, the (d, s)-successor of the
current position has index S[d] + (s− 1), which is
computable in constant time. Hence, we are able
to run A efficiently (Fig. 3 shows an example). In
particular, the running time is independent of the
number of input symbols skipped over.

4Note that this is the way in which the original structure
would be stored in memory by a standard C implementation.

5Upkeeping this requires only one memory access for ev-
ery J processed; cf. (Alur and Madhusudan, 2004).
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Figure 3: A run of the SNA from Fig. 2 on the in-
put from Fig. 1d. The numbers above J are point-
ers to their left-most children. The bottom num-
ber in each frame indicates the current state; the
remaining ones show the stack S (S[i] appears at
depth i).

6 Evaluation and conclusion

A preliminary version of our method has been
used for finding the matches of relatively com-
plex hand-written patterns aimed at shallow pars-
ing and correcting errors in the IPI Corpus of Pol-
ish (Przepiórkowski, 2004). As a result, although
the input size grew by about 30% due to introduc-
ing J and K nodes, over 75% of the obtained in-
put was skipped, leading to an overall speed-up by
about 50%. Clearly, empirical results may depend
heavily on the particular input and queries. Hence,
our solution may turn out to be narrowly scoped as
well as to be useful in various aspects of XML pro-
cessing. Note that, although the expressive power
of SNAs as presented is rather weak, it seems to
be easily extendable by integrating our main idea
with the general VPA model.6
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Abstract

We list the major properties of some
important classes of subrational rela-
tions, mostly to make them easily ac-
cessible to computational linguists. We
then argue that there are good linguis-
tic reasons for using no class smaller
than the class of synchronous regu-
lar relations for morphological analysis,
and good mathematical reasons for us-
ing no class which is larger.

1 Below the Rational Relations

We need not stress the importance of finite
state transducers and of rational relations
for computational linguistics (see Johnson
[1972],Koskenniemi [1983],Kaplan and Kay
[1994],Beesley and Karttunen [2003]). So we
rather start with stressing the importance of
sub-rational relations, that is, classes of rela-
tions properly contained in the rational rela-
tions. As is well-known in the community,
rational relations are not closed under inter-
section. Furthermore, the equivalence and
inclusion problems for rational relations are
undecidable. So there are a number of ar-
guments for not using rational relations, but
rather some weaker class with more favorable
decision properties. The question is: if we
want to go below the rational relations, which
class should we choose? In the literature, we
often find the so called sequential relations;
these however are quite restricted and will
not be considered here. We rather focus on
three classes, the strictly synchronous, the k-
bounded (e.g. Roark and Sproat [2007]), and
the synchronous regular relations, which are

ordered by inclusion. We present their main
closure properties, which are partly already
known. For some reason the important class
of synchronous regular relations, which has
attracted a lot of attention in various fields
of mathematics,1 has to our knowledge not
gained very much attention in the field of com-
putational linguistics.2 We argue here that
1. there are good linguistic reasons for using
no class smaller than the class of synchronous
regular relations; and 2. we do not know of
any linguistics evidence in morphology to use
the more powerful rational relations instead of
synchronous regular relations.

2 Closure Properties and Decision
Problems

We will consider the main closure properties
for classes of relations. Union and intersection
of two relations R1, R2 are defined in the obvi-
ous set-theoretic fashion. The complement of a
relation R is defined wrt. two alphabets Σ, T ,
where R ⊆ Σ∗ × T ∗, and R := (Σ∗ × T ∗)−R.
The inversion of a word a1...an ∈ Σ∗ is de-
fined as (a1...an)i := an...a1. For a rela-
tion R ⊆ Σ∗ × T ∗, we put Ri := {(wi, vi) :
(w, v) ∈ R}. Given two relations R1, R2, we
define their composition R1 ◦ R2 := {(x, z) :
(x, y) ∈ R1, (y, z) ∈ R2}. Given Two rela-
tions R1 ⊆ Σ∗1 × T ∗1 , R2 ⊆ Σ∗2 × T ∗2 , we define
their concatenation R1 · R2 := {(w1w2, v1v2) :
(w1, v1) ∈ R1, (w2, v2) ∈ R2}. In general, we

1We just mention Frougny and Sakarovitch [1993],
and the research on automatic structures, see Rubin
[2008]

2We have to mention that scholars working on
the finite-state manipulation platform Vaucanson have
made some efforts in using synchronous regular rela-
tions, see Lesaint [2008]
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say a class R is closed under a n-ary opera-
tion X, if from R1, ..., Rn ∈ R it follows that
X(R1, ..., R2) ∈ R.

3 Three Classes and Their
Inclusion Relations

We consider three classes as most interesting
in this context. The first one is the class of
strictly synchronous regular relations (SSR).
For generality, we present relations of arbi-
trary arity. R is in SSR if 1. R is rational, and
2. if (w1, ..., wi) ∈ R, then |w1| = ... = |wi|.
Secondly, a relation R is k-bounded, if 1. R
is rational and 2. there is a k ∈ N such that
for all (w1, ..., wn) ∈ R, max{|w1|, ..., |wn|} −
min{|w1|, ..., |wn|} ≤ k.3 Call this class k-B.
Obviously, k-B properly contains SSR. As the
third class, we present the synchronous regu-
lar relations (SR): Put Σ⊥ := Σ ∪ {⊥}, for
⊥/∈ Σ. The convolution of a tuple of strings
(w1, ..., wi) ∈ (Σ∗)i, written as ⊗(w1, ..., wi) of
length max({|wj | : 1 ≤ j ≤ i}) is defined as
follows: the kth component of ⊗(w1, ..., wi) is
〈σ1, ..., σi〉, where σj is the k-th letter of wj
provided that k ≤ |wj |, and ⊥ otherwise. The
convolution of a relation R ⊆ (Σ∗)i is defined
as ⊗R := {⊗(w1, ..., wi): (w1, ..., wi) ∈ R}. A
relation R ∈ (Σ∗)i is synchronous regular,
if there is a finite state automaton over (Σ⊥)i

recognizing ⊗R.

Informally, SR are the relations computed
by finite state transducers which allow ε tran-
sitions in a component only if no other letter
is to follow in this component. It is not obvi-
ous that SR contains k-B; it follows however
from the following well-known synchronization
lemma (see Frougny and Sakarovitch [1993]):

Lemma 1 Assume R is an n-ary rational re-
lation, such that there is a k ∈ N, such that
for all (w1, ..., wn) ∈ R, max{|w1|, ..., |wn|} −
min{|w1|, ..., |wn|} ≤ k. Then R is in SR.

4 A Logical Characterization of SR

We can actually characterize SR with
first order logic over the language L :=
(EL, pref , lasta : a ∈ Σ) where EL, pref
are binary predicates, and all a : a ∈ Σ

3Note the order of quantifiers: we do not fix the k for
the entire class of relations; we can choose it arbitrarily
for any given relation, but then it is fixed for all of its
elements.

are unary predicates. We call this logic
FOL(L), and interpret it in the structure S :=
〈Σ∗, EL, pref , a : a ∈ Σ〉, where Σ∗ is our uni-
verse, a : a ∈ Σ ⊆ Σ∗, and EL, pref ⊆ Σ∗×Σ∗.
We have w ∈ a if and only if w = w′a; we have
(w, v) ∈ pref if and only if v = wv′, that is,
w is a prefix of v; and we have (w, v) ∈ EL if
and only if |w| = |v|. For what is to follow, we
have to assume that |Σ| ≥ 2. The proof of the
following theorem of Eilenberg et al. [1969] is
long and complicated, so we cannot even give
a sketch at this place.

Theorem 2 Assume M ⊆ (Σ∗)i. Then
there is a FOL(L)-formula φ(x1, ..., xi)
in the free variables x1, ..., xi, such
that M := {w1, ..., wi ∈ Σ∗ : S |=
φ(x1, ..., xi)[w1, ..., wi]}, if and only if
M ∈ SR.

5 Mathematical Properties

5.1 Closure Properties

That SSR is closed under union is obvious. In-
tersection follows from the fact that 1. SR is
closed under intersection, and 2. if all pairs in
R1 and R2 have equal length, then surely the
pairs in R1∩R2 have equal length. It is easy to
see that SSR is not closed under complement,
as the complement of R ∈ SSR in particular
contains all pairs of words of different length.
Moreover, SSR is closed under inversion, be-
cause 1. rational relations are closed under in-
version, and 2. equal length is preserved; SSR
is closed under composition and concatenation
for exactly the same reason. So we have quite
good closure (and decision) properties; still,
SSR is very restrictive.

Therefore one might prefer the more power-
ful class k-B. k-B is obviously also closed un-
der union, closed under intersection and not
under complement, for exactly the same rea-
son as SSR. Also, k-B is closed under compo-
sition, concatenation and inversion, again for
the same reasons as SSR.

There is a characterization of regular rela-
tions in first order logic.4 From this result
it immediately follows that SR is closed un-
der union, intersection and complement, by

4Actually, this only holds for relations over an al-
phabet Σ with |Σ| ≥ 2; but our claims are easy to show
separately for the case where |Σ| = 1.
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logical connectives; moreover, by logical de-
finability we easily obtain closure under com-
position: put R1 := {(w1, w2) ∈ (Σ∗)2 :
S |= φ(x, y)[w1, w2]}; R2 := {(v1, v2) ∈
(Σ∗)2 : S |= ψ(y, z)[v1, v2]}; then R1 ◦ R2 =
{(w1, w2) : S |= ∃.yφ(x, y) ∧ ψ(y, z)[w1, w2]}.
We can easily show that SR is not closed un-
der concatenation: (a, ε)∗ ∈ SR, (b, c)∗ ∈ SR;
but (a, ε)∗ · (b, c)∗ /∈ SR.5 As (b, c)∗ · (a, ε)∗ is
regular, we also know that SR is not closed
under inversion.

5.2 Decision Problems

In general, the question whether for a given
characterization of a rational relation R
(transducer, rational expression), we have R =
∅, is decidable. From this and the fact that
SR is a Boolean algebra it follows that for
R1, R2 ∈SR, we can decide the questions:
given characterizations of R1, R2, is R1 ⊆ R2,
and is R1 = R2? This can be demonstrated us-
ing the standard proof for regular languages.
So, we have a fortiori the same result for SSR,
k-B. For rational relations themselves the lat-
ter problems are undecidable.

6 Natural Language Morphology
Requires SR

6.1 German Compounding

So which one should we take? As there is
no absolutely convincing mathematical argu-
ment, we should take a look at linguistic facts.
We now present an argument for using the ad-
ditional power coming with synchronous regu-
lar relations.

Compounding is a very productive morpho-
logical process in German and many other lan-
guages (Dutch, Danish, Finish, Greek etc.). It
is a process whereby new words are formed
by combining independent words/morphemes,
where there is no restriction on the number
of morphemes which can be put together to
form a single new word. German compounds
are strictly right-headed (Toman [1992]), that
is, the morphosyntactic features of the com-
pounds are always inherited from the right-
most morpheme. The head of the compound
thus determines category, gender, and all mor-

5This follows from the standard proof that rational
relations are not closed under intersection, which uses
exactly this relation, see Kaplan and Kay [1994].

phosyntactic features of the whole compound.
For example,the bahn in German Autobahn

(highway) identifies the word as singular fem-
inine. Due to space constraints, we cannot
say much about morphological analysis in gen-
eral or analysis of our particular example; we
will say only as much as is needed for our for-
mal argument, which in our view however is
of general importance for computational mor-
phology.

6.2 The Compounding Relation is
Synchronous Regular

If we want to morphologically analyze a com-
pound, in a first step, we want to transduce
a sequence of compounded words W1...Wi to
a sequence of representations of their mor-
phosyntactic features C1...Ci. This relation is
synchronous if we use words and feature bun-
dles as atoms. One might object that this is
usually not the case, or at least depends on
whether we allow complex words as atomic
transitions. But mathematically, we are quite
safe, as we can always form a new, finite al-
phabet via a bijection with finite strings over
another alphabets.6 Still, this is not satisfy-
ing, as the compound is a single word, and
its morphosyntactic features are exactly the
same as the one of its head. As the head is
rightmost, we thus have a relation of the form
(C1...Ci, Ci), mapping the entire sequence to
its last element. We call this the compound-
ing relation, which has to be composed with
the first relation. As compounding is un-
bounded and consequently there is no upper
bound to i, this relation is not in k-B. We
now show that this relation is however in SR.
This would be obvious if the head would be
the leftmost element; for the head rightmost
we need some work.

Let I be a finite set, Li : i ∈ I a finite
set of regular languages. We say a function
f : (Σ×T )∗ → ({ε}× {Li : i ∈ I})∪ ({Li : i ∈
I} × {ε}) is regular, if there is a deterministic
finite state automaton (Q, δ, q0,Σ×T ), where δ
is extended to strings in the canonical fashion,
and a finite function g : Q → ({ε} × {Li :
i ∈ I}) ∪ ({Li : i ∈ I} × {ε}), such that for all
(w, v) ∈ (Σ×T )∗, we have f(w, v) = g◦δ(w, v).

6Still more technically, we would also have to ensure
that the bijection defines a code, but we leave this aside,
noting that this is satisfied in all normal cases.
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Lemma 3 A relation R ⊆ Σ∗×T ∗ is in SR, if
and only if there is a regular function f , such
that for every (w, v) ∈ R, (w, v) = (w′, v′) ·
f(w′, v′), where |w′| = |v′|.7

So take the compounding relation
{(C1...Ci, Ci) : C1...Ci is a well-formed
compound}. We simply put f(C1, Ci) =
({C1}\CC1) × ε, where CCi is the language
of well-formed compounds ending with Ci,
and L1\L2 := {v : ∀w ∈ L1, wv ∈ L2}; it is
well-known that regular languages are closed
under this operation, so the compounding
relation is synchronous regular, provided that
the set of compounds itself is a regular set.
This is clearly the case for the languages we
considered. And even if there is a language
where this is not the case, this would not be
an argument in particular against using SR,
but rather against using finite-state methods
in natural language morphology in general.

7 Conclusion

We have summed up the major closure and
decision properties of a number of subrational
classes of relations which are currently in use.
The properties we listed are mostly known,
and otherwise relatively easy to obtain. We
have undertaken this summarization as there
does not seem to be any other literature where
one could find it; and in particular in the com-
putational linguistics literature one finds very
little on closure and decision properties of sub-
rational classes of relations.

Our main argument however is of linguis-
tic nature: we have shown that the k-bounded
(and thus strictly synchronous) relations are
unable to allow for morphological analysis of
a phenomenon which is as common and wide-
spread as compounding. Synchronous regu-
lar relations on the other side are powerful
enough to capture this phenomenon. We also
argued that synchronous regular relations are
preferable over rational relations from a purely
mathematical point of view, because they form
a Boolean algebra and all their decision prob-
lems are decidable.

Of course, there are many finite-state NLP
applications for which SR is insufficient, such
as inserting markup expressions in shallow

7Actually, this lemma is sometimes even taken to
be the definition of SR; so we omit the proof.

parsing. Our argument was: for most of stan-
dard morphological analysis, SR is the small-
est class which provides sufficient expressive
power.8
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Abstract

We present a method for probabilistic parsing
of German words. Our approach uses a mor-
phological analyzer based on weighted finite-
state transducers to segment words into lexical
units and a probabilistic context free grammar
trained on a manually created set of word trees
for the parsing step.

1 Introduction
Most existing systems for automatic, morphological
analysis of German focus on flat structures, i.e. the
segmentation into morphemes and the identification of
their features and the involved operations. But as soon
as more than one operation leads to the word in ques-
tion, possible orderings of these operations can be cap-
tured in different hierarchical structures. Consider Ex.
(1) from Faaß et al. (2010),

(1) unPref

un
übersetzV

translate
barSuff

able
‘untranslatable’

The adjective unübersetzbar is analyzed as a combina-
tion of the prefix un, the verbal stem übersetz and the
suffix bar. This analysis could be assigned two struc-
tures (depicted in Fig. 1): either the prefixation (a) or
the suffixation (b) occurs first.

Research on human morphological processing has
long moved from linear segmentations to more ad-
vanced representations of the morphological structure
of words (Libben, 1993; Libben, 1994). We aim to pro-
vide researchers in this field with hierarchical morpho-
logical analyses for all words in our lexical database
dlexDB (Heister et al., 2011).

In the following, we present an approach for the au-
tomatic assignment of hierarchical structures to com-
plex words using flat morphological analyses and a
PCFG1. As a case study, we apply our method to the

∗ This author’s work was funded by the DFG (grant no.
KL 955/19-1).

1We assume here the usual definition of a context-free
grammar (CFG) G = (V,T,S,P ) consisting of non-terminal
(V ) and terminal symbols (T ), a start symbol S ∈ V and a
set of context-free productions P . In a probabilistic CFG
(PCFG; Booth, 1969), each production is assigned with a
probability.

parsing of German adjectives. To do so, we created
a corpus of manually annotated word trees for 5,000
structurally ambiguous adjectives. We describe types
of ambiguity and their distribution in the training set
and report results of the parsing process in dependence
of various grammar transformations.

1.1 Word Formation and Structures

Word formation is the combination of morphemes to
form new words. We distinguish between inflection
(combination of a free morpheme with one or more af-
fixes to fulfill agreement), compounding (combination
of several free morphemes) and derivation (combina-
tion of a morpheme with an affix to change the category
and/or the meaning of a word). Conversion might be
considered a special case of derivation. Here, a change
of a word’s category occurs without any affixes being
involved.

Word formation processes which are involved in the
creation of a complex word can be linearly ordered.
Multiple possible orderings lead to structural ambigui-
ties. Ex. (2) gives examples for the possible different
types of ambiguity2: Compound – Suffix, Compound –
Compound, Prefix – Suffix, Prefix – Compound.

(2) a. MenschN

human
en
link

FreundN

friend
lichSuff

ly
‘humanitarian’

b. dunkelA
dark

AscheN

ash
grauA

gray
‘dark ashen’

c. nichtPref

non
ObjektN
object

ivSuff

ive
‘non-objective’

d. abPref

off
GasN

gas
freiA
free

‘zero-emission’

The decision which ordering is the correct one is driven
by morphological as well as semantic restrictions on
the involved morphemes. The tree given in Fig. 1a for
example could be ruled out by the fact that verbs may

2Since inflection in German is triggered by a word’s con-
text to ensure agreement and from a productive point of view
always takes place last in word formation, we ignore it in our
list and for the remainder of this work and restrict ourselves
to base forms (lemmas) of the words in question.
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ADJ

SUFF

bar

V

V

übersetz

PREF

un

ADJ

ADJ

SUFF

bar

V

übersetz

PREF

un

(a) (b)

Figure 1: Possible tree structures for the morphological analysis in Example (1).

not be combined with the prefix un in German. As an
example for semantic restrictions consider the analysis
for antirheumatisch given in Ex. (3).

(3) antiPref

anti
RheumaN

rheumatism
t
link

ischSuff

ish
‘antirheumatic’

Since the concept of “antirheumatism” does not exist,
we assume that the suffixation with isch takes place
first.

1.2 Morphological Analysis
Before parsing, input words must be segmented into
their basic units. In addition, the parser needs sufficient
categorical annotation to get started. For that purpose,
we used the TAGH morphology (Geyken and Han-
neforth, 2006), a comprehensive computational mor-
phology system for German based on weighted finite-
state transducers.

Computer morphology systems normally suffer from
oversegmentation: a sufficiently long enough word gets
segmented in all possible ways, resulting in a lot of am-
biguous readings most of which are nonsensical. To
tackle this problem, the TAGH morphology (TAGH-M)
makes use of three strategies:

1. TAGH-M measures morphological complexity by
associating each derivation and compounding rule
with a context-dependent penalty weight. These
weights are taken from a tropical semiring weight
structure (Kuich and Salomaa, 1986), that is,
weights are added along a path in the weighted
finite-state automaton representing a set of mor-
phological analyses, and, among the competing
analyses, the one with the least weight is selected.

2. TAGH-M is not strictly morpheme-based, but in-
stead more oriented towards semantics. In Ger-
man, there are a lot of overtly morphologically
complex words which nevertheless denote simple
concepts. Take for example the exocentric com-
pound Geizhals (‘scrapepenny’). But it can be
also segmented into Geiz (‘miserliness’) and Hals
(‘neck’). TAGH-M’s base lexicon now contains
morphological simple entries like Hals, but mor-
phologically complex ones like Geizhals as well.

In association with the weighting mechanism, this
means, that lexicalized but complex forms will be
always given priority.

3. The word formation grammar underlying TAGH-
M is very carefully crafted. Looking at adjective
formation, the corresponding subgrammar con-
tains approx. 3,000 rules. These rules are divided
into groups, responsible for prefixation, suffixa-
tion, compounding and conversion. The suffixa-
tion part of the grammar is itself divided into fur-
ther groups, one for each productive adjective suf-
fix like -isch, -ig or -lich.3 Every suffixation rule is
associated with a number of base stems of differ-
ent category (nouns, names, etc.) which happen
to take this particular suffix. The association of
affixes and stems is derived from a huge list of en-
tries taken from the German Google books corpus
(see also Sec. 2.2).

By incorporating these three strategies, TAGH-M
avoids a lot of segmentation ambiguities which would
otherwise enter into the subsequent parsing phase.

In addition, TAGH-M inserts marker symbols (for
separable and non-separable prefixes, suffixes, link-
ing morphemes and free morphemes), reduces allomor-
phic variants to their underlying citation form and an-
notates each segment with a morphological category
taken from a set of approx. 20 categories.

Ex. (4) shows the preferred segmentation of the ad-
jective länderspezifisch (‘country-specific’).

(4) Land 〈N〉 \er 〈l〉 # spezif 〈f〉 ∼ isch 〈a〉

The symbols enclosed in angle brackets denote the
morphosyntactic category of the segment: 〈N〉 is a free
noun, while 〈a〉 represents a bound adjective (suffix -
isch); 〈f〉 denotes a neoclassical formative and 〈l〉 a
linking morpheme. The segmentation symbol # marks
a free morpheme boundary, while ∼ flags a following
suffix. Annotated segments as well as segmentation
markers enter the subsequent parsing phase.

3In total, the adjective suffixation grammar lists almost 70
of these suffixes.
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1.3 Parsing
To get an initial grammar for the training experi-
ments reported on in Sec. 3, we manually derived a
context-free grammar based on the grammar underly-
ing TAGH-M. For parsing, this grammar was automat-
ically converted into an unweighted finite tree automa-
ton, FTA (Comon et al., 2007). Transitions of FTAs are
either of the form

w → q (1)

which introduce the leaves of a tree, or rules of the form

f(q1,q2, . . . ,qk)→ q (2)

which describe k-branching tree nodes with label f ; the
qis are the states of the FTA. The language of an FTA
is the set of trees generated by the FTA.

Finite-tree automata offer an advantage over context-
free grammars: their transitions decouple the label
(functor) f of the transition (which corresponds to a
context-free rule’s left-hand side) from the destination
state q of the transition (which reflects the context in
which the subtree might be inserted). This for exam-
ple make techniques like parent annotation (see below)
easily applicable since annotated categories are repre-
sented in the states of the FTA, not its translation labels.

For word structure parsing, we used an intersection
based approach (Hanneforth, 2013).

1.3.1 Lexicalization
In lexicalized grammars, individual productions are
specialized for certain lexical items. Non-terminal
symbols are extended with lexical information as
shown in Fig. 2.

Adj-lich

Adj-lich

Suff-lich

lich

N-Freund

Freund

Pref-un

un

Figure 2: A lexicalized word tree.

This example is an instance of so called head lex-
icalization (Charniak, 1997). Lexical information of
the rightmost constituent is percolated through the tree.
Lexicalizing a grammar is a way to add some kind of
contextual information to context-free grammars.

1.3.2 Parent Annotation
Parent annotation (Johnson, 1998) is another way of
enriching a CFG with contextual information. The cat-
egory of some non-terminal is added to the labels of its
daughters as shown in Fig. 3.

Extending the grammar as described above increases
the number of non-terminals and productions. This can

Adj

Adj-Adj

Suff-Adj

lich

N-Adj

Suff-N

heit

Adj-N

wahr

Pref-Adj

un

Figure 3: A word tree with parent annotation.

lead to sparseness problems in the probabilistic case.
These problems can be dealt with by applying some
smoothing method (Collins, 1999).

2 Method

In what follows, we describe our pilot study for the
generation of parse trees for morphologically complex
words. Our goal is to determine the most likely struc-
ture for each item in the test set, namely a large set of
German adjectives.

2.1 Procedure

We decided to evaluate a statistical parsing approach
using a PCFG. The aforementioned hand-crafted CFG
which covers the different types of ambiguity was used
to create candidate trees (cf. Fig. 1) for a set of train-
ing items (see Sec. 2.2). The design of the grammar
also ensured that there is always an unary derivation
from the pre-terminal to the terminal level. This al-
lowed us to keep lexical rules separate from the rest of
the grammar. The grammar contains no further unary
productions.

After the manual annotation step described in Sec.
2.2, we divided the data into 10 equal parts and in-
duced context-free productions from the trees in each
part. For each subtree

X

Y1 . . . Yn

a production X → Y1 . . . Yn was added to P . We
also stored the production’s frequency in each of the 10
sub-parts.

Estimation of the probabilities for the productions in
P and evaluation of the resulting PCFG was done by
iterating over the sub-parts Gi which served as a test
set while the rest was used for training.

Probabilities were computed via simple maximum
likelihood estimation with add-one smoothing. Here,
c(X → Y1 . . . Yn) denotes the frequency of the rule
X → Y1 . . . Yn in the training materials.
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Ambiguity Number
Compound – Suffix 5,239
Prefix – Suffix 1,136
Compound – Compound 447
Prefix – Compound 0

Table 1: Numbers of different types of structural ambi-
guities within a set of 20,000 adjectives.

Pr(Y1 . . . Yn|X) =
c(X → Y1 . . . Yn) + 1

c(X → (V ∪ T )+) + |P | (3)

In order to capture restrictions as those mentioned
above, we applied various transformations on the trees
prior to the grammar induction resulting in differ-
ent grammar versions: (1) specialization of the pre-
terminal level for bound morphemes, (2) specialization
of the pre-terminal level for frequent free morphemes,
(3) lexicalization of adjective suffixes and (4) parent
annotation. The specialization of the pre-terminal level
may be considered as lexicalization of only the lexical
rules.

2.2 Materials

We chose the Google books N -grams (Google Incor-
porated, 2009) as our source for training and test ma-
terials. The list of unigrams contains all words with
a frequency greater or equal to ten within the German
portion of the Google books corpus (all in all 3,685,340
types). From this list, we extracted a large number of
adjectives using a list of known adjective suffixes (see
Sec. 1.2) and manually filtered this list for optical char-
acter recognition errors and false positives (e.g. verbal
forms). This set was extended using known adjectives
from various hand-maintained lexical resources result-
ing in a list of 338,423 adjectives.

Initially, we randomly selected 10,000 words with a
length of 8 ≤ n ≤ 20 (which were unique for their
lemma; i.e., only one instance per lemma was selected)
from this list. These words were morphologically an-
alyzed and parsed along the lines of sections 1.2 and
1.3. The resulting analyses were manually checked
for errors in the morphological analysis and the word
trees. Detected errors led to readjustments of both the
morphological analyzer and the grammar. Finally, only
roughly a quarter of the items were assigned more than
one tree (the main reason for this is that TAGH-M al-
ready removes a lot of possible ambiguities). That is
why we added another 10,000 words (this time with
a length of 10 ≤ n ≤ 25) to get more ambiguous
forms. Tab. 1 shows the numbers of the different pos-
sible types of ambiguity in the test set.

For training and evaluating the PCFG, we manually
selected the preferred tree for 5,000 structurally am-
biguous adjectives.

2.3 Evaluation

We used evalb (Sekine and Collins, 1997) to evaluate
the different probabilistic grammars extracted from the
training materials as described in Sec. 2.1. We report
their performance in terms of (1) tagging accuracy, i.e.,
the proportion of correct pre-terminal to terminal as-
signments, (2) bracketing accuracy, i.e., the proportion
of correct rule applications and (3) complete matches,
i.e. the proportion of identities between manually se-
lected and automatically generated trees.

3 Results and Discussion

Table 2 summarizes the results for the different gram-
mar versions. The corresponding tree transformations
are applied in a cumulative way. Due to the inclusion
of the morpheme annotation done by TAGH-M into the
grammar, tagging accuracy is always 100% and thus
omitted in Table 2.

The biggest improvement is gained through the spe-
cialization of frequent free morphemes. This trans-
formation helps us to model binding preferences for
certain morphemes. Consider for example the noun
Freund (‘friend’) which is very often combined with
the suffix lich in order to form freundlich (‘friendly’).
There are many compounds with freundlich as anwen-
derfreundlich where, due to semantic restrictions, the
noun compound as first component is not an option.

Head-lexicalization did not improve parsing re-
sults with one exception: The test materials contain
many coordinative structures like psychischphysisch
(‘psycho-physical’), thus the production Adj →
Adj Adj has a fairly high probability. But there is one
notable exception to this rule: In words like Ex. (5),

(5) NationN

nation
alSuff

al
SozialistN
socialist

ischSuff

ish
‘Nazi’

a coordinative analysis is also available, but adjectives
formed with al almost always combine with a noun if
possible. Lexicalizing al successfully models this be-
havior. It will be subject to further work to system-
atically test for other equally successful lexicalization
patterns.

Parent annotation does not add very much to the per-
formance of the grammar which is due to the relatively
simple structures that we encounter during parsing of
words compared to the parsing of sentences.

If we look at the remaining errors, it is striking that
most of these originate from exceptions from the typi-
cal formation patterns. The prefix über (‘over’) is usu-
ally combined with adjectives but in some rare cases it
operates as a noun prefix (Übermensch, ‘superman’).
Derivations from these nouns are assigned with the
wrong analysis by our grammar.

The approach we presented here is a promising first
step in the direction of parsing morphologically com-
plex words. Next, we will extend our approach to Ger-
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Grammar Number of prod. Bracketing acc. Complete match
baseline 63 91.64% 82.05%
specialized bound morphemes 196 92.20% 83.04%
specialized freq. free morphemes 238 94.92% 89.11%
lexicalized suffix al 274 96.26% 92.02%
parent annotation 481 95.91% 93.34%

Table 2: Number of non-lexical productions as well as proportions of correct bracketing and complete matches for
different PCFGs.

man nouns where the great number of compounds will
be the major challenge.
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Abstract

We consider finite-state optimization of
morphosyntactic analysis of richly and
ambiguously annotated corpora. We pro-
pose a general algorithm which, despite
being surprisingly simple, proved to be ef-
fective in several applications for rulesets
which do not match frequently.

1 Introduction

Morphosyntactic analysis of natural language
texts is commonly performed as an iterative pro-
cess of applying pre-defined syntactical rules to
a previously tokenised and morphologically anno-
tated input (Aït-Mokhtar and Chanod, 1997). We
consider two of its sub-tasks: shallow parsing and
disambiguation.

As stated in (Mohri, 1997), such tasks can often
be efficiently realized with finite-state transducers
(FST), which allow time savings by the classical
operations of determinization, minimization and
composition (Roche and Schabes, 1995). How-
ever, the applicability of the FST model may de-
pend on the richness of annotation and on the ex-
pressive power of the rules. These both tend to
complicate in richly inflected languages, including
Baltic and most of Slavic.

Motivated by the needs which arose during
the development of the National Corpus of Pol-
ish (NCP, (Przepiórkowski et al., 2012)), we aim
at a high-efficiency rule-based morphosyntactic
analysis framework suitable for such languages.
Despite the existence of many formal methods and
tools for this task, we are not aware of any pre-
vious result meeting all our needs, listed in Sec-
tion 2. We discuss the state of the art in Section 3.

Our solution to the problem, though surpris-
ingly single, performs well under the assumption
that the rules match rarely, i.e. the average number
of matches per rule per sentence is significantly

below 1. In the case of rules designed for analyz-
ing the Polish corpora (Przepiórkowski, 2008a),
this was about 0.05–0.1, depending on the partic-
ular corpus and ruleset.

2 Problem statement

Richly inflected languages often require com-
plex annotation as in the Constraint Grammar
model (Karlsson, 1990): each token is assigned a
list of potentially correct readings, each of which
specifies the lemmatized form and a tag consist-
ing of the values of syntactic attributes (PoS, case,
gender etc.). For example, the English word found
could have the following readings:1

found:VB (The king would found a new city.)
find:VBD (He found no money for that.)
find:VBN (The robber has not been found.)

while the Polish word drogi the following ones:

drogi:adj:m3:sg:nom /It is an expensive house./
drogi:adj:m3:sg:acc /I see an expensive house./
drogi:adj:m2:sg:nom /It is an expensive dog./
droga:noun:f:sg:gen /I do not see that road./
droga:noun:f:pl:acc /I see these roads./
x . . . (6 other readings2)

In this setting, unification becomes a key tool
in morphosyntactic analysis. For example, since
a noun must agree with its modifying adjectives
upon case, number and gender, unifying the values
of these attributes can be used to remove all but the
first two readings of drogi in

drogi
drogi:adj:m3:sg:nom
drogi:adj:m3:sg:acc
drogi:adj:m2:sg:nom

g dom g
dom:noun:m3:sg:nom
dom:noun:m3:sg:acc

1In the examples for English language, we use the PoS
tags of the Brown corpus. Tagging for Polish roughly follows
the National Corpus of Polish, though has been simplified.

2This is the number of practically possible readings (with
disregard of the context). Note that in general, the complex
morphology of Polish forces the morphological analyzers to
either under- or over-generate token readings. While the latter
choice is often considered as better for the accuracy, it makes
the syntactic analysis even more complicated.
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x . . . (8 other readings)

xxxxxxxx /an expensive house/

Hence, we desire at least the following features:
1. Functionality. Our rules should support dis-

ambiguation by unifying selected attributes in (se-
lected of) the tokens matched by a regexp, e.g.

[pos~vb] A:([pos~adj]*) B:[pos~noun]
⇒ unify(case number gender, A B)

should look for a sequence consisting of a verb3,
a number of adjectives and a noun, and unify three
attributes of the two latter. As for shallow pars-
ing, we should allow creating syntactic structures
depending on whether such unification has been
successful (e.g. a noun and an adjective can be
marked as a nominal group if they agree).

2. (Practical) determinism. By this we mean
that single rules should run in an (almost) linear
time in the input size. This clearly holds in mod-
els relying on FST determinization4, but we would
equally appreciate e.g. deterministic pushdown
automata or other not purely finite-state tools.

3. (Practical) composition. By this we mean
obtaining the ability to execute a cascade of rules
significantly faster than it would take to execute
them separately.

Clearly, a trade-off between time and memory
efficiency is involved in both conditions 2 and 3.

3 Related work

Building FSTs for given replace rules, their de-
terminization and minimization have been exten-
sively described in theory (see (Roche and Sch-
abes, 1995) and (Mohri, 1997)) and efficiently im-
plemented, e.g. in the XFST toolkit (Beesley and
Karttunen, 2003). However, as many authors no-
tice, these methods turn out to be inapplicable in
some situations. In our case, this happens for more
than one reason.

First, a FST may be not determinizable; as dis-
cussed in (Roche and Schabes, 1996, Sec. 3.8)
and (van Noord and Gerdemann, 2001), this tends
to happen for replace rules acting over unbounded
ranges of tokens, including both rule types dis-
cussed in Section 2. Trying to by-pass this prob-
lem — by assuming that a rule will not have

3To be more precise, a potential verb, i.e. a token having
some verbal reading. The same applies in the sequel.

4As in (Roche and Schabes, 1995), by FST determiniza-
tion we mean building an equivalent subsequential form, i.e.
a form not which does not backtrack during the execution.

a match longer than n tokens — typically leads
to an exponential number of states wrt. n, which
practically makes composing the results impossi-
ble. As explained in (van Noord and Gerdemann,
2001, Sec. 3.6), the explosion of states can be
avoided by equipping FSTs with a queue; how-
ever, such devices no longer admit the standard
composition (and no other composition method is
given).

Apparently, the most commonly chosen solu-
tion of the problem is to abandon determinism
for the rules which turn out to be too complex.
This is the case in FASTUS (Hobbs et al., 1997),
JAPE (Cunningham et al., 2000) (at least, in its
full expressive power) and most probably also in
SProUT (Becker et al., 2002), as its authors do not
at all discuss the issue, while they refer to the stan-
dard methods which we discussed above.

In our situation, the second obstruction to using
FSTs is a (yet another) explosion of states caused
by unification rules for rich inflection. In order to
compute the result of a unification, a determinized
FST must remember its temporary result (in the
current state) while processing consecutive tokens.
This means increasing a part of the state space by
a factor of N , where N is the number of possi-
ble unification results; in the case of Polish case-
number-gender agreement, this is about 100.5

The scale of this problem depends on the
representation of the input. Choosing a naive
string encoding of the form

found/found:VB/find:VBD/find:VBN# (∗)

will increase N hopelessly since the result of
unification will be a set of tags rather than a single
value. This is not the case in the more common
model for ambiguous annotation, Finite-State In-
tersection Grammar (FSIG) (Koskenniemi, 1990).
In this approach, the input is represented as a
finite-state automaton (FSA) so that alternative
readings give rise to parallel paths, e.g. he found
that will be represented as

VB
OOO

''OOO DT
OOO

''OOO
he // PPS //

foundoo

77oo

find //
find

OO

''OO
VBD //

thatoo

77oo

that //
that

OO

''OO
WPO //

VBNooo

77ooo
WPSoo

77oo

The rules are applied by intersecting the above
automaton with FSTs representing them. This
means that the FSTs operate on the paths of the

5The number of possible values of these three attributes
is 7 · 2 · 5 = 70 in NCP but more than 200 in some other
tagsets used for Polish.
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input FSA, each of which contains exactly one
reading of each token, e.g.

he PPS find VBN that WPO
In this setting, unification leads to at most N -
fold increase of the state space even in com-
pound FSTs, which allows hoping for composi-
tion. However, the FSIG model has the disadvan-
tage that the execution time is not linear in terms
of the input size, particularly for high ambiguity
(cf. (Tapanainen, 1999)). Hence, the model does
not ensure our efficiency requirements.

Efficient unification seems to be achievable by
equipping the FST with additional memory for the
temporary result, even though this means leaving
the pure finite-state formalism. Note also that this
is analogous to introducing a queue in (van Noord
and Gerdemann, 2001). These observations have
motivated the solution proposed below.

4 The solution

Basic model. We follow the idea present in the
old Spejd as well as in JAPE: each rule is split into
a simple match pattern and a list of more com-
plex actions performed outside of the finite-state
formalism. In our case, match patterns are regular
expressions6, while the actions can be virtually ar-
bitrary, provided that they operate within a given
match. The match patterns are compiled into de-
terministic automata (DFA). Rather than follow-
ing the FSIG approach, we traditionally run these
DFAs on single strings encoding the input, as in
the example (∗) on page 2, which enables finding
matches without backtracking.

Whenever a match is found, we stop the DFA
which found it and apply the pre-defined routines
corresponding to the actions. For the example in-
put drogi dom discussed in Section 2, the routine
for unify would scan and store all the readings
of drogi, do the same for dom, intersect the two
sets of readings and save the result.7

Single-pattern DFAs. Even though our pat-
terns are regular expressions, compiling them to
DFAs is not straightforward since the actions may
refer to sub-matches (e.g. A, B in the example in

6A match pattern is a regular expression over token spec-
ifications. These are built of attribute requirements, com-
bined by logical connectives and quantifiers over readings,
e.g. “there is a reading in which both pos equals noun and
case equals nom”. For the input encoding of the form (∗),
such patterns clearly translate to character-level regular ex-
pressions.

7This might be non-linear in terms of the match size but
will happen rarely due to the rareness of the matches.

Section 2). In general, a single run of a classi-
cal DFA cannot unambiguously determine the po-
sitions of all such sub-matches (Friedl, 2002). For
this purpose, we use the enhanced tagged DFAs
(TDFAs) from (Laurikari, 2000) which use ad-
ditional integer registers (which Laurikari calls
tags) to store the references to potential sub-match
boundaries.

TDFAs are asymptotically fast as they do not
backtrack, but several times slower than the clas-
sical DFAs. Hence we adopt the double pass tech-
nique of (Cox, 2010): we process the input first
with a classical DFA deciding solely whether it
contains a match for a given rule; only when it
does, we execute a more complex TDFA localiz-
ing the match and the desired sub-matches, and
finally apply the rule actions. In this way, every
sentence containing a match is processed twice;
however, our assumption that the matches are (av-
eragely) rare guarantees that in total this variant is
faster than using only TDFAs.

Practical composition. We have already met
the first two requirements from Section 2. It re-
mains to provide means for practical composi-
tion. At this point, the (average) rareness of the
matches becomes crucial. Intuitively, it means that
many rules do not change the input, and it should
be advantageous to compose these rules together.
Among several possible realizations of this idea,
we have chosen the following simple algorithm.

Let M1, . . . ,Mn denote the match specifica-
tions of the rules to be applied. We build:

• for each i, a TDFA Ti recognizing Mi;
• a DFA D recognizing M1|M2| . . . |Mn.

Then, we slightly modifyD in Laurikari’s spirit by
equipping it with two integer registers, L and R,
used as follows: whenever a match for some Mi

is found, D shall set R := i provided that L <
i ≤ R. Hence, running D on the whole input with
initial R = ∞ results in setting R to the least i >
L such that Mi has some match.

The main algorithm proceeds as follows:

1. Set L := 0. (Start with all rules.)
2. Set R :=∞ and run D on the whole input.
3. If R =∞ (no Mi with i > L matched), halt.
4. Run TR on the whole input. For every match

found, apply to it the actions of the R-th rule.
5. Set L := R and jump to step 2.

(ML done; proceed only with {Mi : i > L}.)
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Avoiding explosion. Even though the num-
ber of constructed states is clearly smaller than in
the FST models (as we have avoided states aris-
ing from sophisticated rule actions), it is still very
high. We reduced it significantly8 by a simple
technique of lazy construction: the transitions and
their target states are built only during the execu-
tion, just before their first use.

In practice, for a large number of rules, we fix
a composition width k and apply the above algo-
rithm to groups of k consecutive rules. To achieve
best performance, k should be chosen possibly
large but so that the states still fit into memory.
This makes the running time asymptotically linear
in the number of rules; nevertheless, the third re-
quirement from Section 2 has been met.

5 Evaluation

Our approach has been applied to optimize Spejd,
a syntactic parser of broad functionality which has
been used for corpus development, valence extrac-
tion (Przepiórkowski, 2008b), and also sentiment
analysis (Buczyński and Wawer, 2008).

composition avg. speed memory
width [tokens/s] [MB]

N/A (old Spejd) 802 184
1 6,013 292
10 18,536 488
30 21,746 3,245

Table 1: The speed and memory usage of Spejd in
terms of the composition width.

Table 1 presents the overall efficiency of the
system. In the tests, performed on a computer
with 3.1 GHz AMD FX processor, 467 hand-
written rules of (Przepiórkowski, 2008a) were ap-
plied to a 15 million token sample from the IPI
Corpus (Przepiórkowski, 2004).

Notably, the use of lazy construction increased
the achievable width from about 3–4 to about 30.9

Conclusion

We have described a variation of the finite-state
approach which, although it may seem strange in

8In some TDFAs in our applications, less than 5% of
states are reachable in practice, even for megabytes of input.

9Further state space reduction techniques, which are out
of scope of this paper, have allowed us to work with widths
exceeding 1000. Due to the overhead involved in them, this
resulted “only” in about 10-fold acceleration in comparison
with k = 30.

comparison with the classical solutions, seems to
be a good choice for infrequently matching com-
plex morphosyntactic rules, particularly for highly
ambiguous rich annotation. In practice, it has al-
lowed over 25-fold acceleration of the Spejd sys-
tem while preserving its rich functionality.
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Abstract 

The  existing Latvian morphological 
analyzer was developed more than ten 
years ago. Its main weaknesses are: low 
processing speed when processing a large 
text corpus, complexity of adding new 
entries to the lexical data base, and 
limitations for usage on different 
operational platforms. This paper describes 
the creation of a new Latvian morphology 
tool. The tool has the capability to return 
lemma and morphological analysis for a 
given word form; it can generate the 
required word form if lemma and form 
description is given; it can also generate all 
possible word forms for a given lemma. As 
Finite state transducer (FST) technology is 
used for the morphology tool, it is easy to 
extend the lexicon, the tool can be reused 
on different platforms and it has good 
performance indicators. 

Introduction 
An efficient way to generate forms and obtain 
morphological information about a word in a text 
is to apply morphological analysis tools. Such tools 
and their efficient implementation are especially 
important for languages that have a rich 
morphology. In this paper, we describe a new 
morphological processing tool for the Latvian 
language.  

The Latvian language is an inflectional 
language. As   described   in   (Skadiņa   et   al.,   2012), 
words change form according to grammatical 
function. Most word forms are built by adding an 
affix to the stem of the word. The endings are 
ambiguous. The same lexical ending can 

symbolize several grammatical word forms. There 
can also be changes in a stem – regular consonant 
changes at the end of a stem, or a stem can be 
completely different for a word form. For example, 
for the verbs of the first conjugation, the full set of 
inflectional word forms is generated using three 
different stems - infinitive, present tense, and past 
tense stems. To describe the morphological 
lexicon, the relationships between stems and 
different affixes must be defined. 

The existing Latvian morphological analyzer 
was developed more than ten years ago. It is based 
on a relational lexical data base of contemporary 
Latvian language. Prefixes, stems, and endings are 
stored in separate tables and are marked by 
different predefined declension groups. The 
relationship tables define eligible combinations of 
affixes. To be used by the morphological analyzer, 
this data base is compiled into a proprietary 
format. The same data base is used for building a 
spelling checker data file for Latvian. The main 
weaknesses of the existing Latvian morphological 
analyzer are: low processing speed when 
processing a large text corpus, complexity of 
adding new entries to the lexical data base, and 
limitations on platforms (it works only on the 
Windows platform). These factors promoted the 
search for a new solution. 

In next chapters, we describe in detail the 
proposed solution. 

1 Substantiation for chosen architecture 
Existing morphological analysis tools for different 
languages and ways to describe the morphological 
lexicon were analyzed. There are many 
morphology tools for different languages that use 
FST technology. A good example from which to 
borrow ideas about morphologically tagged 
lexicon representation in finite state format is 
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SMOR (Schmid et al., 2004) – a morphological 
analyzer for German. Concatenation is used to 
concatenate previously defined prefixes, stems, 
suffixes, and inflectional endings. As these parts 
are marked with agreement features, filters are 
applied to eliminate invalid sequences. 

There are several toolkits available which help 
in developing FST based solutions: Stuttgart 
Finite-State Transducer Tools1, OpenFst library2, 
Foma finite state library 3 , Helsinki Finite-State 
Transducer Technology toolkit4, Lttoolbox5.  

To describe the lexicon, we use the Stuttgart 
Finite-State Transducer Toolkit (SFST) as its 
extended regular expressions based transducer 
specification language allows to clearly describe 
the lexicon, to define variables, to apply 
concatenation, composition, insertion, and other 
operators needed for transducer implementation 
(Schmid, 2005). For transducer compilation, we 
use OpenFst as it supports weighted finite state 
transducers, and its source code can be compiled 
on Linux and Windows platforms. Examples in 
text are presented in SFST syntax. 

2 Designing finite state morphology tool 
There are three different transducers in the 
morphology tool: morphological analysis, form 
synthesis, and all word form generation for a given 
lemma. Table 1 shows the input and the output 
strings produced by every transducer. The files for 
the synthesis transducer are generated from the all 
form generation transducer. Only the last symbol 
differs in the transducer. For synthesis, the empty 
symbol on the input level changes to  form ID on 
the output level (1), but for all word form 
generation, the form ID on the input level changes 
to the part-of-speech tag on the output level (2). 
The transducer for analysis is the inverted version 
of the transducer for synthesis.  
 

(1) <>:<1397> 
(2) <1397>:<m> 
 

                                                           
1 http://www.ims.uni-
stuttgart.de/projekte/gramotron/SOFTWARE/SFST.htm 
2 http://www.openfst.org 
3 http://foma.sourceforge.net/dokuwiki/doku.php 
4 http://www.ling.helsinki.fi/kieliteknologia/tutkimus/hfst 
5 http://wiki.apertium.org/wiki/Lttoolbox 

Table 1: Different transducer input and output for the 
numeral  ‘five’ 

 
For form description, the original form 

identifiers are used as they are in the lexical data 
base of contemporary Latvian language. When 
further compiling transducers with OpenFst, they 
are remapped to form descriptions which are based 
on a tagset developed in MUTEXT-East 
(Erjavec, 2011). Both (3) and (4) describe the same 
form – numeral, feminine, plural, genitive case, 
cardinal numeral. 

 
(3) <1397> 
(4) < m0fpg000c0000000> 
 
The input for analysis is a word form, the output 

– one or more lemmas and form description tags. 
The input for synthesis is a lemma and a form 
description tag, and the output is one or several 
word forms. The input for full paradigm generation 
is a lemma with a part-of-speech tag, and the 
output is all word forms and their form 
descriptions.  

The transducers are created incrementally. The 
final transducer is represented as a union of 
separate part-of-speech transducers. 

(5) $morph$ = $Pronouns$ | $Numerals$ | 
$Others$ | $Adjectives$ | $Nouns$ | 
$Verbs$ 

Analysis 
Input piecu 
Output pieci<m0fpg000c0000000> 

pieci<m0mpg000c0000000> 
Synthesis 

Input pieci<m0fpd000c0000000> 
Output piecām 

All forms 
Input pieci<m> 
Output pieci<m0mpn000c0000000> 

piecu<m0mpg000c0000000> 
pieciem<m0mpd000c0000000> 
piecus<m0mpa000c0000000> 
piecos<m0mpl000c0000000> 
piecas<m0fpn000c0000000> 
piecu<m0fpg000c0000000> 
piecām<m0fpd000c0000000> 
piecas<m0fpa000c0000000> 
piecās<m0fpl000c0000000> 
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Words belonging to a different part-of-speech 
are represented in a slightly different way. Words 
from non-inflected part-of-speech, such as 
conjunction, exclamation, particle, abbreviation, 
preposition, are represented as a lexical entry 
followed by one or several form IDs on the input 
level which changes to a part-of-speech value on 
the output level. All such entries are joined by 
union operators (6). 

(6) $Others$ = bravo<1574>:<i>  |  … 

Every numeral and pronoun is represented as an 
inflected form on the input level and a lemma on 
the output level followed by one or several form 
IDs on the input level which changes to a part-of-
speech value on the output level. All such entries 
are joined by union operators. If the inflected form 
and the lemma start with the same characters, they 
are represented as a character sequence. In 
example (7), the word   “man”   (to me) has the 
lemma “es”  (I), and the word  “citam”  (to other) has 
the lemma  “cits”  (other). 

(7) $Pronouns$ = {man}:{es}<1474>:<p> |  
cit{am}:{s}<1634>:<p>  |  … 

The ending classes, the lists of inflections, and 
stems are defined separately for nouns, adjectives, 
and verbs. In the future, the morphological lexicon 
will be extended mostly by adding adjective, verb, 
or noun stems of new words. The ending classes 
contain a full set of possible noun, adjective, and 
verb endings and will not require further changes. 
Before every adjective and verb ending is a prefix 
tag which marks with which prefix a particular 
ending can be used. As the nouns and verbs can 
have several inflected stems for a lemma, the 
special ending tag marks with which stem a 
particular ending can be used. In example (8), the 
ending   tags   are   “<altEnd1>”   and   “<normEnd>”. 
The ending on the output level changes to the 
corresponding   lemma’s  ending.  All ending groups 
are joined by union operator (9), and before every 
ending group is an ending group tag which will be 
used in a filter for filtering out the combinations of 
stems and endings marked with the different 
ending group tags. There are 15 ending groups for 
adjectives, 26 ending groups for verbs and 69 
ending groups for nouns. 

(8) $Verb2$ =  \ 
<normEnd><PrefOther>{sim}:{t}<643>:<v> | 
<altEnd1><PrefOther>{a}:{t}<624>:<v> | …   

 
(9) $VInfl$ = \ 
<>:<Verbmodal>$Verbmodal$ |  
<>:<Verb2>$Verb2$ | 
<>:<Verb3_aam_refl>$Verb3_aam_refl$  … 
 
As nouns and verbs can have several stems to 

form a full paradigm, it is hard to write FST 
transformations by hand. There is a special file 
format for editing – the stems of the same 
paradigm are on the same line. This file contains 
two information blocks – one about predefined 
ending groups (10) and the other about the actual 
lexical entries, stems (11). The predefined ending 
group block is fixed; to improve the verb’s 
morphological analysis, the editors will make 
changes in the lexical entries block. In the 
predefined ending group block, every line contains 
a predefined ending group tag, the maximal 
number of stems for a word marked with this 
ending group tag, and ending tags for every stem. 
All verb groups have infinitive and present stems,  
some might also have past stem, second present 
stem, participle stems. In example (10) ending 
group   ‘<Verb2>’   requires   two   stems   but 
‘<Verbmodal>’   – four stems. In   (11)   verb   ‘barot’ 
of   ending   group   ‘<Verb2>’   has two stems but 
word  ‘iet’  of  ending  group  ‘<Verbmodal>’  - four. 

 
(10)  

<Verb2> 2 |t<normEnd> |u<altEnd1> 
<Verbmodal> 4 |t<normEnd> 

|u<normEnd1><altEnd1> 
|u<normEnd2><altEnd2> |<altEnd3> 

 
(11)  
<Verb2>  baro|t baroj|u 
<Verbmodal> ie|t ej|u gāj|u iet| 
 
The script changes lines to SFST representation 

and adds required tags for every stem (12). 
(12)  
ie<normEnd><Verbmodal> 
ej<normEnd1><Verbmodal> 
e:ij:e<altEnd1><Verbmodal> 
gāj<normEnd2><Verbmodal> 
g:iā:ej:<><altEnd2><Verbmodal> 
iet:<><altEnd3><Verbmodal>  
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Verbs and adjectives are represented as a 
concatenation of prefixes, stems, and endings, and 
nouns are represented as a concatenation of stems 
and endings.  

 
(13)  
$Verbs$ = $VPrefix$ $VStems$ $VInfl$ 
$Adjectives$ = $APrefix$ $AStems$ $AInfl$ 
$Nouns$ = $NStems$ $NInfl$ 
 
At this stage, every verb consists of three parts – 

prefix part, stem part, and ending part (14). 
 
(14)  
<PrefJa>jā 
lob<>:ī<altEnd1><Verb3> 
<Verb3><altEnd1><PrefJa>{a}:{t}<649>:<v> 

The wrong forms are filtered out by composing 
transducers with filters which accept the same 
prefix, ending, and ending group tags between 
word constituents. 

3 Evaluation 

We evaluated 37 964 words from the Latvian part 
of the Latvian-English dictionary (Veisbergs, 
2005). These words were morphologically 
analyzed on a computer with Windows 7 operating 
system (Intel®   Core™   i7-2600 3.40 GHz 
processor, 8 GB RAM). The existing morphology 
tool spent 2 minutes on this task, e.g., 316 words 
per second, while the FST based morphology tool 
completed it in 4 seconds, e.g., 9491 words per 
second. The similar performance speed for this 
task also on a computer with Ubuntu GNU/Linux 
operating  system  (Intel®  Core™  2  CPU  6300  1.86  
GHz processor, 7.74 GB RAM). The outputs of the 
two systems slightly differ as some errors in 
lexicon where fixed. The functionality of all form 
generation for a given lemma and part of speech 
was tested on the same data. First the word was 
analyzed, then the lemma and part of speech were 
extracted from the analysis output and passed on to 
the form generation transducer. The existing 
morphology tool spent 7 minutes and 25 seconds 
on this task, while the FST based morphology tool 
– 27 seconds. The speed of the all form generation 
functionality should be viewed only as a 
comparison between the previous and the new FST 

morphology tools as extra tasks are performed by 
the script while processing analysis results. 

4 Conclusion and future work 

In comparison with the existing morphology tool, 
FST technology is the better choice for 
morphology tool development. The new solution is 
faster; it works not only on Windows, but also on 
the Linux platform; it makes it easy to add new 
stems to predefined declension groups.  

For now, all stems are listed in the transducer, 
except for nouns with  suffixes  ‘–tāj’,  ‘–um‘,  ‘–ēj‘,  
‘–šan‘, which are derived from verb stems. Future 
work will be to reduce the size of the lexicon by 
generating stems that have regular consonant 
changes. This task is not simple. Phonological 
changes occur only for words of certain 
inflectional classes and only in certain grammatical 
forms. For example, for nouns of the fifth and the 
sixth declension in plural genitive and for nouns of 
the second declension in singular genitive and all 
plural   cases   stem’s   last   or   two   last   consonants  
change to one or two different consonants (15). 
However, some stems do not follow this pattern. 

 
(15)  
$nounAlt$ = ({b}:{bj} | {c}:{č}   |   {d}:{ž}   |  
{dz}:{dž}   |   {l}:{ļ}   |   {ln}:{ļņ}   |   {m}:{mj}   |  
{n}:{ņ}   |   {p}:{pj}   |   {s}:{š}   |   {sl}:{šļ}   |  
{sn}:{šņ}   |   {t}:{š}   |   {v}:{vj}   |   {z}:{ž}   |  
{zl}:{žļ}  |  {zn}:{žņ}  |  {ll}:{ļļ}  |  {nn}:{ņņ}) 
 
Not all words are listed in the lexicon. Time by 

time new words are introduced into a language. 
Mostly these are foreign words and domain-
specific terms, and many are formed as 
compounds. Compounding rules should be added 
to the transducer, which will increase its coverage. 
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Abstract

Work on probabilistic models of natu-
ral language tends to focus on strings
and trees, but there is increasing in-
terest in more general graph-shaped
structures since they seem to be bet-
ter suited for representing natural lan-
guage semantics, ontologies, or other
varieties of knowledge structures. How-
ever, while there are relatively sim-
ple approaches to defining generative
models over strings and trees, it has
proven more challenging for more gen-
eral graphs. This paper describes a
natural generalization of the n-gram to
graphs, making use of Hyperedge Re-
placement Grammars to define genera-
tive models of graph languages.

1 Introduction
While most work in natural language process-
ing (NLP), and especially within statistical
NLP, has historically focused on strings and
trees, there is increasing interest in deeper
graph-based analyses which could facilitate
natural language understanding and genera-
tion applications. Graphs have a long tradi-
tion within knowledge representation (Sowa,
1976), natural language semantics (Titov et
al., 2009; Martin and White, 2011; Le and
Zuidema, 2012), and in models of deep syntax
(Oepen et al., 2004; de Marneffe and Manning,
2008). Graphs seem particularly appropriate
for representing semantic structures, since a
single concept could play multiple roles within
a sentence. For instance, in the semantic rep-
resentation at the bottom right of Figure 1
lake is an argument of both rich-in and own
in the sentence, “The lake is said to be rich
in fish but is privately owned.” However, work

on graphs has been hampered, due, in part,
to the absence of a general agreed upon for-
malism for processing and modeling such data
structures. Where string and tree modeling
benefits from the wildly popular Probabilistic
Context Free Grammar (PCFG) and related
formalisms such as Tree Substitution Gram-
mar, Regular Tree Grammar, Hidden Markov
Models, and n-grams, there is nothing of sim-
ilar popularity for graphs. We need a slightly
different formalism, and Hyperedge Replace-
ment Grammar (HRG) (Drewes et al., 1997),
a variety of context-free grammar for graphs,
suggests itself as a reasonable choice given its
close analogy with CFG. Of course, in order
to make use of the formalism we need actual
grammars, and this paper fills that gap by in-
troducing a procedure for automatically ex-
tracting grammars from a corpus of graphs.

Grammars are appealing for the intuitive
and systematic way they capture the compo-
sitionality of language. For instance, just as
a PCFG could be used to parse “the lake” as
a syntactic subject, so could a graph gram-
mar represent lake as a constituent in a parse
of the corresponding semantic graph. In fact,
picking a formalism that is so similar to the
PCFG makes it easy to adapt proven, famil-
iar techniques for training and inference such
as the inside-outside algorithm, and because
HRG is context-free, parses can be represented
by trees, facilitating the use of many more
tools from tree automata (Knight and Graehl,
2005). Furthermore, the operational paral-
lelism with PCFG makes it easy to integrate
graph-based systems with syntactic models in
synchronous grammars (Jones et al., 2012).

Probabilistic versions of deep syntactic
models such as Lexical Functional Grammar
and HPSG (Johnson et al., 1999; Riezler et
al., 2000) are one grammar-based approach to
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modeling graphs represented in the form of
feature structures. However, these models are
tied to a particular linguistic paradigm, and
they are complex, requiring a great deal of ef-
fort to engineer and annotate the necessary
grammars and corpora. It is also not obvious
how to define generative probabilistic models
with such grammars, limiting their utility in
certain applications.

In contrast, this paper describes a method
of automatically extracting graph grammars
from a corpus of graphs, allowing us to eas-
ily estimate rule probabilities and define gen-
erative models. The class of grammars we
extract generalize the types of regular string
and tree grammars one might use to define
a bigram or similar Markov model for trees.
In fact, the procedure produces regular string
and tree grammars as special cases when the
input graphs themselves are strings or trees.

There is always overhead in learning a new
formalism, so we will endeavor to provide the
necessary background as simply as possible,
according to the following structure. Section
2 introduces Hyperedge Replacement Gram-
mars, which generate graphs, and their prob-
abilistic extension, weighted HRGs. Section 3
explains how each HRG derivation of a graph
induces a tree decomposition of that graph.
Given a tree decomposition of a graph, we use
that mapping “in reverse” to induce an HRG
that generates that graph (section 4). Sec-
tion 4 also introduces four different strategies
for finding tree decompositions of (and hence
inducing HRGs from) a set of graphs. Sec-
tion 5 applies these strategies to the LOGON
corpus (Oepen et al., 2004) and evaluates the
induced weighted HRGs in terms of held-out
perplexity. Section 6 concludes the paper and
discusses possible applications and extensions.

2 Graphs and Hyperedge
Replacement Grammars

Hyperedge Replacement Grammar (HRG) is a
generalization of CFG to graph languages (see
Drewes et al. (1997) for an overview). Where
a CFG builds up strings by replacing symbols
with new substrings, an HRG builds graphs by
replacing edges with subgraphs. As a context-
free formalism, HRG derivations can be de-
scribed by trees, similar to CFG parses. Thus,

in the case of probabilistic HRG, it is possible
to assign rule weights to define easily factoriz-
able probability distributions over graphs, just
as PCFGs do for strings.

We start by defining a hypergraph, a gener-
alization of a graph where edges may link any
finite number of vertices. Formally, a hyper-
graph is a tuple (V, E , α, ℓ, x). V and E are
finite sets of vertices and hyperedges, respec-
tively. The attachment function α : E → V∗

maps each hyperedge e ∈ E to a sequence of
pairwise distinct vertices from V, where we call
the length of α(e) the arity of e. The labeling
function ℓ : E → Σ maps each hyperedge to
a symbol in some ranked alphabet Σ, where
the rank of ℓ(e) is e’s arity. Vertices are un-
labeled, but they can be simulated by treat-
ing unary hyperedges (i.e., hyperedges with a
single vertex) as vertex labels. Finally, each
graph has a set of zero or more external ver-
tices, arranged in a sequence x ∈ V∗ (pairwise
distinct), which plays an important role in the
rewriting mechanism of HRG. Just as hyper-
edges have an arity, so too do hypergraphs,
defined as the length of x.

We are primarily interested in languages
of simple directed graphs, hypergraphs where
each edge is either binary or, for vertex la-
bels, unary. In this case, we can indicate vi-
sually the ordering on a binary edge with ver-
tex sequence v0v1 by an arrow pointing from
vertex v0 to v1. We may make use of hyper-
edges of arbitrary arity, though, for intermedi-
ate rewriting steps during derivations. The se-
mantic dependency graph at the bottom right
of Figure 1, taken from the Redwoods corpus
(Oepen et al., 2004), is an example of a simple
graph. It has both unary edges for expressing
predicates like ‘private’ and ‘own’ and binary
edges for specifying their relations. In princi-
ple, any vertex can have more than one unary
edge, a fact we make use of in HRG rule defi-
nitions, such as in the graph on the right-hand
side of rule r4 in Figure 1 where vertex 2 has
two unary edges labeled ‘rich-in’ and Nrich-in.

A weighted HRG is an edge rewriting sys-
tem for generating hypergraphs, also defined
as a tuple (Σ,N , S,R). Σ is a ranked alpha-
bet of edge labels, N ⊂ Σ a set of nonterminal
symbols, S ∈ N a special start symbol, and
R is a finite set of weighted rules. Each rule
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in R is of the form [A → h].w, where h is a
hypergraph with edge labels from Σ, A ∈ N
has rank equal to the arity of h, and weight w
is a real number. As with PCFGs, a weighted
HRG is probabilistic if the weights of all rules
with the same ranked symbol A on the left-
hand side sum to one. In the case of proba-
bilistic HRG, the probability of a derivation is
the product of the weights of the rules in the
derivation, just as for PCFG. Figure 1 shows
an example of an HRG and a sample deriva-
tion. The external vertices of the right-hand
side graphs have been shaded, and their se-
quence should be read top to bottom (e.g., 0
to 5 in rule r1). Vertices have been identified
by numbers, but these identifiers are included
only to make it easier to refer to them in our
discussion; strictly speaking, vertices are unla-
beled, and these numbers are irrelevant to the
operation of the grammar. Nonterminal edges
are dashed to make them easier to identify.

Hyperedge replacement, the basic rewriting
mechanism of HRG, is an operation where a
hypergraph is substituted for an edge. If g
is a hypergraph containing edge e, and h is
another hypergraph with the same arity as e,
edge e can be replaced with h by first removing
e from g and then “fusing” h and g together
at the external vertices of h and the vertices of
α(e). So, if α(e) = v0v1...vk and h has external
vertices u0u1...uk, we would fuse each ui to the
corresponding vi.

Much like with CFG, where each step of a
derivation replaces a symbol by a substring,
each step of an HRG derivation replaces an
edge with a certain nonterminal symbol label
by the right-hand side graph of some rule with
the same symbol on its left-hand side. For
instance, in the application of rule r3 in the
fourth step of Figure 1, the edge 1 Nsay→ 5 is
replaced by the graph 1 arg2→ 2 Narg2→ 5 by re-
moving the red Nsay edge and then attaching
the new subgraph. Rule r3 has an external
vertex sequence of 1 to 5, and these are fused
to the incident vertices of the nonterminal edge
1 Nsay→ 5. The edge to be replaced in each step
has been highlighted in red to ease reading.

3 Tree Decompositions
We now introduce one additional piece of
theoretical machinery, the tree decomposition

(Bodlaender, 1993). Tree decompositions play
an important role in graph theory, feature
prominently in the junction tree algorithm
from machine learning (Pearl, 1988), and have
proven valuable for efficient parsing (Gildea,
2011; Chiang et al., 2013). Importantly,
Lautemann (1988) proved that every HRG
parse identifies a particular tree decomposi-
tion, and by restricting ourselves to a certain
type of tree we will draw an even tighter re-
lationship, allowing us to identify parses given
tree decompositions.

A tree decomposition of a graph g is a tree
whose nodes identify subsets of the vertices of
g which satisfy the following three properties:1

• Vertex Cover: Every vertex of g is con-
tained by at least one tree node.
• Edge Cover: For every edge e of the

graph, there is a tree node η such that
each vertex of α(e) is in η.
• Running Intersection: Given any two

tree nodes η0 and η1, both containing ver-
tex v, all tree nodes on the unique path
from η0 to η1 also contain v.

Figure 2 presents four different tree decompo-
sitions of the graph shown at the bottom right
of Figure 1. Consider (d). Vertex cover is sat-
isfied by the fact that every vertex of the graph
appears in at least one tree node. Graph ver-
tex 0, for example, is covered by two nodes
{0, 1, 5} and {0, 3, 5}. Similarly, every edge is
covered by at least one of the nodes. Node
{0, 1, 5} covers one binary edge, 0 arg1→ 1, and
three unary edges:

but
0 ,

say
1 , and

lake
5 .

We focus on a particular class called edge-
mapped tree decompositions, defined by pairs
(t, µ) where t is a tree decomposition of some
graph g and µ is a bijection from the nodes of t
to the edges of g, where a node also covers the
edge it maps to. Every graph has at least one
edge-mapped tree decomposition; Figure 2(a)-
(c) illustrates three such edge-mapped decom-
positions for a particular graph, where the
mapping is shown by the extra labels next to
the tree nodes. The edge mapping simplifies
the rule extraction procedure described in Sec-
tion 4 since traversing the tree and following

1To avoid confusion, we adopt a terminology where
node is always used in respect to tree decompositions
and vertex and edge to graphs.
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Figure 1: An HRG and a derivation of the semantic dependency graph for “the lake is said to
be rich in fish but is privately owned.” External vertices are shaded and ordered top to bottom,
nonterminal edges are dashed, and the one being replaced is highlighted in red.
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(a) {0} but
0

{0, 1} 0arg1→ 1

{1, 0} say
1

{1, 2, 0} 1arg2→ 2

{2, 0} rich-in
2

{2, 6, 0} 2arg2→ 6

{6, 0, 2} fish
6

{2, 5, 0} 2arg1→ 5

{5, 0} lake
5

{4, 5, 0} 4arg2→ 5

{4, 0} own
4

{3, 4, 0} 3arg1→ 4

{3, 0} private
3

{0, 3} 0arg2→ 3

(b) {0} but
0

{0, 1} 0arg1→ 1

{1, 0} say
1

{1, 2, 0} 1arg2→ 2

{2, 0} rich-in
2

{2, 6}2arg2→ 6

{6}fish
6

{2, 5, 0} 2arg1→ 5

{5, 0} lake
5

{4, 5, 0} 4arg2→ 5

{4, 0} own
4

{3, 4, 0} 3arg1→ 4

{3, 0} private
3

{0, 3} 0arg2→ 3

(c)
{0, 5}

but
0

{0, 1, 5}0arg1→ 1

{1, 5}say
1

{1, 2, 5}1arg2→ 2

{2, 5}rich-in
2

{2, 6}2arg2→ 6

{6}fish
6

{2, 5} 2arg1→ 5

{5} lake
5

{4, 5} 4arg2→ 5

{4, 5} own
4

{3, 4, 5} 3arg1→ 4

{3, 5} private
3

{0, 3, 5} 0arg2→ 3

(d) {0, 1, 5}

{1, 2, 5}

{2, 6}

{0, 3, 5}

{3, 4, 5}

Figure 2: Edge-mapped (a-c) and non-edge-
mapped (d) tree decompositions for the graph
at the bottom right of Figure 1.

this mapping µ guarantees that every graph
edge is visited exactly once.

Running intersection will also prove impor-
tant for rule extraction, since it tracks the tree
violations of the graph by passing down the
end points of edges that link edges in differ-
ent branches of the decomposition. This same
information must be passed down the respec-
tive paths of the HRG derivation tree via the
external vertices of rule-right hand sides. Fig-
ure 2 uses bold face and vertex order to high-
light the vertices that must be added to each
node beyond those needed to cover its corre-
sponding edge. In the decomposition shown
in (b), vertex 0 must be passed from the node
mapping to

but
0 down to the node mapping to

0 arg2→ 3 because the two edges share that ver-
tex. Any HRG derivation will need to pass
down vertices in a similar manner to specify
which edges get attached to which vertices.

As suggested by the four trees of Figure 2,
there are always many possible decompositions

Algorithm 1: Extract HRG rule A → h
from tree decomposition node η.

function Extract(η)
A← label(parent(η), |parent(η) ∩ η|)
h.x← order(η, parent(η) ∩ η)
add terminal edge µ(η) to h
for all ηi ∈ children(η) do

add nonterminal edge ui to h
α(ui)← order(ηi, η ∩ ηi)
ℓ(ui)← label(η, |η ∩ ηi|)

return [A→ h]

for any given graph. In the next section we de-
scribe three methods of producing tree decom-
positions, each leading to distinct grammars
with different language modeling properties.

4 HRG Extraction

Rule extraction proceeds by first selecting a
particular tree decomposition for a graph and
then walking this tree to extract grammar
rules in much the same way as one extracts n-
grams or Regular Tree Grammars (RTG) from
a corpus of strings or trees. The procedure
(Algorithm 1) extracts a single rule for each
node of the decomposition to generate the as-
sociated terminal edge plus a set of nontermi-
nals which can be subsequently expanded to
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generate the subgraphs corresponding to each
subtree of the decomposition node. In par-
ticular, given the tree decomposition in Fig-
ure 2(c), the procedure produces the grammar
in Figure 1. Rule extraction works for any con-
nected simple graph and can be easily adapted
for arbitrary hypergraphs.

Start by assigning the left-hand side nonter-
minal symbol according to

label(parent(η), r),

which returns a symbol determined by η’s par-
ent with rank r, the number of vertices in com-
mon between η and its parent. The external
vertices of h are assigned by sorting the ver-
tices that η shares with its parent. Any order-
ing policy will work so long as it produces the
same ordering with respect to a given decom-
position node. What is important is that the
order of the external vertices of a rule match
that of the vertices of the nonterminal edge it
expands.2 The algorithm then constructs the
rest of h by including terminal edge µ(η), and
adding a nonterminal edge for each child ηi of
η, with vertices assigned according to an or-
dering of the vertices that η shares with ηi,
again labeled according to label.

The function label just returns a nontermi-
nal symbol of a given rank, chosen to match
the number of external vertices of the right-
hand side. There are many possible choices of
label; it can even be a function that always re-
turns the same symbol for a given rank. For
purposes of language modeling, it is useful to
condition rule probabilities on the label of the
edge associated with the parent node in the
decomposition (analogous to conditioning on
the preceding word in a bigram setting). It is
also useful to distinguish the direction of that
preceding edge. For instance, we would expect
‘rich-in’ to have a different probability based
on whether it is being generated as the argu-
ment of predicate ‘say’ vs. as a descendant of
its own argument ‘lake’. Thus, each nonter-
minal encodes (1) the label of the preceding
edge and (2) its direction with respect to the
current edge as defined according to the head-
to-tail relation, where we say edge ej is head-
to-tail with preceding edge ei iff the last vertex

2We experimented with various orderings, from pre-
order traversals of the tree decomposition to simply
sorting by vertex identity, all with similar results.

of α(ei) is the first of α(ej). For instance,
lake
5

is in head-to-tail relation with 2 arg1→ 5, while
2 arg1→ 5 is not head-to-tail with 4 arg2→ 5.

The grammar in Figure 1 is extracted ac-
cording to the tree decomposition in Fig-
ure 2(c). Consider how rule r4 is constructed
while visiting the node η = {2, 5} which maps
to unary edge

rich-in
2 . The left-hand side symbol

Narg2 comes from the label of the edge 1 arg2→ 2
associated with η’s parent node {1, 2, 5} and
has a rank of |{2, 5} ∩ {1, 2, 5}| = 2. The rule
right-hand side is constructed so that it con-
tains

rich-in
2 and two nonterminal edges. The

first nonterminal edge comes from the intersec-
tion of η with left child {2, 6}, yielding unary
sequence 2 and edge

Nrich-in
2 . The second non-

terminal edge is constructed similarly by or-
dering the vertices in the intersection of η with
its right child {2, 5} to get the binary sequence
2 to 5, producing 2 Nrich-in→ 5. Finally, the exter-
nal vertex sequence comes from ordering the
members of {2, 5} ∩ {1, 2, 5}.

The particular edge-mapped tree decompo-
sition plays a key role in the form of the ex-
tracted rules. In particular, each branching
of the tree specifies the number of nontermi-
nals in the corresponding rule. For example,
decompositions such as Figure 2(a) result in
linear grammars, where every rule right-hand
side contains at most one nonterminal.

We experiment with three different strate-
gies for producing edge-mapped tree decom-
positions. In each case, we start by building
a node-to-edge map by introducing a new tree
node to cover each edge of the graph, simul-
taneously ensuring the vertex and edge cover
properties. The strategies differ in how the
nodes are arranged into a tree. One simple
approach (linear) is to construct a linearized
sequence of edges by performing a depth first
search of the graph and adding edges when
we visit incident vertices. This produces non-
branching trees such as Figure 2(a). Alter-
natively, we can construct the decomposition
according to the actual depth first search tree
(dfs), producing decompositions like (b). Fi-
nally, we construct what we call a topological
sort tree (top), where we add children to each
node so as to maximize the number of head-

59



to-tail transitions, producing trees such as (c).
For rooted DAGs, this is easy; just construct a
directed breadth first search tree of the graph
starting from the root vertex. It is more
involved for other graphs but still straight-
forward, accomplished by finding a minimum
spanning tree of a newly constructed weighted
directed graph representing head-to-tail tran-
sitions as arcs with weight 0 and all other con-
tiguous transitions as arcs of weight 1. Once
the edge-mapped nodes are arranged in a tree
all that is left is to add vertices to each to sat-
isfy running intersection.

One attractive feature of top is that, for cer-
tain types of input graphs, it produces gram-
mars of well-known classes. In particular, if
the graph is a string (a directed path), the
grammar will be a right-linear CFG, i.e., a
regular string grammar (a bigram grammar,
in fact), and if it is a rooted tree, the unique
topological sort tree leads to a grammar that
closely resembles an RTG (where trees are
edge-labeled and siblings are un-ordered). The
other decomposition strategies do not con-
strain the tree as much, and their grammars
are not necessarily regular.

Another nice feature of top is that subtrees
of a parse tend to correspond to intuitive mod-
ules of the graph. For instance, the grammar
first generates a predicate like ‘rich-in’ and
then it proceeds to generate the subgraphs cor-
responding to its arguments ‘fish’ and ‘lake’,
much as one would expect a syntactic depen-
dency grammar to generate a head followed by
its dependents. The linear grammar derived
from Figure 2(a), on the other hand, would
generate ‘lake’ as a descendant of ‘fish’.

We also explore an augmentation of top
called the rooted topological sort tree (r-top).
Any graph can be converted to a rooted graph
by simply adding an extra vertex and mak-
ing it the parent of every vertex of in-degree
zero (or if there are none, picking a member
of each connected component at random). We
exploit this fact to produce a version of top
that generates all graphs as though they were
rooted by starting off each derivation with a
rule that generates every vertex with in-degree
zero. We expect rooted graphs to produce sim-
pler grammars in general because they reduce
the number of edges that must be generated

in non-topological order, requiring fewer rules
that differ primarily in whether they generate
an edge in head-to-tail order or not. In par-
ticular, if a graph is acyclic, all edges will be
generated in head-to-tail relation and the cor-
responding grammar will contain fewer non-
terminals.

5 Evaluation

We experiment using 5564 elementary seman-
tic dependency graphs taken from the LOGON
portion of the Redwoods corpus (Oepen et al.,
2004). From Table 1, we can see that, while
there are a few tree-shaped graphs, the ma-
jority are more general DAGs. Nevertheless,
edge density is low; the average graph contains
about 15.4 binary edges and 14.9 vertices. We
set aside every 10th graph for the test set, and
estimate the models from the remaining 5,008,
replacing terminals occurring ≤ 1 times in the
training set with special symbol UNK.

Model parameters are calculated from the
frequency of extracted rules using a mean-
field Variational Bayesian approximation of a
symmetric Dirichlet prior with parameter β
(Bishop, 2006). This amounts to counting the
number of times each rule r with left-hand side
symbol A is extracted and then computing its
weight θr according to

θr = exp
(

Ψ(nr + β)−Ψ(
∑

r′:r′=A→h

nr′ + β)
)

,

where nr is the frequency of r and Ψ is the
standard digamma function. This approxima-
tion of a Dirichlet prior offers a simple yet prin-
cipled way of simultaneously smoothing rule
weights and incorporating a soft assumption
of sparsity (i.e., only a few rules should re-
ceive very high probability). Specifically, we
somewhat arbitrarily selected a value of 0.2 for
β, which should result in a moderately sparse
distribution.

We evaluate each model by computing per-
plexity: 2−

∑N

i=1
1
N

ln2 p(gi), where N is the
number of graphs in the test set, gi is the ith

graph, and p(gi) is its probability according
to the model, computed as the product of the
weights of the rules in the extracted derivation.
Better models should assign higher probability
to gi, thereby achieving lower perplexity.
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(a) Graphs
strings 0
r-trees 682
r-dags 51
dags 4831
total 5564

(b) Edges
unary binary

types 5626 10
tokens 83061 85737

Table 1: LOGON corpus. (a) Graph types (r
stands for rooted). (b) Edge types and tokens.

model perplexity size
linear 505,061 59,980
dfs 341,336 14,443
top 22,484 20,985
r-top 40,504 19,052

Table 2: Model perplexity and grammar size.

Table 2 lists the perplexities of the language
models defined according to our four different
tree decomposition strategies. Linear is rela-
tively poor since it makes little distinction be-
tween local and more distant relations between
edges. For instance, the tree in Figure 2(a) re-
sults in a grammar where 2 arg2→ 5 is generated
as the child of distantly related

fish
6 but as a

remote descendant of neighboring edge
rich-in

2 .
Dfs is better, but suffers from similar prob-
lems. Both top and r-top perform markedly
better, but r-top less so because the initial
rule required for generating all vertices of in-
degree zero is often very improbable. There
are 1562 different such rules required for de-
scribing the training data, many of which ap-
pear only once. We believe there are ways of
factorizing these rules to mitigate this sparsity
effect, but this is left to future work.

Grammar sizes are also somewhat telling.
The linear grammar is quite large, due to
the extra rules required for handling the long-
distance relations. The other grammars are of
a similar, much smaller size, but dfs is small-
est since it tends to produce trees of much
smaller branching factor, allowing for greater
rule reuse. As predicted, the r-top grammar is
somewhat smaller than the vanilla top gram-
mar, but, as previously noted, the potential
reduction in sparsity is counteracted by the
introduction of the extra initial rules.

6 Conclusion & Discussion
Graph grammars are an appealing formalism
for modeling the kinds of structures required

for representing natural language semantics,
but there is little work in actually defining
grammars for doing so. We have introduced
a simple framework for automatically extract-
ing HRGs, based upon first defining a tree de-
composition and then walking this tree to ex-
tract rules in a manner very similar to how
one extracts RTG rules from a corpus of trees.
By varying the kinds of tree decomposition
used, the procedure produces different types of
grammars. While restricting consideration to
a broad class of tree decompositions where vis-
iting tree nodes corresponds to visiting edges
of the graph, we explored four special cases,
demonstrating that one case, where parent-to-
child node relations in the tree maximize head-
to-tail transitions between graph edges, per-
forms best in terms of perplexity on a corpus
of semantic graphs. This topological ordering
heuristic seems reasonable for the corpus we
experimented on since such parent-child tran-
sitions are equivalent to predicate-argument
transitions in the semantic representations.

Interesting questions remain as to which
particular combinations of graph and decom-
position types lead to useful classes of graph
grammars. In our case we found that our topo-
logical sort tree decomposition leads to regular
grammars when the graphs describe strings or
particular kinds of trees, making them useful
for defining simple Markov models and also
making it possible to perform other opera-
tions like language intersection (Gecseg and
Steinby, 1984). We have presented only an
initial study and there are potentially many
interesting combinations.
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Abstract. The accepting runs of a fi-
nite automaton are represented as con-
cepts in a Description Logic, for vari-
ous systems of roles computed by finite-
state transducers. The representation
refines the perspective on regular lan-
guages provided by Monadic Second-
Order Logic (MSO), under the Büchi-
Elgot-Trakhtenbrot theorem. String
symbols are structured as sets to suc-
cinctly express MSO-sentences, with
auxiliary symbols conceived as vari-
ables bound by quantifiers.

1 Introduction

As declarative specifications of sets of strings ac-
cepted by finite automata (i.e. regular languages),
regular expressions are far and away more popular
than the formulas of Monadic Second-Order Logic
(MSO), which, by a fundamental theorem due to
Büchi, Elgot and Trakhtenbrot, pick out the regu-
lar languages (e.g. Thomas, 1997). Computational
semantics, however, can hardly ignore MSO’s
model-theoretic perspective on strings with its
computable notions of entailment. Furthermore,
regular expressions lack the succinctness that
MSO’s Boolean connectives support. Both nega-
tion and conjunction blow up the size of regu-
lar expressions by an exponential or two (Gelade
and Neven, 2008). A symptom of the problem
is the exponential cost of mapping a finite au-
tomaton A to a regular expression denoting the
language L(A) accepted by A (Ehrenfeucht and
Zeiger, 1976; Holzer and Kutrib, 2010). A more
economical declarative representation of L(A) is
afforded by pairing a string a1a2 · · · an in L(A)
with a string q1q2 · · · qn of A’s (internal) states qi
in the course of a run (by A) accepting a1a2 · · · an.
This representation involves expanding the alpha-
bet of the strings, and subsequently contracting the
alphabet. A simple way to carry this out is by

forming strings α1α2 · · ·αn of sets αi that we can,
for instance, intersect with a fixed set B, defining
a string homomorphism ρB for componentwise in-
tersection with B

ρB(α1 · · ·αn) := (α1 ∩B) · · · (αn ∩B).

For example, assuming no state qi belongs to the
alphabet Σ of L(A),

ρΣ( a1, q1 · · · an, qn ) = a1 · · · an

where we draw boxes instead of curly braces for
sets used as string symbols.

The homomorphisms ρB are linked below to the
treatment of variables in MSO. Given a finite al-
phabet A, MSOA-sentences are formed from a bi-
nary relation symbol S (encoding successor) and
a unary relation symbol Ua, for each a ∈ A. We
then interpret an MSOA-sentence against a string
over the alphabet 2A of subsets of A, deviating
ever so slightly from the custom of interpreting
against strings in A+. Expanding the alphabet
from A to 2A accommodates a form of underspec-
ification that, among other things, facilitates the
interpretation of MSOA-formulas relative to vari-
able assignments. As for the homomorphisms ρB ,
the idea is that B picks out a subset of A, leav-
ing each a ∈ A that is not in B as an “auxiliary
marker symbol” — a staple of finite-state language
processing (Beesley and Karttunen, 2003; Yli-Jyrä
and Koskenniemi, 2004; Hulden, 2009).

By focusing on the accepting runs of a finite au-
tomaton, the present paper strives to be relevant to
finite-state language processing in general. But to
understand its difference with say (Hulden, 2009),
a few words about the language applications moti-
vating it might be helpful. These applications con-
cern not morphology, phonology, speech or even
syntax but semantics — in particular, temporal se-
mantics. The convenience of equating succession
in a string with temporal succession is yet another
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reason to step from A up to 2A (reading a boxed
subset of A as a snapshot). It is a trivial enough
matter to build a finite-state transducer between
(2A)∗ and (A ∪ {[, ]})∗ unwinding say, the string

a, a′ a′ of length 2 over the alphabet 2{a,a
′}

to the string

[aa′][a′] of length 7 over the alphabet {a, a′, [, ]}

and if we are to apply ρB , it is natural to choose
the alphabet 2A over A ∪ {[, ]}. There are, in
any case, many more regular relations apart from
ρB to consider for temporal semantics (Fernando,
2011), including those that change string length
and the notion of temporal succession, i.e. gran-
ularity. A simple but powerful way of building a
regular language from a regular relation R is by
forming the inverse image of a regular language
L under R, which we write 〈R〉L, following dy-
namic logic (e.g. Fischer and Ladner, 1979). The
basic thrust of the present paper is to extend reg-
ular expressions by adding connectives for nega-
tion, conjunction and inverse images under certain
regular relations.

This extension is dressed up below in Descrip-
tion Logic (DLs; Baader et al. 2003), with the
languages L(A) accepted by automata A as DL-
concepts (unary relations), and various regular re-
lations including ρB (for different sets B) as DL-
roles (binary relations). As in the attributive lan-
guage with complement ALC, DL-concepts C are
closed under conjunction C ∧ C ′, negation ¬C,
and inverse images under DL-roles R, the usual
DL notation for which, (∃R)C, we replace by
〈R〉C from dynamic logic, with

[[〈R〉C]] := {s | (∃s′ ∈ [[C]]) s[[R]]s′}.

Since DL-concepts and DL-roles in the present
context, have clear intended interpretations, we
will often drop the semantic brackets [[·]], conflat-
ing an expression with its meaning.

MSO is linked to DL by a mapping of MSO-
sentences ϕ to DL-concepts Cϕ that reduces
MSO-entailments |=MSO to concept inclusion

ϕ |=MSO ψ ⇐⇒ Cϕ ⊆ Cψ . (1)

Let us take care not to read (1) as stating MSO
is interpretable in DL in the sense of (Tarski et
al., 1953); no formal DL theory is mentioned in

(1), only a particular (intended) interpretation over
strings. What we vary is not the interpretation [[·]]
but the mapping ϕ 7→ Cϕ establishing (1). Many
different definitions of Cϕ will do, and the main
aim of the present work is to explore these possi-
bilities, expressed as particular DL concepts and
roles. In its account of regular languages, the
Büchi-Elgot-Trakhtenbrot theorem says nothing
about finite-state transducers, which are nonethe-
less instrumental in establishing the theorem. Be-
hind the move to Description Logics is the view
that the role of finite-state transducers in construct-
ing regular languages merits scrutiny.

To dispel possible confusion, it is perhaps worth
remarking that a relation computable by a finite-
state transducer may have a transitive closure that
no finite-state transducer can compute. A simple
example is the function f that leaves all strings
unchanged except those of the form 1n0m+22k

which it maps to 1n+10m2k+1. The intersection

1∗2∗ ∩ {fk(0n) | k, n ≥ 0}

is the non-regular language {1n2n | n ≥ 0}, pre-
cluding a finite-state transducer from computing
the transitive closure of f . Commenting on the
Description Logic counterpartALCreg to Proposi-
tional Dynamic Logic (Fischer and Ladner, 1979),
Baader and Lutz write

many of today’s most used concept lan-
guages do not include the role construc-
tors of ALCreg. The main reason is that
applications demand an implementation
of description logic reasoning, and the
presence of the reflexive-transitive clo-
sure constructor makes obtaining effi-
cient implementations much harder.

There should be no mistaking the interpreta-
tions of concepts and roles below for models of
ALCreg. Most every role considered below (from
ρB on) is, however, transitive and indeed can be
viewed as some notion of “part of.”

The remainder of this paper is organized as fol-
lows. The accepting runs of a finite automaton
are expressed as a DL-concept in section 2. This
is then used to present MSO’s semantic set-up in
section 3. A feature of that set-up is the expan-
sion of MSOA-models fromA+ to (2A)+, opening
up possibilities of underspecification which sec-
tion 4 explores alongside non-deterministic DL-
roles (in addition to the inverse of ρB). Section
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5 looks at more DL-roles that, unlike ρB , change
length, and section 6 concludes, returning to aux-
iliary symbols, which are subject not only to ρB
but the various regular relations formulated above
as DL-roles.

2 Accepting runs as a DL-concept

One half of the aforementioned Büchi-Elgot-
Trakhtenbrot theorem turns finite automata to
MSO-sentences. This section adapts the idea
behind that half in a DL setting, deferring de-
tails about MSO to the next section. An ac-
cepting run of a finite automaton A is a string
a1, q1 a2, q2 · · · an, qn such that

q0
a1
; q1

a2
; q2

a3
; · · · an; qn ∈ F

where q0 is A’s initial state, ; is A’s set of tran-
sitions (labeled by symbols), and F is A’s set of
final/accepting states. (Note A may be identified
with such a triple 〈;, q0, F 〉.) Let us assume that
A’s set Q of states is disjoint from the alphabet Σ,
and treat ai, qi as a 2-element subset of Σ ∪ Q,
making an accepting run a string over the alpha-
bet 2Σ∪Q of subsets of Σ ∪ Q. Clearly, for any
finite automaton A, the set AccRuns(A) of accept-
ing runs of A is regular — simply modify A’s tran-
sitions to

{(q, a, q′ , q′) | q a
; q′} .

The language L(A) accepted by A can then be
formed applying ρΣ to A’s accepting runs (setting
aside the cosmetic difference between a and a)

L(A) ≈ {ρΣ(s) | s ∈ AccRuns(A)}
= 〈ρΣ

−1〉 AccRuns(A) .

It remains to express the language AccRuns(A)
through conjunctions and negations of a small
number of languages 〈R〉L for certain (particu-
larly simple) choices of R and L. One such R
is componentwise inclusion � between strings of
sets of the same length

� := {(α1 · · ·αn, β1 · · ·βn) | αi ⊇ βi
for 1 ≤ i ≤ n}

(Fernando, 2004). For example, s � ρB(s) for all
strings s of sets, and α� for all sets α. Returning
to AccRuns(A), let us collect

(i) strings with final position containing an A-
final state in

LF := 〈�〉
∑

q∈F

∗ q

(ii) strings whose first position contains a pair
a, q such that q0

a
; q in

Lq0; := 〈�〉
∑

q0
a
;q

a, q ∗

and

(iii) (bad) strings containing q a, q′ , for some
triple (q, a, q′) ∈ Q × Σ × Q outside the set
; of transitions in

L6; := 〈�〉
∑

q 6 a;q′

∗
q a, q′

∗

Also, for any set B, let Spec(B) be the set

Spec(B) := 〈ρB〉(
∑

b∈B
b )∗

of strings with exactly one element of B in each
string position.

Proposition 1. Let A be a finite automaton with
transitions ; ⊆ Q × Σ × Q, final states F ⊆ Q
and initial state q0, The set AccRuns(A) − {ε} of
non-null accessible runs of A is

Spec(Σ) ∩ Spec(Q) ∩ LF ∩ Lq0; − L6;

intersected with the set (2Σ∪Q)∗ of strings over the
alphabet 2Σ∪Q of subsets of the finite set Σ ∪Q.

Given any finite set A, the restrictions to (2A)∗ of
the relations ρB and �

ρAB := ρB ∩ ((2A)∗ × (2A)∗)

�A := � ∩ ((2A)∗ × (2A)∗)

are computable by finite-state transducers. That is,
the intersection mentioned in Proposition 1 with
(2Σ∪Q)∗ can be built into the relations ρΣ, ρQ and
� for a characterization of AccRuns(A) as well
as L(A) within a description logic, all concepts
in which are regular languages, and all roles in
which are computable by finite-state transducers
(keeping 〈R〉L regular). The obvious question is
how that characterization compares with MSO, to
which we turn next.
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3 MSO-models and reducts from ρB

Given a finite set A, let us agree that an MSOA-
model M is a tuple 〈[n], Sn, {[[Ua]]}a∈A〉 for some
positive integer n > 0,1 where

(i) [n] is the set {1, 2 . . . , n} of positive integers
from 1 to n

(ii) Sn is the relation encoding the successor/next
relation on [n]

Sn := {(i, i+ 1) | i ∈ [n− 1]}

and for each a ∈ A,

(iii) [[Ua]] is a subset of [n] interpreting the unary
relation symbol Ua.

We can form MSOA-models from strings over the
alphabets A and (2A) as follows. Given a string
s = a1a2 · · · an ∈ An, let Mod(s) be the MSOA-
model 〈[n], Sn, {[[Ua]]}a∈A〉 interpreting Ua as the
set of string positions i occupied by a

[[Ua]] = {i ∈ [n] | ai = a}

for each a ∈ A. Expanding the alphabet A to 2A,
a string α1α2 · · ·αn ∈ (2A)n induces the MSOA-
model 〈[n], Sn, {[[Ua]]}a∈A〉 interpreting Ua as the
set of positions i filled by boxes containing a

[[Ua]] = {i ∈ [n] | a ∈ αi}

for each a ∈ A. Conversely, given an MSOA-
model M = 〈[n], Sn, {[[Ua]]}a∈A〉, let str(M) be
the string α1 · · ·αn ∈ (2A)n where

αi := {a ∈ A | i ∈ [[Ua]]} .

That is, for all a ∈ A and i ∈ [n],

a ∈ αi ⇐⇒ i ∈ [[Ua]]

making the mapM 7→ str(M) a bijection between
MSOA-models and (2A)+.

Proposition 2. Given an MSOA-model M , the
following are equivalent.

(i) M is Mod(s) for some s ∈ A+

1There is, of course, a rich theory of infinite MSO-models,
given by infinite strings (e.g. Thomas, 1997). We focus here
on finite models/strings, which suffice for many applications;
more in section 6 below.

(ii) M satisfies the MSOA-sentence

(∀x)
∨

a∈A
(Ua(x) ∧

∧

a′∈A−{a}
¬Ua′(x))

(saying the non-empty [[Ua]]’s partition the
universe)

(iii) str(M) ∈ Spec(A)

(iv) str(M) = a1 · · · an for some a1 · · · an ∈
A+.

While the Büchi-Elgot-Trakhtenbrot theorem
(BET) concerns MSOA-models Mod(s) given by
strings s ∈ A+, the wider class of MSOA-models
(isomorphic to (2A)+) is useful for encoding vari-
able assignments crucial to the second half of
BET, asserting the regularity of MSO-sentences.
More precisely, the remainder of this section is
devoted to defining regular languages LA(ϕ) for
MSOA-sentences ϕ establishing

Proposition 3. For every MSOA-sentence ϕ, there
is a regular language LA(ϕ) such that for every
MSOA-model M ,

M |= ϕ ⇐⇒ str(M) ∈ LA(ϕ).

Insofar as the models Mod(s) given by strings
s ∈ A+ differ from those given by strings over
(2A) via str−1, Proposition 3 differs from the half
of BET saying MSO-sentences define regular lan-
guages. There is no denying, however, that the
difference is slight.

Be that as it may, I claim the expansion of A to
2A leads to a worthwhile simplification, as can be
seen by proving Proposition 3 as follows. Given
a positive integer n, an n-variable assignment f
is a function whose domain is a finite set Var =
Var1 ∪ Var2 of first-order variables x ∈ Var1 that
f maps to an integer f(x) ∈ [n] and second-order
variables X ∈ Var2 that f maps to a set f(X) ⊆
[n]. Then if M is a MSOA-model over [n],

M,f |= Ua(x) ⇐⇒ f(x) ∈ [[Ua]]

and

M,f |= X(x) ⇐⇒ f(x) ∈ f(X).
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We can package the pair M,f as the MSOA∪V ar-
model Mf over [n] identical to M on Ua’s for a ∈
A, with interpretations

[[UX ]] = f(X) for X ∈ Var2

[[Ux]] = {f(x)} for x ∈ Var1.

Note [[Ux]] intersects [[UX ]] if M,f |= X(x),
which is to say X(x) entails the negation of
spec({X,x}), where spec(A) is the MSOA-
sentence that Proposition 2 mentions in (ii)

(∀x)
∨

a∈A
(Ua(x) ∧

∧

a′∈A−{a}
¬Ua′(x)).

In other words, to treat a pair M,f as an
MSOA∪V ar-model (and an MSOA-formula ϕwith
free variables in Var as an MSOA∪V ar-sentence),
the step from A to 2A is essential. Turning model
expansions around, given B ⊆ A, we define the
B-reduct of an MSOA-modelM to be the MSOB-
modelMB obtained fromM after throwing out all
interpretations [[Ua]] for a ∈ A − B. It is easy to
see that the homomorphisms ρB yield B-reducts:

str(MB) = ρB(str(M))

(for all MSOA-modelsM ). Proceeding now to the
languagesLA(ϕ) in Proposition 3, observe that we
can picture Ua(x) as the language

L(a, x) := ( + a )∗ a, x ( + a )∗

inasmuch as

M,f |= Ua(x) ⇐⇒ ρA∪V ar{a,x} (str(Mf ))

∈ L(a, x).

For the remainder of this section, letA′ ⊆ A∪Var.
We put, for a, x ∈ A′,

LA′(Ua(x)) := 〈ρA′
{a,x}〉 L(a, x).

Similarly, for X,x ∈ A′, let LA′(X(x)) be

〈ρA′
{X,x}〉 ( + X )∗ X,x ( + X )∗

and for x, y ∈ A′,

LA′(x = y) := 〈ρA′
{x,y}〉 ∗ x, y ∗

LA′(S(x, y)) := 〈ρA′
{x,y}〉 ∗ x y ∗.

We also put

LA′(ϕ ∧ ψ) := LA′(ϕ) ∩ LA′(ψ)

LA′(¬ϕ) := (2A
′
)+ − LA′(ϕ).

As for quantification, for v ∈ Var, let σA
′

v be the
inverse of ρA

′∪{v}
A′ ,2 and set

LA′(∃X.ϕ) := 〈σA′
X 〉 LA′∪{X}(ϕ)

LA′(∃x.ϕ) := 〈σA′
x 〉 (LA′∪{x}(ϕ) ∩
LA′∪{x}(x = x))

where the intersection with LA′∪{x}(x = x) in-
sures that x is treated as a first-order variable in ϕ
(occurring in exactly one string position).

Taking stock, to define the regular language
LA(ϕ) required by Proposition 3 for an MSOA-
sentence ϕ with variables from a finite set Var of
variables, we form ALC-concepts from

(i) the primitive concepts

L(a, x), L(X,x),
∗ x, y ∗, ∗ x y ∗, (2B)+

for a ∈ A and x,X, y ∈ Var and

B ⊆ A ∪ Var, and

(ii) the roles
ρA

′
B , σ

A′
v

for B ⊆ A′ ⊆ A ∪ Var and v ∈ Var.

4 B-specified strings and containment w
Recall that spec(B) is the MSOB-sentence saying
every string position has exactly one symbol from
B

(∀x)
∨

b∈B
(Ub(x) ∧

∧

b′∈B−{b}
¬Ub′(x))

and observe that there is no trace of σAx or comple-
mentation or intersection (interpreting ¬∃x and ∧)
in the language

SpecA(B) := 〈ρAB〉(
∑

b∈B
b )∗

of strings encoding MSOA-models satisfying
spec(B), for B ⊆ A. That is, although SpecA(B)
and LA(spec(B)) from the previous section spec-
ify the same set of strings, they differ as expres-
sions, suggesting different automata. Section 2
provides yet more expressions for automata, draw-
ing on a different pool of primitive concepts and
roles.

2We could instead move the inverse out of the relation R,
allowing 〈R〉 to go not only to the left of L as in 〈R〉L but
also to its right for the image L〈R〉 of L under R.
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In addition to componentwise inclusion � (a
non-deterministic generalization of the functions
ρB that dispenses with the subscript B), it is use-
ful to define relations between strings of different
lengths, including those that pick out prefixes

prefixA := {(ss′, s) | s, s′ ∈ (2A)∗}

and suffixes

suffixA := {(ss′, s′) | s, s′ ∈ (2A)∗}.

Leaving out the subscripts A = Σ ∪ Q for nota-
tional simplicity, we can describe three of the lan-
guages in Proposition 1 (section 2) as

LF = 〈�〉〈suffix〉
∑

q∈F
q

Lq0; = 〈�〉〈prefix〉
∑

q0
a
;q

a, q

L6; = 〈�〉〈suffix〉〈prefix〉
∑

q 6 a;q′

q a, q′

zeroing in on the substrings of length ≤ 2 that
are of interest. It is convenient to abbreviate
〈�〉〈suffix〉〈prefix〉L (equivalently, 〈�〉 ∗L ∗))
to 〈w〉L , effectively defining containment w to be
the relational composition of componentwise in-
clusion � with suffix and prefix

w := � ; suffix ; prefix

(and wA as �A; suffixA; prefixA). Writing EA(x)
for the set

EA(x) := LA(x = x)

of strings in (2A)+ in which x occurs exactly once,
we have

LA(Ua(x)) = EA(x) ∩ 〈w〉 a, x
LA(X(x)) = EA(x) ∩ 〈w〉 X,x
LA(x = y) = EA(x) ∩ EA(y) ∩ 〈w〉 x, y
LA(S(x, y)) = EA(x) ∩ EA(y) ∩ 〈w〉 x y

and apart from EA(x), primitive concepts given by
strings of length≤ 2 will do. The locality (in such
short strings) is obscured in our ρAB-based analysis
of LA(ϕ) in the previous section, under which

EA(x) = 〈ρA{x}〉 ∗ x ∗

= 〈wA〉 x − 〈w〉 x ∗ x . (2)

An existence predicate of sorts, EA(x) is pre-
suppositional in the same way for MSO that
SpecA(B) is for the accepting runs of finite au-
tomata; EA(x) and SpecA(B) are general, non-
local background requirements imposed indis-
criminately on models and automata, in contrast to
assertions (in the foreground) that focus on short
substrings, picking out specific models and au-
tomata.

An instructive test case is provided by the tran-
sitive closure < of S; an MSO{x,y}-sentence say-
ing that x < y is

∃X ((∀u, v)(X(u) ∧ S(u, v) ⊃ X(v))

∧X(y) ∧ ¬X(x)).

Second-order quantification aside, the obvious
picture to associate with x < y is x ∗ y , which
is built into the representation

LA(x < y) = EA(x) ∩ EA(y)∩
〈w〉 x ∗ y (3)

of MSOA-models satisfying x < y (with x, y ∈
A). In both lines (2) and (3) above, arbitrarily long
substrings from ∗ occur, that we will show how
to compress next.

5 Intervals and compression

Given e ∈ A, we can state that the set [[Ue]] repre-
sented by a symbol e ∈ A is an interval through
the MSO{e}-sentence

∃x Ue(x) ∧ ¬∃y gape(y) (4)

where gape(y) abbreviates the MSO{e,y}-sentence

¬Ue(y)∧∃u∃v (u < y∧y < v∧Ue(u)∧ Ue(v)).

We can translate (4) into a regular language, ap-
plying the recipes above. But a more concise and
perspicuous representation is provided by defining
a function bc that compresses a string s as follows.
Let bc(s) compress blocks βn of n > 1 consec-
utive occurrences in s of the same symbol β to a
single β, leaving s otherwise unchanged

bc(s) :=





bc(βs′) if s = ββs′

α bc(βs′) if s = αβs′ with α 6= β
s otherwise.

For example,

bc( e e e, y e ) = e e, y e
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and in general, bc outputs only stutter-free strings,
where a string β1β2 · · ·βn is stutter-free if βi 6=
βi+1 for i from 1 to n− 1. Observe that [[Ue]] is an
interval precisely if

bc(ρ{e}(str(M))) ∈ ( + ε) e ( + ε).

Compressing further, we can delete initial and fi-
nal empty boxes through unpad

unpad(s) :=





unpad(s′) if s = s′ or
else s = s′

s otherwise

and collect all strings in (2A)+ representing
MSOA-models in which e is an interval in

IntervalA(e) := 〈ρA{e}〉〈bc〉〈unpad〉 e .

Defining πAB to be the composition of ρAB with bc
and unpad

πAB(s) := unpad(bc(ρAB(s)))

we have

IntervalA(e) = 〈πA{e}〉 e

and, as promised at the end of section 4, we can
eliminate ∗ from (2)

EA(x) = 〈πA{x}〉 x − 〈w〉 x x

and from (3)

LA(x < y) = EA(x) ∩ EA(y) ∩
〈π{x,y}〉 ( x y + x y )

(dropping the superscriptA on πAB when possible).
Stepping from one interval e to a finite set E of
such, let

Interval(E) := {πEE (s) | (∀e ∈ E)

πE{e}(s) = e }
= 〈unpad−1〉〈bc−1〉

⋂

e∈E
〈πE{e}〉 e

so that Interval({e}) = e , and for e 6= e′, the set
Interval({e, e′}) consists of thirteen strings, one
per interval relation in (Allen, 1983). We can or-
ganize these strings as follows (Fernando, 2012).
For any finite set E, a string s ∈ Interval(E) de-
termines a triple 〈E,©s,≺s〉with binary relations
on E of overlap e©s e

′ when πE{e,e′}(s) is one of

the nine strings in Interval({e, e′}) that contain the
pair e, e′

©s := {(e, e′) | πE{e,e′}(s) ∈ ( e + e′ + ε)

e, e′ ( e + e′ + ε)}

and precedence e ≺s e′ when πE{e,e′}(s) is either

e e′ or e e′

≺s := {(e, e′) | πE{e,e′}(s) ∈ e e′ + e e′ }

leaving the two other strings in Interval({e, e′})
for e′ ≺s e. The triple 〈E,©s,≺s〉 satisfies
the axioms for an event structure in the sense of
(Kamp and Reyle, 1993), and conversely, every
such event structure over E can be obtained as
〈E,©s,≺s〉 for some s ∈ Interval(E).

6 Discussion: simplifying where possible

Few would argue against representing information
as simply as possible. Among strings, there is
nothing simpler than the null string ε, and ε is the
starting point for refinements given by the system
of string functions πAB insofar as

ε = πAB(α1 · · ·αn) for all α1 · · ·αn ∈ (2A)∗

such that B ∩
n⋃

i=1

αi = ∅ .

We have taken pains above to motivate the con-
struction of πAB := ρAB; bc; unpad from

(i) ρAB , linked in section 3 to MSO and regular
languages via the Büchi-Elgot-Trakhtenbrot
theorem

and from

(ii) bc and unpad, linked in section 5 to event
structures for the Russell-Wiener construc-
tion of temporal moments from events (or
temporal intervals).

A familiar example is provided by a calendar year,
represented as the string

yearmo := Jan Feb · · · Dec

of length 12, one box per month from the set
mo := {Jan, Feb, Mar, . . ., Dec}. A finer-grained
representation is given by the string

yearmo,dy := Jan,d1 Jan,d2 · · · Jan,d31

Feb,d1 · · · Dec,d31
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of length 365, one box per day, featuring un-
ordered pairs from mo and dy := {d1, d2, . . .,
d31}. As the homomorphisms ρAB see only what is
in B,

ρmo∪dymo (yearmo,dy) = Jan
31

Feb
28 · · · Dec

31

which πmo∪dymo then compresses to

bc( Jan
31

Feb
28 · · · Dec

31
) = yearmo

making πmo∪dymo (yearmo,dy) = yearmo. If ρAB
provides the key to establishing the regularity of
MSO-formulas, block compression bc captures the
essence of the slogan ”no time without change”
behind the Russell-Wiener conception of time.
Whereas ρAB limits what can be observed to what is
in B, bc minimizes the time (space) over which to
make these observations. Note that there are finite-
state transducers that compute ρAB and bc (over a
finite alphabet). Thus, we may form the inverse
image of a regular language under either ρAB or bc
without worrying if the result is still regular. (It
is.)

Were we to leave unpad out and make do with
bcAB := ρAB; bc, we need only start our bcAB-based
refinements from the string of length one con-
sisting of the empty set (rather than ε, as in the
case of πAB) insofar as

= bcAB(α1 · · ·αn) for all α1 · · ·αn ∈ (2A)+

such that B ∩
n⋃

i=1

αi = ∅ .

Indeed, has the advantage over ε of qualifying
as a model of MSO, which ε does not, under the
usual convention that models of predicate logic
have non-empty domains.

And even if one were to construct temporal
spans from (say, closed intervals of) the real line R
as in (Klein, 2009), the string is a fine (enough)
representation of R, unbroken and virgin. The in-
fluential analysis of tense and aspect in (Reichen-
bach, 1947) positions the speech s and described
event e relative to a reference time r. For instance,
in the simple past (e.g. it rained), r coincides with
e but precedes s

simplePast(e, r, s) := e, r s + e, r s

while in the present perfect (e.g. it has rained), r
comes after e but coincides with s

presentPerfect(e, r, s) := e s, r + e s, r .

Factoring out the reference time, the simple past
and present perfect become identical

ρ
{e,r,s}
{e,s} (simplePast(e, r, s)) = e s + e s

= ρ
{e,r,s}
{e,s} (presentPerfect(e, r, s)).

e s + e s is a simple example of “the ex-
pression of time in natural language” relating
“a clause-internal temporal structure to a clause-
external temporal structure” (Klein, 2009, page
75). The clause-internal structure e and clause-
external structure s can be far more complex,
subject to elaborations from lexical and grammat-
ical aspect. Elaborations in interval temporal logic
made in (Dowty, 1979) are formulated in terms of
strings in (Fernando, 2013).

The finiteness and discreteness of strings ar-
guably mirrors the bounded granularity of nat-
ural language statements (rife with talk of “the
next moment”). Boundaries drawn to analyze,
for example, telicity become absurd if they sep-
arate arbitrarily close pairs of real numbers (as
they would, applied to the real line). It is cus-
tomary to view a model M as an index that the
Carnap-Montague intension of a formula ϕ maps
to one of two truth values, indicating whether or
notM |= ϕ. But the construal of a string as an un-
derspecified representation suggests viewing it not
only as an index but also as an extension (or deno-
tation) of ϕ (Fernando, 2011). In this connection,
a proposal from (Bach, 1986) is worth recalling
— namely, that we associate an event type such
as KISSING with a function EXT(KISSING) that
maps histories to subparts that are temporal mani-
festations of KISSING (with input histories as in-
dices, and output manifestations as extensions).
Relativizing notions of indices and extensions to
a bounded granularity, it is natural to assume at
the outset not indices but extensions, which are
then enlarged, as required, to more detailed and
larger indices. The relation EXT(KISSING) then
becomes a relation between strings (contained in
w) which a finite-state transducer might compute.
For refinements of granularity, we start with an un-
differentiated piece (viz. ε or ) rather than a mul-
titude of fully fleshed out possible histories. From
ε or , the ingredients we require are a set of auxil-
iary symbols, and a suitable system RAB of regular
relations, for finite sets A and B ⊆ A of auxiliary
symbols, projecting indices over the alphabet 2A

to indices over 2B — e.g., bcAB or, as in (Fernando,
2013), πAB .
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LiCoTT - Università del Piemonte Orientale

Vercelli,Italy
edoardo.salza@gmail.com

Abstract
In this paper we propose a system to parse and
annotate motion constructions expressed in Italian
language. We used NooJ as a software tool to im-
plement finite-state transducers in order to recog-
nize linguistic elements constituting motion events.
In this paper we describe the model we adopted
for semantic description of events (grounded on
Talmy’s Cognitive Semantics theories) and then we
illustrate how the system works with a domain-
specific corpus, the structure of annotation that our
system will perform, some annotation structures of
example sentences expressing motion and then an
attempt to evaluate the system’s performance.

1 Introduction

The building of models of semantic knowledge to
be implemented in language recognition and anal-
ysis systems shares some features with the theory
of perception (Piotrowski and Palibina, 1973). In
a Cognitive Linguistics paradigm this task should
be viewed as the modelling of the human ability to
map concepts onto syntactic-semantic constructs.
The aim of this contribution is to describe an ap-
proach to the annotation of expressions of mo-
tion in Italian. The set of concepts (i.e. the se-
mantic model) is grounded on a cognitive seman-
tics theory where knowledge representation con-
stitute both the basis of the construction process of
meaning and also the goal of the proposed appli-
cation. From the computational point of view we
make use of recursive transition networks (RTNs)
used for recognition and subsequent annotation of
text with the domain’s concepts. To implement
RTNs we used NooJ development environment
(Silberztein, 2004). We used NooJ because in this
way we can easily write local grammars describ-
ing the elements to be recognized. From the tech-
nical point of view, at the dawn of NLP research on
pattern recognition, experimentation started using
the so-called rule-based paradigm. This entailed

the processing of a large amount of grammar rules
and the need of storage-consuming electronic dic-
tionaries. These drawbacks caused these methods
to be substantially impractical thus shifting rapidly
the mainstream to the now widespread statistical
corpus-based approach. In this paper we then pro-
pose a system that, using a cascade of transducers,
deterministically recognizes semantic patterns de-
scribing motion events (Abney, 1996). These pat-
terns show a large variety of diverse expressions
and lexical choices (in one word lexicalization pat-
terns) to describe motion. Such a variety is eas-
ily accounted for by a set of finite-state automata.
The formalism used here to extract semantic com-
ponents of the patterns is grounded on cognitive
semantics theories attempting to describe the lex-
icalization processes that underlie the production
of the syntactic and semantic structures express-
ing concepts related to motion and, consequently,
to space.

2 Theoretical Framework

Spatial notions form the kernel of linguistic
knowledge from which all other concepts are de-
rived from, giving to the spatial knowledge a pri-
mary role on the conceptualization of the real-
ity. This stance is called localism. Localism is
the “hypothesis that spatial expressions are more
basic, grammatically and semantically, than var-
ious kind of spatial expressions [. . . ] spatial or-
ganization is of central importance in human cog-
nition” (Lyons, 1977) and such approaches date
back to the early comparative studies on prepo-
sitions and cases (Wüllner, 1827), where their
meaning is viewed as grounded on spatial subjec-
tive intuition. Concepts related to space hold a
basic role in the conceptualization process of the
human’s mind (and in child’s development of con-
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cepts) and they serve as a major source of lexi-
calization of more abstract ones. These views re-
gained importance with the rise of cognitive sci-
ence in the 1970’s, with the dominance of uni-
versalist studies on categorization. According to
these theories, abstract concepts are thought to be
derived from spatial primitives by using cogni-
tive tools like conceptual metaphor (Lakoff, 1980)
or derivation from universal representations like
image-schemata (Johnson, 1987). Space-related
constructs can thus refer also to a wider seman-
tic area than just concepts closely related to space
and motion: in this way a system extracting mo-
tion events will recognize also events other than
motion-related ones, if expressed metaphorically
with motion verbs. Sentences expressing motion
events are generally characterized by a set of the-
matic roles from the semantic domain of concepts
related to motion. Our purpose is to parse sim-
ple sentence constructs, more specifically we fo-
cus on compound nouns and predicate-argument
structures, which bear most of the meaning (Sur-
deanu et al., 2003). Our final goal is to recognize
the type of motion described and to semantically
annotate the text with the related concepts.

3 The proposed system

The system implements semantic role labeling
techniques (Gildea and Jurafsky, 2002) to parse
predicate-arguments structures. Lexical constructs
are connected to their corresponding roles selected
by the verb. These latter will be recognized and
annotated with their respective information ele-
ments related to the motion event. Predicate-
argument structures are constituted by a main
verb and a set of nouns or prepositional phrases
specifying the meaning of the verb, which works
as the head of the structure. Semantic model
maps lexical elements into their respective seman-
tic roles. In the following section we will describe
the model we used for structure detection and an-
notation, we then detail the mapping layers im-
plemented according to the annotation to be per-
formed and finally we will illustrate some of the
transducers used for the recognition of lexical ele-
ments and also we give some examples of possible
practical uses of our system.

3.1 Semantic model of the motion event

To choose a suitable representation of motion
events we need to consider different semantic roles

expressed by lexical elements in order to map the
predicate-argument structures onto elements of the
semantic model of the event (Exner and Nugues,
2011). The model is thus constituted by a set of
domain-specific semantic roles belonging to mo-
tion. To choose them we have considered the
notion of motion event as introduced by Talmy
(1985) where motion events are described as “sit-
uation containing movement or the maintenance
of a stationary location [. . . ]. The basic mo-
tion event consists of one object (the Figure) mov-
ing or located with respect to another object (the
reference-object or Ground)”. Talmy’s approach
is based on perception and on neuropsychologi-
cal theories: Figure and Ground are, for exam-
ple, concepts borrowed from the so-called Gestalt
Theory, a theory of mind opposed to structuralist
and behaviorist approaches aiming to describe the
mind/brain through holistic, analog and emergent
mechanisms. This has led to choose a semantic
model that is both cognitive-grounded and com-
prehensive of all necessary conceptual elements
(Mosca, 2010). In Table 1 are listed the elements
we choose to extract. As Italian is a pro-drop lan-
guage, subject is often omitted and then FIGURE

is seldom lexicalized.

Element Description
FIGURE The object that moves or is located with

respect to another object.
GROUND The reference object with respect to with

the motion takes place or another object is
located to.

SOURCE The place where the described motion
event starts.

GOAL The place where the described motion
event ends.

DIRECTION The relative direction taken with respect to
a ground or reference point (as left, right,
north, west, ...).

VECTOR The axis along which the motion take place
and/or the absolute direction of the moving
element.

PATH The type of path performed by the mov-
ing element involving a ground element
(inwards, outwards, crossing, passing
through).

SHAPE The shape of movement performed. (cir-
cular, straight, curvilinear)

PROXIMALITY The distinctive feature of motion with re-
spect to a ground or reference point (near,
along or throughout)

MANNER The manner of performed motion (walk-
ing, running, wandering,...)

Table 1: Elements of motion
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3.2 Description of the system
The elements previously listed constitute the set of
semantic roles of our model. They can be beared
by the verb itself or explicitly lexicalized as syn-
tactic elements of the sentence as direct objects,
indirect objects or adverbial phrases (i.e. they
are satellites of the verb). We need to implement
a set of lexico-syntactic transducers to parse ev-
ery single semantic elements.According to Mosca
(2010), motion event sentences can be grouped in
eight syntactic patterns with increasing analyticity.
For our purposes we select the following ones:

1. Motion verbs that can stand alone with no adjoints.

2. Motion verbs accepting a noun phrase as direct object.

3. Motion verbs accepting a prepositional phrase as object.

4. Motion verbs expressed with a generic motion verb with prepositional
phrases(s) plus one or more satellites to specify motion event roles.

5. Motion events analytically expressed with support verbs1

Verbs of the first type bear a lot of informa-
tion and accept none or few satellites: according
to Talmy’s terminology they conflate semantic el-
ements. A verb like fiancheggiare “conflates”all
the information about the fact that a figure is mov-
ing in proximity to a reference ground. Confla-
tion is “any syntactic process [ . . . ] whereby a
more complex construction turns into a simpler
one.” (Talmy, 2000). More analytic verbs bear few
information and devolves their meaning to their
satellites2. Satellites are lexicalized with differ-
ent syntactic constructs. Our system recognizes
locative adverbial phrases representing position or
direction, deictic elements expressing proximal-
ity or distality (frequently referred to a reference
ground) and so on. The system also maps satellites
to the corresponding semantic roles and “deflates”
the meaning of the verbs making it explicit.

Motion verbs are grouped in semantic clusters
according to their meaning (Mosca, 2007). For
each cluster we need to implement a set of trans-
ducers. We have considered motion verbs with
the meaning of a generic motion from and/or to
a ground object, verbs indicating a continuing
motion along the same direction (called source-
destination verbs), verbs indicating motion along
a direction or towards something that specifies the

1Support verbs are constructions where the predicative
role is taken by the noun (object) and the verb lose its mean-
ing as fare una curva VS curvare

2They are “the grammatical category of any constituent
other than a noun-phrase or prepositional phrase comple-
ment that is in a sister relation to the verb root ”

followed path (direction verbs), verbs with the
meaning of passing beyond, crossing, exiting or
entering a ground, or with the meaning of moving
along a direction or near a ground (path verbs),
verbs indicating a proximal motion passing near
a ground (proximity verbs), verbs specifying the
shape of a path (curvilinear, circular, straight, etc.)
(called shape verbs) and verbs that specifies the
manner of motion (manner verbs).

Semantic patterns are represented with for-
malisms involving lexical, syntactic and seman-
tic elements (local grammars) implemented on
NooJ 3. Local grammars are formal descriptions
of morpho-syntactic and/or semantic regularities
represented with finite-state transducers (Harris,
1991; Gross, 1993).

3.2.1 Annotation layers
The annotation is performed using a cascade of
transducers. Parsing is done incrementally: an-
notations at one level make use of the ones per-
formed on previous levels. We have implemented
seven different layers, each defined by the type of
structure(s) recognized, as described below.

Simple compound nouns This layer recog-
nizes compound nouns with patterns like N+Adj
(e.g. lago blu), Adj+N (e.g. nuovo sentiero),
N+N (e.g. piazza Garibaldi, N+Prep+N (e.g.
casa di pietra). These listed above are the
most frequent patterns in Italian (Voghera,
2004). Below is reported the correspond-
ing local grammar reported in NooJ’s format4.

SC::= NA | AN | NPN | NPV | NN | NeN
AN::= <A> <N>
NA::= <N> <A>
NPN::= <N> P <N>
NPV::= <N> (a|da|per) <V+Inf>
NN::= <N> <N>
P::= (di|a|da|in|con|su|per|tra|fra) <DET>*

Complex compound nouns The second layer
refers to complex compound nouns: this layer
recognizes compound nouns corresponding to
forms as strada ripida sterrata, bivio segnalato
da bolli gialli, casa vicino all’incrocio di tre
strade, versante occidentale della catena mon-
tuosa. The head can be one of the cases listed

3NooJ standard dictionary with other resources for
Italian are developed and maintained by Simonetta
Vietri of Università di Salerno and are available at
http://www.nooj4nlp.net/pages/italian.html. (Elia and
Vietri, 2002).

4Angle brackets denote a POS element of standard dictio-
nary and asterisk refers to optional elements.
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above and the modifier can be an adjectival or
a prepositional phrase. Corresponding trans-
ducers are shown in Figure 1 and below is
presented the related local grammar. As the
former, this layer recognizes structure type,
number, gender and head of the extracted nouns.

CCN::= (<N>|SC> (A_modifier | P_modifier | N_modifier))
A_modifier::= <AVV>* <A> ((e|ed) <A>)*
P_modifier::= P ( (<V+Inf>|<AVV>*)|(<N>|SC) )
N_modifier::= N

Figure 1: Transducer recognizing complex com-
pound nouns

Noun phrases This layer annotates noun
phrases and extracts their head. Transducer is
shown in Figure 2.

Figure 2: Transducer recognizing noun phrases

Prepositional phrases This layer annotates
prepositional phrases and extracts their preposi-
tional head and the dependent noun (or noun
phrase). Respective transducer is shown in Figure
3.

Figure 3: Transducer recognizing prepositional
phrases

Motion verbs This layer recognizes motion
verbs. The ones recognized by our system are ex-
tracted from a list compiled through a statistical
analysis of a corpus of spoken Italian. This corpus
was collected from experiments for which the goal
is to solve a spatial description task. Verbs form-
ing this list are a set of frequently used verbs while

describing motion events in Italian. We adopted
the classification and the set of lemmas proposed
in Mosca (2007). The local grammar that recog-
nizes motion verbs is reported in Figure 4. Trans-
ducers are shown in Figure 5.

Figure 4: Grammar recognizing of motion verbs

Figure 5: Transducers recognizing motion verbs

Verb phrases This layer recognizes different
syntactic realizations of motion verb phrases dis-
tinguishing between active and passive form. The
corresponding transducer is shown in Figure 6.

Figure 6: Transducer recognizing verb chunks

4 Motion Events’ elements recognition

The two upper layers (i.e. the last processed ones)
are used for recognizing the different elements
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of motion event: the first is dedicated to the
recognition of satellites. They consist mainly
of prepositions expressing information about
motion (Mosca, 2012) such as Prepositional
Case-Markers (PCM) and satellites-prepositions.
Prepositional Case-Markers are prepositions with
a weak or no meaning that serve to introduce
a prepositional phrase as in salire su sul tetto.
Satellite-preposition Satpreps are intended as
prepositional particles fulfilling both the func-
tions described before. For our purposes we
have distinguished the following satellite types:

• DIRECTION: satellites expressing direction. They can be specified
using an absolute or an intrinsic frame or reference Levinson (2003)
(as in direzione est or a destra). The system also recognizes deictic
relative reference grounds to/from an origo5.

• POSITION: satellites expressing locations with an absolute or relative
reference as di fronte, a destra, sopra sotto, a est, qui, l.

• PROXIMITY: satellites expressing proximality, i.e. object located in
areas expressed with respect to a ground (lungo, accanto, di fianco, nei
pressi, vicino).

• STRAIGHT: satellites expressing motion events in which the taken
direction is straight (as dritto).

• CIRCULAR: satellites expressing motion events where the motion is
circular (as intorno,attorno).

• THROUGH: satellites expressing motion events whose GOAL is
reached via a path (as attraverso) or through a reference ground (as
in fondo, a fine).

These transducers recognize FIGURE and
GROUND elements, satellites and PCM (see Fig-
ure 7).

Figure 7: Transducers for recognizing satellites,
figure, ground, PCM and Satpreps elements

We have also distinguished five types of lexical-
ization structures according to the meaning of the
verb:

1. Structures expressing a generic motion with a source and/or a destina-
tion explicitly expressed.

5With respect to Levinson (2003) we use here a slightly
different terminology adopting the term relative for an intrin-
sic frame of reference in Levinson’s sense and the term de-
ictic for Levinson’s relative frame of reference to express a
direction with respect to a reference point or ground object

Figure 8: Annotations performed by our system

2. Structures describing a movement in a particular direction and/or along
a particular vector. The direction can be expressed by a conflation of
the directional element of meaning in the verb root (as in scendere,
salire, indietreggiare) or by a satellite.

3. Structures expressing a motion along a path where the moving element
can enter, exit, pass over or going through a the reference ground (verbs
as entrare, attraversare, percorrere, sbucare).

4. Structures expressing proximal motion. We distinguish a motion along
(costeggiare, seguire), near (sfiorare, toccare) or passing through a
GROUND (sorpassare, superare).

5. Structures expressing a straight or round shape of the motion path. A
round path can be a complete circular loop, a circle arc (circoscrivere,
aggirare) or a curved trajectory as in curvare, svoltare. Note that in
this latter case the motion will change vector so the system will note
this explicitly with a dedicated annotation (+VECTOR CHANGE).

Note that if the elements about motion are con-
flated in the verb root the information should be
extracted by putting an empty-string transducer
before the matching element with the desired an-
notation in output (see Figure 9).

Figure 9: Example of a transducer recognizing
motion elements lexicalized in verb root

Arguments of the verbs are extracted with the
transducer shown in Figure 10. Elements lexical-
ized by satellites are extracted using transducers
as the one shown in Figure 11. These latter have
been designed according to the structure of related
verb(s).
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Figure 10: Example of a transducer recognizing
motion structures arguments

Figure 11: Transducer recognizing motion ele-
ments lexicalized in satellites

Transduction is performed when we need to
annotate text chunks: annotation is given in the
NooJ’s XML-like form, i.e. using a node-label
and a series of attribute-value pair specifying mo-
tion elements. Annotation and extraction are done
simultaneously for every stage of the transducers’
cascade. A comprehensive list of the annotations
performed by our system is shown in Figure 8
where, for every layer, the annotation tree is de-
tailed (annotations introduced by the standard dic-
tionary are not reported).

4.1 Source-destination

These automata describe basic motion events (an-
notated as +SD) starting from a SOURCE and end-
ing in a GOAL. These can be described by verbs
as andare, venire, spostarsi, tornare. SOURCE and
GOAL can be of different types: we have consid-
ered the following three cases:

1. The simplest case where the SOURCE and/or the GOAL are reference
grounds expressed with prepositional phrases as partire da casa or an-
dare a casa.

2. The case where the SOURCE and/or the GOAL are areas defined with
respect to a reference ground as in parti davanti la stazione. The GOAL
can be reached via a path or through a reference ground (spostarsi
in fondo al viale, andare alla fine della strada, partire da davanti la
stazione).

A generic motion should be expressed with a
verb whose meaning focuses alternatively on dif-
ferent phases of the event as the reaching of a
point or a place (+TO), the leaving from a point
or a place (+FROM) as in partire or the contin-
uing (+CONT) of the motion along a path as in
proseguire, continuare, andare avanti. The system
also distinguishes from terminative verbs +TERM

involving the reaching of a goal (raggiungere, ar-
rivare, giungere) or the reaching of a generic point
along a translation process (ritrovarsi, incontrare).
Examples of extracted structures are shown in Fig-
ure 12.

Figure 12: Samples of source-destination struc-
tures with related annotations

4.2 Path

The system distinguishes four types of paths
(+PATH), involving four different configurations
of the motion:

1. A motion event which PATH entails that the FIGURE moves THROUGH
a GROUND. The reference ground can be a road, a trail or a path (verbs
as passare, percorre, seguire).

2. A motion event in which the FIGURE goes ACROSS a GROUND ele-
ment (i.e. a river, a crossing, a wood). It can be described by verbs as
incrociare, tagliare, attraversare.

3. A motion event in which the FIGURE enters in a GROUND element
as a house, a road or a new path. It is described by verbs as entrare,
imboccare, immettersi (INTO).

4. A motion event in which the FIGURE exits from a GROUND element
(verbs as sbucare, uscire) (+OUT FROM).

Examples of annotated structures are shown in
Figure 13.

Figure 13: Samples of path structures with related
annotation
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4.3 Proximality
The system extracts motion events’ structures
where the FIGURE moves near a GROUND ob-
ject (+PROXY). We call this feature proximality.
Transducers extracting these structures are shown
in Figure 9 and examples of annotated structures
are shown in Figure 14. Our system distinguishes
three cases:

1. The case in which the FIGURE passes NEAR a GROUND object (verbs
as rimanere, sfiorare, toccare).

2. The case where the FIGURE moves ALONG a reference GROUND (as a
border). (as verbs costeggiare, fiancheggiare).

3. The case where the FIGURE passes OVER a reference ground (over-
stepping an obstacle or moving beyond a landmark). This is expressed
with verbs as (oltrepassare, superare).

Figure 14: Samples of proximality structures with
related annotation

4.4 Direction
The system recognizes five different cases in re-
spect to the lexicalization of DIRECTION and
VECTOR features of motion:

1. The case where the FIGURE has to go back (+DIRECTION BACK) in re-
spect to the direction already taken (+VECTOR=BACKWARDS). Event
is described by verbs like tornare (indietro), indietreggiare.

2. The case (+DIRECTION DOWN) where the FIGURE moves downwards
(+VECTOR=DOWNWARDS) (verb scendere).

3. The case (+DIRECTION UP) where the FIGURE moves upwards (verb
salire).

4. The case (+DIRECTION DEV) where the FIGURE changes direction
(+CHANGE DIRECTION) (verbs as abbandonare, inclinarsi, rientrare,
alzarsi). This case can involve the change of direction and/or vector of
the FIGURE.

5. The case (+DIRECTION GEN) where the direction of the FIGURE is ex-
plicitly expressed by a generic verb (as punta, dirigiti, muoviti) using a
direction satellite with respect to a reference ground. The system rec-
ognizes the case where DIRECTION is taken toward a reference ground
(+DIRECTION=TO GROUND).

Examples of annotated structures are shown in
Figure 15.

4.5 Shape
There are also cases where the motion involves
a straight or a circular movement (+SHAPE).
The motion can take place with respect to a
GROUND following a circular trajectory (verbs ag-
girare, circondare, circoscrivere) or just a direc-
tion change, usually with a turn (verbs girare, cur-
vare, svoltare). Examples are shown in Figure 16.

Figure 15: Samples of direction structures

Figure 16: Samples of extracted shape structures

5 Evaluation of the system

In order to evaluate our system we have collected
a corpus of about 300 texts describing hiking
tours in Western Alps. Texts are extracted from
hiker’s fan websites (our main source was the site
http://www.inalto.org).

These descriptions, from the point of view of
language variation determined by the medium of
communication, share characteristics both of writ-
ten and spoken language. This is due to the
distinctive traits of Web-Mediated communica-
tion where the language, although written, shows
features of spoken language and also to the re-
duced perceived distance between addresser and
addressee. Route descriptions posted in a blog
brings similar characteristics: in this way we can
easily have a corpus positioned “half-way” along
the diamesic dimension (Mioni, 1983).

A hiking tour description, also, contains mo-
tion events where all three space dimensions are
involved while describing paths. These can run
up and down, going along grounds elements with
directions that can be expressed lexically through
both absolute or relative frames of references. All
these features make hiking descriptions a well
suitable test corpus for the system.

The dimension of our corpus is around
100kwords with a type/token ratio of 8%. In Table
2 we show the score of the system tested on the
evaluation corpus at the current stage of develop-
ment.

Precision Recall F1 score
70,5% 80,4% 75,1%

Table 2: System’s scores
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Figure 17: Annotation structure of a sample sentence

The evaluation is conducted on recognized sen-
tences not taking into account the annotation struc-
ture. We show in Figure 17 a sample of the anno-
tation structure of a sample sentence.

The proposed system can be used to extract mo-
tion structures with complex combines of features.
Here we extract events involving a changing vec-
tor to left (see Figure 18):

<ME+CHANGE_VECTOR+DIRECTION=LEFT>

Figure 18: Samples of extracted motion structures

Our system can also make queries using lower
annotation layers as in:

<V+SD_CONT> <PCM+PREP=su> <GROUND>

where the system extracts all motion events in
which the FIGURE continues along a PATH ex-
pressed by a GROUND and introduced by the
preposition su (on) used here as a case-marker.
Results are shown in Figure 19.

6 Conclusions and future work

We have described here a system that recognizes
sentences expressing motion events and annotates
them extracting the information about the type of
performed motion. This information is gathered
from the meaning of the verb and explicitly lexi-
calized by verb’s satellites expressing motion fea-
tures such as position, direction or shape. Ele-
ments participating in motion process are anno-

tated according to concepts borrowed from psy-
chological theory of Gestalt as used in Talmy’s
theory of motion events. It would be possible to
expand the scope of our system making it able
to recognize more complex and longer patterns of
expressions. We could also make use of lexico-
syntactic constraints in order to filter out relevant
sentences and thus improve precision. Thanks to
the integration capability of NooJ our system is
designed to be also part of more complex applica-
tions in a NLP pipeline. As an example, it is pos-
sible to use the information extracted and reported
on annotation layers to populate an ontology in the
domain of space or motion (Salza, 2013). More-
over, the described system can be extended to rec-
ognize a large variety of lexical structures; among
these, the vocabulary related to manner of motion
lacks a deeper theoretical analysis and requires
further work.

Figure 19: Samples of extraction of lower annota-
tion layers
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Abstract

We investigate the composition of finite-
state automata in a multiprocessor envi-
ronment, presenting a parallel variant of
a widely-used composition algorithm. We
provide an approximate upper bound for
composition speedup of the parallel vari-
ant with respect to serial execution, and
empirically evaluate the performance of
our implementation with respect to this
bound.

1 Introduction

Finite-state automata1 allow for efficient imple-
mentations in terms of directed graphs with des-
ignated initial and final states, as well as labeled
edges facilitating efficient storage and lookup.
Complex systems based on (weighted) finite-state
automata have been successfully used in language
processing (Mohri et al., 2007), image compres-
sion (Culik II and Kari, 1993), computational bi-
ology (Krogh et al., 1994), and many other ap-
plications. Composition is a binary operation on
finite-state transducers (FSTs) which creates tran-
sitions for matching output- and input-labels of
the outgoing transitions of two operand states. It
is an important operation in both compile-time
construction (where it may be employed e.g. to
combine different levels of representation) and –
since lookup may be considered a special case of
composition – run-time querying of the aforemen-
tioned systems.

Despite the increasing trend towards multipro-
cessor systems and the resulting demand for ef-
ficient parallel implementations for common op-
erations (Sutter, 2005), no generic parallel algo-
rithm for the composition of FSTs has yet been es-
tablished, although many efforts have been made

1Where appropriate, we use the term automata as a
generic subsuming both acceptors and transducers.

to improve composition performance in special
cases. In Holub and Štekr (2009), a parallel imple-
mentation for the case of string lookup in a deter-
ministic finite-state acceptor (FSA) is presented.
A generalization to n operands which prevents the
construction of large intermediate results is given
in Allauzen and Mohri (2009). A good deal of
work has focussed on dynamic, on-the-fly, or lazy
implementations (Hori et al., 2004; Cheng et al.,
2007; Mohri et al., 2007), in which the compo-
sition of FSTs is only partly computed, new states
and transitions being added to the result only when
necessary.

In this article, we present a parallel variant of a
widely-used composition algorithm (Hanneforth,
2004; Allauzen et al., 2007, etc.) which can make
use of multiprocessor architectures by employing
multiple concurrent threads of execution. We pro-
vide an approximate upper bound for composition
speedup using a state-wise parallel algorithm with
respect to serial execution, and empirically eval-
uate the performance of our implementation with
respect to this bound.

2 Preliminaries

2.1 Definitions
Definition 1 (FST). A finite-state transducer2 is a
6-tuple T = 〈Σ,Γ, Q, q0, F, E〉 with Σ a finite in-
put alphabet, Γ a finite output alphabet, Q a finite
set of automaton states, q0 ∈ Q the designated
initial state, F ⊆ Q a set of final states, and
E ⊆ Q × Q × (Σ ∪ {ε}) × (Γ ∪ {ε}) a set of
transitions.

For a transition e = (q1, q2, a, b) ∈ E, we de-
note by p[e] its source state q1, by n[e] its destina-
tion state q2, by i[e] its input label a, and by o[e]

2Here and in the sequel, we restrict our attention to un-
weighted automata. The algorithms described here trivially
extend to the weighted case. In fact, the implementations
used in the current experiments (Sec. 4) operate on weighted
automata.
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its output label b. A finite-state acceptor (FSA) can
be regarded as an FST with Σ = Γ and i[e] = o[e]
for all e ∈ E.

A path π is a sequence e1 . . . en of n transi-
tions such that n[ei] = p[ei+1] for 1 ≤ i < n.
We denote by |π| the length of π: |e1 . . . en| =
n. Extending the notation for transitions, we de-
fine the source and destination states of a path as
p[π] = p[e1] and n[π] = n[en], respectively. The
input label string i[π] yielded by a path π is the
concatenation of the input labels of its transitions:
i[π] = i[e1]i[e2] . . . i[en]; the output label string
o[π] is defined analogously.

For q ∈ Q, x ∈ Σ∗, y ∈ Γ∗, and R ⊆ Q,
Π(q, x, y, R) denotes the set of paths from q to
some r ∈ R with input string x and output string
y, and Π(q,R) =

⋃
x∈Σ∗,y∈Γ∗ Π(q, x, y, R) de-

notes the set of paths originating at q and ending
at some r ∈ R. A state r ∈ Q is said to be ac-
cessible from a state q ∈ Q if there exists a path
π with p[π] = q and n[π] = r; r is accessible if it
is accessible from q0. JT K ⊆ Σ∗ × Γ∗ denotes the
string relation associated with T , and is defined as
the set of input- and output-string pairs labelling
successful paths in T : JT K = {(i[π], o[π]) : π ∈
Π(q0, F )}
Definition 2 (Depth). For any accessible q ∈ Q,
depth(q) denotes the depth of q, defined as the
length of the shortest path from the initial state to
q:

depth(q) =

{
0 if q = q0

minπ∈Π(q0,{q}) |π| otherwise

The depth of a transducer T is defined as the
maximum depth over all its accessible states:
depth(T ) = maxq∈Q:Π(q0,{q}) 6=∅ depth(q).

2.2 Composition

Composition is a binary operation on FSTs T1
and T2 which share an “inner” alphabet. Infor-
mally, the composition operation matches transi-
tions from T1 to transitions from T2 if the corre-
sponding output and input labels coincide. For-
mally:

Definition 3 (Composition of FSTs). Given two
FSTs T1 = 〈Σ, Γ, Q1, q01 , F1, E1〉 and T2 = 〈Γ,
∆, Q2, q02 , F2, E2〉, the composition of T1 and T2
is denoted by T1 ◦ T2, and is itself an FST whose
string relation is the composition of the string re-
lations of T1 and T2, JT1 ◦ T2K = JT1K ◦ JT2K,

i.e. for all x ∈ Σ∗, y ∈ ∆∗, (x, y) ∈ JT1 ◦ T2K
if and only if there exists some z ∈ Γ∗ such
that (x, z) ∈ JT1K and (z, y) ∈ JT2K. Further,
C = 〈Σ,∆, (Q1 × Q2), E, (q01 , q02), (F1 × F2)〉
is such an FST, JCK = JT1 ◦ T2K, where:

E =
⋃

(q,r,a,b)∈E1

(s,t,b,c)∈E2

{
((q, s), (r, t), a, c)

}
(1)

The construction above is only correct if T1 and
T2 are ε-free on their output and input tapes, re-
spectively. The generalization to ε-transitions has
been discussed e.g. by Mohri (2009). Since the
generalization can be reduced to the above con-
struction applied to ε-free WFSTs, we ignore it
here in the interest of clarity.

The most common serial algorithm (Mohri,
2009) for computing the composition of two WF-
STs is presented here as Algorithm 1, and can be
considered a variant of the standard intersection
algorithm for unweighted FSAs as described by
Hopcroft and Ullman (1979). Unlike the “brute
force” construction of Definition 3, the algorithm
generates only those states and transitions of the
output automaton which are accessible from the
initial state. In this manner, the algorithm man-
ages to avoid the combinatorial explosion of states
and transitions implicit in Definition 3 in the over-
whelming majority of cases.

2.3 Amdahl’s Law
Amdahl’s law (Amdahl, 1967) describes the theo-
retical bound on speeding up a program in terms of
improvements made to specific parts of that pro-
gram. In particular, it can be used to predict the
maximum speedup resulting from executing spe-
cific parts of a program in parallel on a multipro-
cessor architecture.

SN =
1

(1− P ) + P
N

(2)

Equation (2) states that the maximum speedup
SN of a parallel program is the inverse sum of
the serial proportion of that program (those parts
which cannot be executed in parallel, 1 − P ) and
the parallel proportion P divided by the number
of processors N . As the number of available pro-
cessors increases, P

N approaches zero and SN ap-
proaches 1

1−P .

3 State-wise parallelization

Using a first-in-first-out protocol for the visita-
tion queue V , Algorithm 1 effectively performs a
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Algorithm 1: COMPOSE: serial composition of ε-free FSTs
Input: T1 = 〈Σ,Γ, Q1, q01 , F1, E1〉 an FST
Input: T2 = 〈Γ,∆, Q2, q02 , F2, E2〉 an FST

1 function COMPOSE(T1, T2)
2 Q,F,E ← ∅ /* initialize */
3 V ← {(q01 , q02)} /* visitation queue */
4 while V 6= ∅ do
5 (q1, q2)← pop(V ) /* visit state */
6 Q← Q ∪ {(q1, q2)}
7 if (q1, q2) ∈ F1 × F2 then /* final state */
8 F ← F ∪ {(q1, q2)}
9 for (e1, e2) ∈ E[q1]× E[q2] with o[e1] = i[e2] do /* align transitions */

10 E ← E ∪
{
((q1, q2), (n[e1], n[e2]), i[e1], o[e2])

}

11 if (n[e1], n[e2]) /∈ Q then
12 push

(
V , (n[e1], n[e2])

)
/* enqueue for visitation */

13 return C = 〈Σ,∆, Q, (q01 , q02), F, E〉

breadth-first traversal of the output automaton C.
Pairs of destination states for aligned transitions
are enqueued only if they have not yet been vis-
ited. Our parallelization scheme is based on con-
current processing of multiple result states – multi-
ple concurrent executions of the while loop at lines
4-12. Such state-wise parallelization is a common
approach for breadth-first traversals of graphs in a
multiprocessor environment (Roosta, 2000).

3.1 An approximate upper bound for
state-wise parallel speedup

In this section, we investigate the potential
speedup resulting from a state-wise paralleliza-
tion of Algorithm 1 as described above. We as-
sume that Algorithm 1 constructs an automaton
C = 〈Σ,Γ, Q, q0, F, E〉, and show that the maxi-
mum speedup of a state-wise parallel composition
algorithm depends on the topological properties of
C, specifically on its state-to-depth ratio.

We call a single evaluation of lines 4-12 a visi-
tation of the state q = (q1, q2) ∈ Q, and we call
a state discovered when it has been pushed to the
visitation queue during the visitation of a prede-
cessor at line 12. For each q ∈ Q, let t0(q) repre-
sent the time at which the visitation of q begins, let
t1(q) be the earliest time at which the visitation of
q has completed. We assume a strict breadth-first
visitation order on states: for all q, q′ ∈ Q,

depth(q) < depth(q′) =⇒ t1(q) ≤ t0(q
′) (3)

i.e. visitation of all states at depth d must have
completed before any state with depth d′ > d can

itself be visited. In order to approximate a worst-
case scenario for state-wise parallelization, we as-
sume that the duration of a visitation tvisit(q) is
independent of the state q being visited, defining
this constant as our elementary time unit:

∀q ∈ Q, (t1(q)− t0(q)) = tvisit(q) = 1 (4)

We restrict our attention to the execution of the
visitation loop of lines 4-12, ignoring the constant
administrative overhead of lines 2-3 and 13, and
assume the convention that visitation of the initial
state begins at t0(q0) = 0.

Lemma 1 (Serial composition running time). Let
C = 〈Σ,Γ, Q, q0, F, E〉 be an FST constructed by
Algorithm 1. Serial execution of the algorithm re-
quires exactly tserial = |Q| time units.

Proof. Since each state is visited exactly once and
no two states can be visited concurrently, the algo-
rithm terminates after exactly |Q| visitations. No
code is executed between visitations, so tserial =∑

q∈Q tvisit(q) = |Q| by Equation 4.

Lemma 2 (Parallel state visitation bound). Let
C = 〈Σ,Γ, Q, q0, F, E〉 be an FST constructed by
Algorithm 1 executed in state-wise parallel fash-
ion using an unbounded number of processors
N ≥ |Q|. The completion time of any given state’s
visitation is determined by that state’s depth:

∀q ∈ Q, t1(q) = depth(q) + 1

Proof. We proceed by induction over depth(q).
For depth(q) = 0, it must be that q = q0 and
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t0(q) = t0(q0) = 0 by convention. Since visita-
tion time is constant, t1(q) = t0(q) + tvisit(q) =
1 = depth(q) + 1, so the lemma holds.

For the inductive step, consider an arbitrary
q ∈ Q with depth(q) = d and assume that the
lemma holds for all q′ ∈ Q with depth(q′) < d.
Since depth(q) = d, there exist p ∈ Q and
e ∈ E with p[e] = p, n[e] = q, and depth(p) =
d − 1 by Definition 2. By inductive hypothe-
sis, t1(p) = depth(p) + 1 = d. Since we have
N ≥ Q processors available and at most |Q| vis-
itations to perform, we can begin processing q as
soon as it is discovered during the visitation of p:
t0(p) < t0(q) ≤ t1(p), but the strict breadth-first
visitation constraint of Equation (3) dictates that
visitation of q cannot begin until all states of lesser
depth have been visited, so t0(q) = t1(p) = d
and t1(q) = t0(q) + tvisit(q) = d + 1 by Equa-
tion (4).

Lemma 3 (State-wise parallel composition run-
ning time). Let C = 〈Σ,Γ, Q, q0, F, E〉 be an
FST constructed by Algorithm 1. State-wise par-
allel execution of the algorithm with N ≥ Q
available processors requires exactly tparallel:N =
1 + depth(C) time units.

Proof. The algorithm terminates when all states
have been visited at time t1(C) = maxq∈Q t1(q).
By Lemma 2, all states in each depth-slice
depth−1(d) ⊆ Q are visited concurrently, com-
pleting at time d + 1. Since depth(C) =
maxq∈Q depth(Q) by Definition 2, tparallel:N =
t1(C) = 1 + depth(C).

Having derived approximate running times of
both serial and parallel executions, we can now
compute the maximum speedup of a state-wise
parallel execution.

Theorem 1 (Maximum speedup of state-wise par-
allelization). The maximum speedup Smax of a
state-wise parallel execution of Algorithm 1 con-
structing an output FST C = 〈Σ,Γ, Q, q0, F, E〉
with respect to serial execution is approximated
for N ≥ |Q| by:

Smax =
tserial(C)

tparallel:N (C) =
|Q|

1 + depth(C)

Proof. Follows from Lemmas 1 and 3.

Corollary 1 (Composition parallelizability).
Pmax is an approximate upper bound on the pro-
portion of the total execution time of Algorithm 1

peer0 peer1

peer3 peer2

Figure 1: Data-flow diagram for the peer-to-
peer parallel composition algorithm using 4 peers.
Lock-free data access is displayed with dotted
lines, data channels shared by exactly two peers
appear as dashed lines, and globally shared data
channels which can be locked by any peer are solid
black.

which can be effectively run in parallel:

Pmax = 1− 1

Smax

Proof. Follows from Theorem 1 and Amdahl’s
law (Eq. 2).

3.2 Algorithm
Apart from the bounds implied by automaton
topology, practical issues such as shared data
structures and the necessarily associated synchro-
nization between otherwise independent threads
must be considered in the development of any par-
allel algorithm. Access to shared data is typically
controlled by mutual exclusion locks (mutexes):
when altering a shared data structure s, a thread
t must first lock that structure. Other threads must
then wait for t to unlock s before they can ac-
cess it themselves. Competition for mutex locks
therefore has a strong impact on the overall perfor-
mance of multi-threaded implementations, since
lock acquisition is an inherently synchronous op-
eration, and thus decreases the proportion of the
program which can actually be executed in paral-
lel.

Our approach is presented as pseudo-code in
Algorithm 2 and schematically depicted in Fig-
ure 1. We make use of a set of N > 1 “peer”
threads pi∈N , each of which simulates the execu-
tion of lines 4-12 from Algorithm 1. To minimize
competition over shared data structures, each peer
allocates and maintains its own local partition of
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Algorithm 2: PPCOMPOSE: peer-to-peer parallel composition
Input: T1 = 〈Σ,Γ, Q1, q01 , F1, E1〉 an FST
Input: T2 = 〈Γ,∆, Q2, q02 , F2, E2〉 an FST
Input: N ∈ N, number of peer threads to spawn

1 function PPCOMPOSE(T1, T2, N)
2 for 0 ≤ i, j < N do Vi,j ← ∅ /* initialize queue matrix */
3 V0,r(q01 ,q02 )

= {(q01 , q02)}
4 nup = 1 /* shared queue-size counter */
5 for 0 ≤ i < N do spawn PEER(i) /* spawn peer threads */
6 wait on all peers()
7 return C =

〈
Σ,∆,

⋃
i∈N Q′

i, (q01 , q02),
⋃

i∈N F ′
i ,
⋃

i∈N E′
i

〉

8 procedure PEER(i)
9 Q′

i, F
′
i , E

′
i ← ∅ /* initialize peer-local data */

10 while true do
11 find j with 0 ≤ j < N and Vj,i 6= ∅
12 v ← pop(Vj,i)
13 if v = eof then return /* terminate thread */
14 if v 6∈ Q′

i then VISIT(i, v) /* visit state */
15 if nup = 1 then
16 for 0 ≤ j < N do push(Vi,j , eof) /* terminate peers */
17 nup ← nup − 1 /* update shared counter */

18 procedure VISIT(i, (q1, q2))
19 Q′

i ← Q′
i ∪ {(q1, q2)}

20 if (q1, q2) ∈ F1 × F2 then /* final state */
21 F ′

i ← F ′
i ∪ {(q1, q2)}

22 for (e1, e2) ∈ E[q1]× E[q2] with o[e1] = i[e2] do /* align transitions */
23 E′

i ← E′
i ∪

{
((q1, q2), (n[e1], n[e2]), i[e1], o[e2])

}

24 nup ← nup + 1 /* update shared counter */
25 push

(
Vi,r(n[e1],n[e2]), (n[e1], n[e2])

)
/* enqueue for visitation */

the output automaton structure (Q′
i, F

′
i , E

′
i), and

the visitation queue V is replaced by an (N ×N)
matrix of peer-to-peer local message queues: Vi,j

contains messages originating at peer pi and des-
tined for peer pj .

This technique relies for its correctness on the
prior specification of a partitioning function r :
Q1 × Q2 → N over states of the result automa-
ton, used to determine which peer is responsible
for visiting any such state. For the experiments
described in section 4, our input automata pro-
vided injective functions J·K1 : Q1 → N and
J·K2 : Q2 → N, and we used the partitioning func-
tion given in Equation (5).

r(q1, q2) =

⌊Jq1K1 + Jq2K2
2

⌋
mod N (5)

Since the visitation queue V is no longer
a shared atomic structure, an additional shared

global counter nup is required to keep track of the
number of visitation requests currently enqueued
in any Vi,j . Only when the last such request has
been processed does the algorithm terminate by
sending a designated message eof 6∈ Q1 × Q2

to all peers at line 16.

Also worth noting is that due to the peer-wise
partitioning of result data – in particular that of Q
into Q′

i∈N – a new visitation request must be en-
queued at line 25 for every aligned transition, and
the decision of whether or not a visit is actually
required deferred to the responsible peer at line
14. This can be expected to result in larger queues,
correspondingly increased memory requirements,
and an additionalO(E−Q) copy operations com-
pared to Algorithm 1. Any additional computa-
tional load – in particular the inclusion of an im-
plicit epsilon-filter such as described by Mohri
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(2009) – associated only with a single state visi-
tation will remain confined to a single peer, and
can thus only serve to improve the performance
of the parallel algorithm with respect to its serial
counterpart.

Our parallelization strategy does not alter the
worst-case complexity of the composition algo-
rithm, since the partitioning function may fail for
certain pathological configurations. More pre-
cisely, whenever there is an i ∈ N such that
r(q1, q2) = i for all accessible (q1, q2) ∈ Q,
then the unique peer-thread pi will be responsible
for visiting all of the states of the output trans-
ducer. In this case, Algorithm 2 essentially re-
duces to Algorithm 1 with the worst-case com-
plexityO(|Q1×Q2|+ |E1×E2|), which is dom-
inated by O(|E1 × E2|).

Many other operations on finite-state transduc-
ers have traditional implementations in terms of a
state-processing queue, exhibiting the same high-
level structure as Algorithm 1. The parallelization
strategy used here may also be employed in such
cases, whenever a suitable state-partitioning func-
tion (analogous to r) can be defined. Consider
for example the case of unweighted acceptor de-
terminization as presented by Hopcroft and Ull-
man (1979): output automaton states are identified
by sets of prefix-equivalent states of the input au-
tomaton. A generic partitioning function for map-
ping state sets to peers would suffice to extend our
parallelization strategy to this algorithm.

4 Experiment

To investigate the practical utility of our multi-
threaded composition algorithm, we compared
running times of Algorithms 1 and 2.

4.1 Materials

We began by generating a sample set of ran-
dom input FSTs Ti∈I . Each input Ti was built
from a deterministic trie “skeleton” of a given size
|Qi| with maximum depth 32. The trie skeleton
was then augmented by adding random edges be-
tween existing states, and finally randomizing all
edge labels. The target size parameters |Qi| were
piecewise-uniformly distributed within exponen-
tially sized bins such that 25 ≤ |Qi| ≤ 221,
i.e. input automata had between 32 and 2,097,152
states. The number ei of randomly added edges
was dependent on the number of states, ei =
ci×|Qi|, where the coefficients ci were uniformly

distributed over the interval [0, 16]. In- and output-
alphabets were identical for each Ti with alpha-
bet sizes uniformly distributed over the discrete set⋃10

i=0{2i}, i.e. between 2 and 1024. For each input
automaton Ti so generated, we measured the run-
ning time tserial,i of the serial composition algo-
rithm COMPOSE(T −1

i , Ti), and retained only those
samples Ti for which 1

64 sec ≤ tserial,i ≤ 8 sec.
We implemented Algorithms 1 and 2 in C++,

using the GNU C compiler (g++ version 4.4.5),
the C++ standard template library, as well as the
auxiliary libraries boost (Schäling, 2011) and
TBB (Reinders, 2007) for common data structures
and programming idioms. Automata were rep-
resented using adjacency vectors, and the edge
alignments of Algorithm 1 line 9 (respectively
Alg. 2 line 22) were implemented using an opti-
mized routine3 for sorted edge-vectors in order to
minimize running times for both conditions. The
implementations were tested on a dedicated 64-bit
machine with 16 logical processors running de-
bian linux.

4.2 Method

For each of the 2,266 random input automata Ti,
we measured the time required4 to compute the
composition Ci = (T −1

i ◦ Ti) using the serial al-
gorithm (tserial,i) as well as the parallel algorithm
(tpp:N,i), varying the number of peer-threads em-
ployed by the latter, N ∈ {2, 4, 8, 16}.5 Each of
these 11,330 invocations was iterated 8 times in
order to ameliorate cache effects. Raw and mean
running times were stored for each invocation, to-
gether with various structural properties of the in-
put and result automata.

4.3 Results & Discussion

Inspection of the generated sample set revealed
that all of the tested compositions exhibited
an “embarrassingly parallel” topology: applying
Corollary 1 yielded Pmax > 99% for all Ci (µ =

3Specifically, we used a modified version of the edge
alignment code from the GFSM (Jurish, 2009) library func-
tion gfsm automaton compose visit () to imple-
ment a generic function template shared by both serial and
parallel implementations.

4Neither I/O nor serialization of the result transducer were
included in our measurements of the running time.

5While not necessarily representative of FST composi-
tions in general, restricting our attention to compositions of
the form (T −1 ◦T ) ensures that the output automaton C is at
least as large as T itself, since the main diagonal of the out-
put state-set Id(QT ) will be accessible whenever T contains
no non-accessible states.
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Figure 2: Observed speedup for peer-to-peer parallel composition with respect to serial running time for
randomly generated automata (log-scaled).

.9998, σ = 2.949 × 10−4). Although it is cer-
tainly the case that not all FST compositions pos-
sess such characteristics (as follows from Theorem
1), the uniformly large state-to-depth ratio exhib-
ited by our sample set makes it a particularly good
testing ground for state-wise parallel processing
techniques such as Algorithm 2.

Results of the runtime measurements are de-
picted in Figure 2, expressed as the measured
speedup for the parallel implementation with re-
spect to the serial one. The samples i were sorted
into 10 exponentially sized bins by serial run-
ning time tserial,i, and the speedup data SN,i =
tserial,i/tpp:N,i are plotted on logarithmic scales
for each n ∈ N as a piecewise linear fit over bin-
wise averages.6

Immediately apparent from the data in Figure
2 is a typical pattern of diminishing returns for in-
creasing values of N , reflecting an empirical value
of P ≪ 1. Solving Equation (2) for P and ap-
plying it to the measured speedup values yields
the data in Table 1, corresponding to an estimated
P = .749 (σ = .154) over all tested parallel
compositions. Interestingly, the empirically esti-
mated values for P increase monotonically with
N , which indicates that the use of a distributed

6Since Pmax ≈ 1 for all of our test automata, we ignore
the contribution of automaton topology to actual observed
speedup here. For a more heterogeneous test set, it would
make more sense to measure speedup relative to the respec-
tive automaton-dependent maxima, i.e. SN,i/Smax,N,i.

N µS σS µP σP

2 1.474 0.209 0.615 0.207
4 2.372 0.423 0.751 0.116
8 3.585 0.788 0.806 0.083

16 4.701 1.156 0.824 0.066

Table 1: Global mean (µ) and standard deviation
(σ) of observed speedup (S) and associated de-
gree of parallelization (P ) for peer-to-peer parallel
composition using N concurrent threads.

message queue did in fact reduce the competi-
tion over shared resources between peer-threads,
thereby effectively reducing the serial portion of
the program itself.

Despite this tendency, the data from Table 1
clearly indicate that the measured performance of
our implementation remained well below the up-
per bound given by Theorem 1 for our sample
set. This discrepancy can be attributed in part
to constant overhead associated with thread allo-
cation and maintenance (cf. Section 3.2), whose
effects can also be observed in the tendency of
speedup to improve with increasing serial running
time as seen in Figure 2. Restricting our atten-
tion to the 598 samples with tserial,i ≥ 1 sec-
ond, we computed an average empirical estimate
of P = .8867 for N = 16 (σ = .01676). The
remaining discrepancy between the empirical esti-
mates and the “embarrassingly parallel” theoreti-
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cal upper bounds must be attributed to the neces-
sarily serial aspects of inter-thread communication
and synchronization.

5 Conclusion

We have presented a generic state-wise parallel al-
gorithm for computing the composition of ε-free
finite-state transducers which minimizes compe-
tition for global locks by employing distributed
data structures and localized communication chan-
nels. This algorithm relies on the prior specifi-
cation of a partitioning function which effectively
maps each state of the result automaton to the exe-
cution thread responsible for processing that state.

An approximate upper bound for composition
speedup using a state-wise parallel algorithm such
as that presented here was proposed and defined
in terms of the state-to-depth ratio of the result
automaton. Empirical investigation of the actual
speedup achieved by our algorithm on a test set
of “embarrassingly parallel” compositions showed
that although the use of distributed data structures
and communication channels was successful in
reducing the serial proportion of the code when
more processors were used, constant overhead and
the remaining synchronizations led to the pattern
of diminishing returns associated with an actual
parallel execution of about 89% of the program.

We are interested in evaluating the performance
of our approach in other scenarios, including
string lookup in (weighted) FSTs, n-way or “cas-
caded” composition, and “lazy” online construc-
tions. We believe that the peer-to-peer paralleliza-
tion strategy can also be employed to improve the
performance of other common finite-state alge-
braic operations in a multiprocessor context.
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Abstract

Building finite-state transducers from
written autosegmental grammars of tonal
languages involves compiling the rules
into a notation provided by the finite-
state tools. This work tests a simple, hu-
man readable approach to compile and
debug autosegmental rules using a sim-
ple string encoding for autosegmental rep-
resentations. The proposal is based on
brackets that mark the edges of the tone
autosegments. The bracket encoding of
the autosegments is compact and directly
human readable. The paper also presents
a usual finite-state transducer for trans-
forming a concatenated string of lexemes
where each lexeme (such as ”babaa|HH”)
consists of a segmental substring and a
tonal substring into a chronological mas-
ter string (”b[a]b[aa]”) where the tone au-
tosegments are associated with their seg-
mental spans.

1 Introduction

In Bantu linguistics, Autosegmental (AS) Phonol-
ogy (Goldsmith, 1976) is a standard theory in
phonological description of tone. The widely
available finite-state compilers are, however, not
directly applicable in this context because autoseg-
mental phonology uses a two-tier representation
for the phonological content. The aim of this pa-
per is to address this obvious shortcoming in finite-
state technology. I will, therefore, pursue a practi-
cal approach that facilitates conversion of an exist-
ing multi-tiered lexicon and an autosegmental rule
system into a lexical transducer.

In the past, various finite-state approaches to
autosegmental phonology have been proposed.
Kay’s (1987) early proposal about processing mul-
tilinear structures with an extended finite-state

transducer model has inspired further research
on multi-tape automata (Wiebe, 1992) and linear
codes (Kornai, 1995) that encode events when an
autosegmental representation is scanned from left
to right. Kornai (1995) has qualified the proposed
codes with a set of desiderata. All these desiderata
cannot be, however, fully satisfied by any of the
linear codes (Wiebe, 1992). An alternative to these
multi-tape approaches is proposed by Bird and El-
lison (1994) who posit that all tiers are partical de-
scriptions of the common synchronized structure
and they can, therefore, be combined via intersec-
tion. This constraint-based approach is very natu-
ral and it has nice formal properties such as declar-
ativeness and connection to logic. However, the
resulting one-level phonology (Bird and Ellison,
1994) is also somewhat incompatible with the au-
tosegmental theory. For example, it does not posit
floating tones that are a crucial formal device in
many existing accounts of Bantu tone.

The key idea in this paper is to represent the
tone units, i.e., autosegments, as time spans that
have a start and an end marked with brackets in
the timing tier. The key idea is complemented with
a finite-state technique for producing tone associ-
ations from the lexical forms and a new, tailored
finite-state formalism for autosegmental alterna-
tion rules. The implementation of each alternation
rule is based on declarative, constraint-based tech-
niques.

The resulting formalism can be seen as a reim-
plementation of the classical two-level formalism
(Koskenniemi, 1983). The new formalism al-
lows the user to specify even complex parallel
changes to the autosegmental representation in a
compact way. The reimplementation is based on
generalizations that support parallel compilation
of rules (Yli-Jyrä and Koskenniemi, 2006; Yli-
Jyrä, 2008a) and the new, lenient semantics of
obligatory rules (Yli-Jyrä, 2008b). The bracketing
that I use to represent tone is reminiscent of foot
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bracketing (Karttunen, 2006), syllable bracketing
(Idsardi, 2009) and the bracketing of tone domains
(Leben, 2006), all representing Optimality Theo-
retical (Prince and Smolensky, 2004) approaches
to phonology.

2 Theories of Tone

Tone in phonology relates to such a pitch con-
trast that distinguishes the meanings of two word
forms. There are level tones such as: High (H),
Low (L) and Mid (M), and contour tones such
as: Rising (LH), Falling (HL), and Rising-falling
(LHL), Mid-hig (MH), Mid-low-high (MLH). A
segment (a mora or syllable) having the tone fea-
ture is called a tone bearing unit (TBU). 1

Williams (1976) and Leben (1973) distinguish
and compare three different theories that claim to
describe the nature of tone:

• the segmental theory,
• the syllabic theory, and
• the morphemic theory.

This taxonomy gives use a good starting point for
explaining how suprasegmental and autosegmen-
tal phonology differs from the segmental phonol-
ogy. It is important to note that the newer theo-
ries are improved generalizations inspired by the
former theories rather than completely opposed to
them.

2.1 Segmental and Syllabic Theories

Features and Natural Classes It would be the
simplest theoretical solution to process sounds as
segments having tonal features. Then the treat-
ment of tone would not differ from any other fea-
tures such as nasality or openness. Sounds and
their classes would be viewed as a Boolean algebra
and the feature geometry would define what sound
classes or their changes are natural and what are
not. In finite-state phonology, the natural classes,
such as “V [+ High]” can generally be imple-
mented as character lists, but Bird (1994; 1995)
and Heinz and Koirala (2010) go much further in
capturing the notions of feature geometry by com-
putational means.

The segment-based representation of tone gives
a clumsy treatment to floating tones that are not
carried by any segmental units. The same weak-
ness is true for syllabic theory: there are floating

1For simplicity, this paper assumes that each vowel is the
tone bearing unit.

tones that are not linked to any syllable (Leben,
1973).

Subsegmental Diacritics as Segments A
slightly more modular solution would treat tone
as a diacritic character that affects the adjacent
character. This is how UNICODE or the IPA
standard handle tone at the character level.
Likewise, some computational morphologies use
segments such as H or L to represent the tone in
the morphophonological representation. Muhirwe
(2010) uses this in his finite-state description of
Kinyarwuanda:

(1) baHzaHaHriHriimba<ba-zaHa-riHriimba
REL.FUTURE

’they might sing’

2.2 Morphemic Theories

In a morphemic theory of tone, the tone of un-
derlying morphemes is indicated separated from
rather than pre-assigned to the phonemic se-
quence. This separation is indicated in the lex-
icons of some descriptive grammars, such as
(Halme, 2004):

(2)
elifikameno n LHHHL 5 independence.
elifiyepo n LHLH 5 contest.
elifo n LH 5 likeness.

Suprasegmental Phonology According to
Williams (1976) and Leben (1973), tones are
suprasegmental. They are not marked underly-
ingly to the segments, but they constitute units
in their own right. To merge the phonemic
and tonemic sequences of morpheme, Williams
proposes a Tone Mapping Rule (3).

(3)

Tonemic sequence
⇓

Phonemic sequence
⇓

Tone Mapping Rule

⇓
Master phonemic sequence

A shortcoming of the original formulation of
the Time Mapping Rule is that its output rep-
resentation is purely linear, which complicates
the description of further phonological processes.
Therefore, Goldsmith (1973) argues that Leben’s
theory does not adequately describe some effects
of floating tone.
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Multi-Tiered Representation The Autoseg-
mental Phonology (AST) (Goldsmith, 1976)
claims that what we see in the segmental rep-
resentations of the language is an image of a
richer multi-tiered representation that involves si-
multaneously pronounced sequences (Goldsmith,
1973). One tier represents the tone patterns via
H/L tonemes, called autosegments, while another
tier represents the usual C/V segments in the pro-
nunciation. These two underlying tiers are inte-
grated through the timing tier that consists of a se-
quence of ×’s:

(4)

C

×
V

×
C

×
V

×
C

×
V

×
L H L

Tones are not necessarily in a one-to-one rela-
tionship with the segments. Instead, the nature of
tone can be suprasegmental or subsegmental and
therefore it cannot be incorporated to or ordered
among the segments.

A two-tiered morphemic representation avoids
the loss of tonemic structure. The tone associa-
tions (links) simplify the rules considerably and
let the AST posit a simple, elegant theory of op-
erations: add/delete a tone/link. This elegancy is
perhaps the most attractive aspect of AST.

2.3 Autosegmental Derivation

Goldsmith (1976) defines the autosegmental
derivation as follows:

Step 1: Initialization The phonological and
tonological sequences are set out as parallel strings
and the tone boundaries2 are associated with each
other.

(5)

#

×
C

×
V

×
C

×
V

×
#

×
#

×
C

×
V

×
C

×
#

×
C

×
V

×
C

×
V

×
#

×

# L H # # L H # L #

Step 2: Association Rule (AR) The ASSOCI-
ATION RULE associates the first toneme with the
first tone bearing unit and proceeds rightward as
long as the segments match one another.

(6)

#

×
C

×
V

×
C

×
V

×
#

×
#

×
C

×
V

×
C

×
#

×
C

×
V

×
C

×
V

×
#

×

# L H # # L H # L #

2In this paper, we will naively assume that all morpheme
boundaries are also tone boundaries.

Step 3: Well-Formedness Condition The well-
formedness condition makes sure (i) that every
toneme has a corresponding segment, (ii) that ev-
ery phoneme segment is linked to a tone, and
(iii) that the links do not cross one another. The
changes required to enforce the well-formedness
condition are unambiguous after the AR. At this
point, only the rightmost member of a tier can be
associated with more than one member of another
tier of the word.3

(7)

#

×
C

×
V

×
C

×
V

×
#

×
#

×
C

×
V

×
C

×
#

×
C

×
V

×
C

×
V

×
#

×

# L H # # L H # L #

Step 4: Mutations The phonological derivation
with autosegmental rules now starts.

3 The Bracket Encoding of Associations

The encoding of autosegmental representations
proposed in this paper is based on brackets that
indicate the span of each tone autosegment in the
segmental string. Instead of marking the tones
separately, we only mark their links – in fact the
first and the last link only – to the segmental
tier. This means that the general bracketing ap-
proach familiar from e.g. Leben (2006) and Id-
sardi (2009) is now developed further and applied
to non-OT representations of tone.

3.1 Common Timing Elements of All Tiers

The timing tier synchronizes the segmental and
tonal tiers using morphological boundary sym-
bols.

• the prefix/suffix boundaries (-/+)
• named affix boundaries (such as AUG-).
• the clitic boundary (=)
• the infix boundaries (<IFX and IFX>)
• the reduplication boundary (˜)
• the word boundary (#)
• morphological categories (such as N5).

These boundaries are shared both by the segmen-
tal and tonal tiers. Thus there is no need to add
separate inter-tier associations for the morpheme
boundaries.

3On different assumptions on tone association rule and
tonal boundary markers, see Leben (1978).
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3.2 Segmental Tier

Segmental tier consists of segmental phonemes –
vowels (V) and consonants (C). The segmental tier
may also contain the syllable boundary (.).4

The foot structure can be marked with addi-
tional types of syllable boundaries .(. , .). and
.)(. that are considered as multi-character sym-
bols, in contrast to Karttunen (2006).

3.3 Tone Associations

There is usually only a small number of underly-
ing tone level distinctions such as: Toneless (∅),
Low (L), and High (H). As to the surface tones,
the international phonetic alphabet lists, for exam-
ple, five level tones and suggests many more con-
tour tones. However, it is now not necessary to go
through all the theoretically possible surface tones
that might occur in the languages of the world.

The key proposal of this paper is to indicate the
association of tone autosegments by showing the
span of the tone via brackets.

(8)

a

×
∅
↔

a

×↔a

a

×
L

↔(a)

a

×
H

↔[a]

In the lexical representation, an unspecified tone
can be marked with X. When the lexical tones un-
dergo changes, the tonal tier can also contain addi-
tional tones such as Middle (M) and Downstepped
High (!H):

(9)

a

×
X

↔[XaX]

a

×
M

↔[MaM]

a

×
!H

↔![ a]

The basic contour tones, such as �HL and �LH,
are notated by mixing the brackets of two different
tones. To facilitate notating more complex contour
tones, we can introduce labeled brackets for sim-
pler contour tones:

(10)

a

×
H L

↔[a)↔[HLa)

a

×
L H

↔(a]↔(LHa]

Contour tones with three underlying tones are
represented using simpler contour tone brackets as
needed:

4Syllable stress markers such as ’ could be added near the
syllable boundaries, but we try to avoid going into the stress
structure in too much detail in this work.

(11)

a

×
L H L

↔ (LHa)

Floating tones do not contain any vowels in
their spans. If a floating tone emerges due to
the well-formedness condition after the associa-
tion rule, it will be placed immediately before the
next tone (i.e., morpheme) boundary. In all other
cases, the place of the floating tone in the segmen-
tal tier is specified by its derivation history.5

(12) a.

b

×
a

×
b

×
a

×
n

×
L H L H

↔ b(a)b[a]n()[]

We posit a convention according to which the
brackets of a linked tone will be inserted immedi-
ately around the linked segments, without any in-
tervening boundary symbols, syllable boundaries
and stress markers. If more than one segment are
linked to one tone, the brackets span all the linked
segments:

(13)

o

×
k

×
u

×
t

×
e

×
m

×
a

×
L H L

↔ (oku)t[e]m(a)

4 Derivation of the Input for the Rules

In oder to use the bracketed representation, we
need to implement the first three steps of the au-
tosegmental derivation.

4.1 Specifying the Task

The first derivation step takes the lexical form as
its input and produces a string where the tones
are associated with the segments. The underlying
lexical form contains at least the tonal string, the
phonemic string and morphological boundaries.
In practice, it is convenient to have also some in-
formation on the morphological categories and the
glosses in the morpheme lexicon. For example,
CL5 and N5 in the glossed underlying string (14)
are morphological category labels and ’likeness’ is
the semantic gloss of the stem.

5We will need to experiment more before we know if there
is a need to normalize the floating tones. Meanwhile, it would
seem natural to migrate the brackets of floating tones as little
as possible.
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Table 1: The foma Syntax and Basic Definitions
0 empty string

"|" protected special symbol
{abc} a string of letters

? all (identity pairs of) symbols
A B concatenation
A|B union
[A] grouping
(A) optionality

A*, A+ Kleene star, Kleene plus
A&B intersection of 0-padded relations
A-B difference of 0-padded relations
A:B left-aligned cross product

A.x.B left-aligned cross product
A.o.B composition

A.i inverse relation
A.1, A.2 input projection, output projection

A/B free insertion of symbol pairs B
def A B; definition of a constant expression

def A(X) X X; definition of a regex macro

Phonemic (Segmental) Tier
def V a | e | i | o | u ;
def C b | d | ... | y ;
def S "." | ".(." | ".)." | ".)(." ;
def M "-" | "AUG-" | "+" | "#" | "::";

Tonemic (Autosegmental) Tier
def L "(" | "[" | "![" | "[LH" | "[HL" ;
def R ")" | "]" ;
def T L | R ;
def X L:L | R:R | T:0 | 0:T;

(14) elifo n LH 5 likeness. (Halme, 2004)

# e- lifo|LH #

In a finite-state implementation, the underlying
form (14) can be written as string (15) where ::,
CL5, N5 and ’likeness’ are multi-character sym-
bols. In this string, the double colon :: indicates
the glossing relation.

(15) #e :: CL5 - l i f o | L H :: N5 ’likeness’#

The task of the first three steps of the autoseg-
mental derivation is to implement the mapping
(16a) or just to produce the output of the mapping
(16b). The output will then be the autosegmental
representation fed to the autosegmental alternation
rules.

(16) a. #e::CL5-l i f o |LH::N5’likeness’#

#e::CL5-l(i)f[o] ::N5’likeness’#

b.
#e::CL5-l i f o |LH::N5’likeness’#

#e -l(i)f[o] #

4.2 The Implementation Formalism

We will use the regular expressions of the freely
available foma tool (Hulden, 2009) when imple-

Table 2: The Definition of the Association Rule
def Tones "L" | "H" ;
def Mapper(TBUs) [ "L" .x. "(" TBUs ")" ] |

[ "0" .x. TBUs ] |
[ "H" .x. "[" TBUs "]" ] ;

def Asso(Pat,TBUs) [ [?-T] | 0:T ]* .o.
[ Pat .o. [0:C | Mapper(TBUs)]* ].2 ;

def Single V | Beyond ;
def TheRest V [[C|S]* V]* | Beyond ;
def Map(Pat) Asso([Pat .o. ?* ?:0 ].2, Single )

Asso([Pat .o. ?:0* ? ].2, TheRest )
"|":0 Pat:0 ;

def Maps Map({LH}) | Map({LLH}) | Map({LHL}) |
Map({0H}) | Map({00H}) | Map({0H0}) ;

def AR [ [ ? - Beyond] | 0:Beyond* "|" ]* .o.
[ ?* M | Maps M ]* .o.
[ [ ? - Tones - Beyond ] | Beyond:0 ]*;

menting all the rules. This flavour of regular ex-
pressions has been originally developed at Xerox.
The relevant syntax of the formalism is summa-
rized in Table 1.

Using the regexp syntax, we first define fre-
quently used constant expressions for the rules.
These expressions define symbol sets used in
Phonemic and Tonemic tiers in Table 1.

4.3 Implementing the Association Rule

A crucial assumption in this paper is that the tone
patterns can be stored into a finite-state mem-
ory. For each tonemic sequence Pat, I construct
a transducer Map(Pat) that assings the sequence
of tones to all the tone bearing segments of a mor-
pheme and then removes the lexical tone pattern
from the end of the morpheme. If there are fewer
tones than TBUs, the last one will be spread over
the rest. More concretely, the expression Map({H})

is compiled into the transducer (17). A finite union
of such transducers is stored under the name Maps.

(17)

0

C 

1  0:[  

2Beyond 

3

N V 

5
  0:]  

N V 

4

C  S

  0:]  

N V 

C  S

C 

6  |:0  7  H:0  

The expression AR is a transducer that applies
the Maps transducer to every morpheme in the in-
put. In its definition, a hidden symbol, Beyond is
used as a temporary TBU for tones that are left
over. This implementation of the AR synthesizes
the first three steps of the autosegmental derivation
into one transducer.

After the appropriate language-specific changes
to the tier definitions and the Maps transducer have
been made, we can use the foma command line in-
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terface to see how some example strings are pro-
cessed by the AR rule:

(18)
: regex {#olu|LL-vala|HH#}.o.AR;

: print lower-words

#(o)l(u)-v[a]l[a]#

5 The Tone Alternations

The autosegmental rule formalism is based on
rewriting rules. However, the input and the out-
put are not just strings but linked pairs of strings.
Most rules are notated using a shorthand conven-
tion according to which the input and output rep-
resentations of the rule are combined into one rep-
resentation where the tone delinking, deletions, in-
sertions, replacements, and linking are indicated.

In this section, every rule will be written in two
ways: with the original autosegmental notation
and with regular expressions.

5.1 The New Rule Formalism

The rules will be expressed as regular expressions
that describe the changes and the context condi-
tions under which the changes can take place. The
currently available definitions of the formalism are
listed in Table 3.

Table 3: Formalism for bracketed rules
notation = foma expr. meaning
L,R,T sets of tone brackets
S,M sets of syll., morph. boundary
V,C sets of vowels and consonants
A=?-"<>" any symbol
αU=α protected constant tone bracket α
(U example: constant tone bracket (
αI=X&[α|α:T|α:0] tone bracket α in input
αO=X&[α|T:α|0:α]tone bracket α in output
αX=αI|αO mutable tone bracket α
αC=[X& T:α]-T changed tone bracket α
Q=[C|S]* consonants and syll. boundaries
N=[C|S|M]* anything constant but T and V
P=[C|S|M|V]* anything constant but T
Z=[A|TX]* anything, including the mutable
αD="<>"* α:0 delete bracket α
αA="<>"* 0:α add bracket α
αF ="<>"* αO enforce output bracket α
αM="<>"* αC mutate bracket α
α:0 test for deleted α
α=Z-α negates the expression α
α* iterate α zero or more times
α+ iterate α one or more times
(α) make α optional
[α] grouping
α|β α and β are alternatives

5.2 Example Rules

Anyanwu (2008) classifies some universally ac-
cepted tonal rules. Given such a classification,
we consider some example rules from Kwanyama
(Halme, 2004) and Ikoma (Aunio, 2010) and ex-
tend the classification where needed. By compil-
ing different kinds of rules into the new notation,
we get an estimate on out how the bracket-based
formalism applies to the practical needs in general.

5.2.1 Spreading

The TONE SPREADING rules affect the following
tone (e.g. LHH → LLH). If the spreading effect is
partial, this results into a contour tone as in (e.g.
LH → L�LH) (Anyanwu, 2008).

AUGMENT HIGH SPREAD (AHS) of
Kwanyama (Halme, 2004) causes the under-
lying High of the augment prefix to spread onto
the following Low-toned mora (dotted line) whose
tone is delinked (cut line).

(19) a.

V

×
AUG-

×
V

×
H L

b. Z ]D N AUG- N (D V ]A (A )U Z

5.2.2 Assimilation

The TONE ASSIMILATION rules can be either re-
gressive (HL → ML) or progressive (LH → LM)
(Anyanwu, 2008).

HIGH LOWERING (HL) of Ikoma (Halme,
2004) causes a floating Low tone to link (dotted
line) to the following mora whose High tone is
delinked (cut line) and deleted (parentheses):

(20) a.

V

×

L (H)

b.
Z (D )D N (M V )M Z |

Z (D )D N (M V )A N [A V Z

5.2.3 Simplifications

The TONE ABSORPTION rules (e.g. �LHH → LH)
simplify two adjacent identical tones (Anyanwu,
2008). This rule is motivated by the OBLIGATORY

CONTOUR PRINCIPLE (OCP) (Leben, 1973) that
bans two consecutive features in the underlying
representation.

FLOATING LOW DELETION (FLD) of
Kwanyama (Halme, 2004) occurs when a floating
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Low occurs next to a linked Low:

(21) a.

σ

×
L (L)

and

σ

×
L(L)

b.
Z V )U N (D )D Z |

Z (D )D N (U V Z

In contrast to the TONE ABSORPTION rules,
the CONTOUR LEVELING rules make two adja-
cent tones similar by simplifying a contour tone.
(e.g. H�LH → HH) (Anyanwu, 2008).

PLATEAUING in Ikoma (Aunio, 2010) is a
variant of this kind of simplification:

(22) a.

baa

×
+

×
V

×
V

×
#

×
H ∅ H

→
baa

×
+

×
V

×
V

×
#

×
H

b. Z ]D "-" N V N [D V ]U N "#" Z

5.2.4 Dissimilation

DISSIMILATION (HH → HL) and TONAL PO-
LARIZATION (HX → HL) are rules that are mo-
tivated by the OCP because they differentiate ad-
jacent tones.

MEEUSSEN’S RULE in Ikoma (Aunio, 2010)
lowers the last H in a sequence of two HH’s:

(23) a.

V

×
V

×
H H→L

b. Z ]U N (M V P )M Z

5.2.5 Tone Shift

TONE SHIFT (TS) in Kwanyama (Halme, 2004)
moves all tones one mora (TBU) to the right
(HLHL → ∅HLH). The correct interpretation of
the rule assumes that there is no floating tones. 6.

(24) a.

V

×
V∗
×

V

×
TT

b.

Z (I V (RX) N (F V Z |
Z [I V (RX) N [F V Z |
Z LI V (RX) N LD V Z |
Z LO (P|T:0)* RD Z |
Z RI N (LX) V RD P (LX) V Z |
Z )I N (LX) V )F (LX) P Z |
Z ]I N (LX) V ]F (LX) P Z

6The last shifted tone could land to a final position, but
the current formulation does not support this. The floating
tones can be shifted and produced using temporary tone bear-
ers during the rule application as we did in the TONE ASSO-
CIATION RULE

5.3 The Rule Compiler

My foma code for the rule compiler is given in Ta-
ble 4. This compiler consists of two parts:

• The macro CR(Rule) produces a transducer
that contains the final rule transducer as its
subset.

• The second macro, COERCE(Rule), pro-
duces the final rule transducer by restricting
CR(Rule) in such a way, that it performs, in a
sense, as many individual changes as it can.

The first macro, CR(Rule), works as follows.
The basic compilation of the regular expression
corresponding to an autosegmental rule notation
(such as 23b) yields a 0-padded transducer, Rule,
where an optional, freely iterated marker "<>"

has been added at the positions where the input
string is expected to change.7 Another transducer,
W, contains all possible string pairs Z into which
we have added the marker for an arbitrary change
concerning a tone bracket. The purpose of this
transducer is to tell that the marked change
requires a permission from rule to be acceptable.
When these two 0-padded transducers are dif-
ferentiated, the resulting transducer contains all
those string pairs that have an unwanted change.
The complement of this 0-padded transducer with
respect to Z is then exactly the transducer whose
string pairs contains only such changes that are
specified by the rule. For MEEUSSEN’S RULE,
this transducer is (25).

(25)

0

@ C M S V ( ) [ 

1
] 

@ V 

C M S ( ) [ ] 

2
<[:(> 

3

V 
<]:)> 

C M S V 

The second macro, COERCE(Rule), refines the
transducer computed by the first macro. This
macro marks, in each 0-padded string pair, all
those positions where a bracket changes. The
markup is done, again, using the same marker
symbol, "<>", as before. The input projection of
this transducer gives a regular language without
the zeros that were used in the transducer. An
auxiliary macro, TooFew(X), is now used to find
out in this projection such marked input strings
that are like some other string in the projection but
contain markers only in a subset of the positions
marked in the second string. This gives us the set

7I have tried to stick to a convention that a diamond � has
been used as such a marker.
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Table 4: Definitions of the Rule Compiler
Compiler for Optional Rules

def Chg A:A - A | A:0 | 0:A ;
def W Z "<>" Chg Z ;
def Intro [ A | 0:"<>" ]* ;
def Hide(X) Intro .o. X .o. Intro .i ;
def CR(Rule) Z - Hide(W - Rule) ;

Compiler for Obligatory Rules
def Chg A:A - A | A:0 | 0:A ;
def MarkChg(X) X/"<>" & [A | "<>" Chg ]* ;
def FewerT ?* [ 0:"<>" ?* ]+ ;
def TooFew(X) [ MarkChg(CR(X)).1 .o. FewerT .o.

MarkChg(CR(X)).1 ].1 ;
def COERCE(Rule) Hide( [ ?* - TooFew(Rule) ]

.o. MarkChg(CR(Rule)) ) ;

of marked strings that indicate which paths in the
first resulting transducer fail applying the rules as
often as possible. When these paths are removed
from CR(Rule), we obtain a transducer where the
rule’s application is obligatory whenever there is a
choice. For (23b), this transducer is (26).

(26)

0

@ ( ) C M S V [ 

1

] 

@ V 

( ) C M S ] 

2

[ 3

<[:(> 

@ 

( ) C M S ] 
[ 

<[:(> 

5

V 

4

V 

<]:)> 

( ) C M S [ ] @ V 

( ) C M S [ 

6] 

<[:(> ( ) C M S [ 

6 Evaluation

All linear encodings for autosegmental structure
have some limitations. While the strength of the
proposed notation is the easiness to link multi-
ple segments to a single autosegment and multiple
tones to single segment, it is not perfect concern-
ing the treatment of floating tone. In terms of Kor-
nai’s (1995) criteria, it seems to be compositional,
computable, and iconic, but not fully invertible be-
cause there are such bracketed strings that have no
interpretation as a graphical autosegmental repre-
sentation.

The purpose of the current proposal has been to
present just the core ideas of the new representa-
tion, not to make universal claims. For example,
tones do not always realize (Leben, 2006). The
current proposal can be criticized also for other
simplifying assumptions about TBUs and tone as-
signment boundaries.

The original two-level formalism (Kosken-
niemi, 1983) is difficult to use because it is based
on implications and because the rule system may
be overconstrained. The new rule formalism
seems to address both of these problems, making

Table 5: # of states in compiled rules
name Rule CR COERCE
AHS 25 7 11
High Lowering 27 7 12
FLD 21 7 13
Plateauing 21 7 16
Meeussen 13 4 7
Tone Shift 235 96 117

the rule semantics very much like replace rules in
the state-of-the-art finite-state toolkits.

Simultaneous compilation of multiple two-level
rules has been proposed in (Yli-Jyrä and Kosken-
niemi, 2006; Yli-Jyrä, 2008a), but this has not
been put into practice in full scale, except in one
special case (Yli-Jyrä, 2009). The current compi-
lation method compiles, however, all the subrules
of the TONE SHIFT simultaneously.

The compilation method is easy to implement
and easy to use. In addition, the formalism is flexi-
ble because simultaneous, interlinked changes can
be described. The only really complex exception
discovered so far is the TONE SHIFT rule. Except-
ing TONE SHIFT, the sizes of rule transducers (Ta-
ble 5) are quite small.

My resources did not allow me to rewrite a com-
plete tonal description such as (Halme, 2004). I
hope, however, that the presented ideas and (really
open source) formalism are useful for later efforts.

It would be possible to define rule templates to
be used routinely in experimental descriptive ef-
forts. Tentative accounts of various phenomena
could then be iteratively tested and debugged with
finite-state tools, giving valuable feedback to a de-
scriptive linguist, a resource builder or a theoretic
phonologist working on tonal languages. The ex-
perimental verification would finally contribute to-
wards the quality and wide applicability of de-
scriptive grammars. The simultaneously applica-
ble rule templates could also facilitate the devel-
opment of machine learning methods for tonology.
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Abstract

This paper presents a system that gener-
ates Basque equivalents to terms that de-
scribe disorders in SNOMED CT. This
task has been performed using Finite-State
transducers and a medical prefixes and
suffixes lexicon. This lexicon is composed
of English-Basque translation pairs, and it
is used both for the identification of the af-
fixes of the English term and for the trans-
lation of them into Basque. The translated
affixes are composed using morphotactic
rules. We evaluated the system with a
Gold Standard obtaining promising results
(0.93 of precision). This system is part of
a more general system which aim is the
translation of SNOMED CT into Basque.

1 Introduction

SNOMED Clinical Terms (SNOMED CT) (Col-
lege of American Pathologists, 1993) is consid-
ered the most comprehensive, multilingual clini-
cal healthcare terminology in the world. It does
not exist in Basque language, and we think that the
semi-automatic translation of SNOMED CT terms
into Basque will help to fill the gap of this type
of medical terminology in our language. By its
translation we have a double objective: i) to offer a
medical lexicon in Basque to the bio-medical per-
sonnel to try to enforce its use in the bio-sanitary
area, and ii) to access multilingual medical re-
sources as the UMLS (Unified Medical Language
System) (Bodenreider, 2004) in our language.

Basque is a minority language in its standard-
ization process and persists between two power-
ful languages, Spanish and French. Although to-
day Basque holds co-official language status in the
Basque Autonomy Community, during centuries it
was out of educational and sanitary systems, me-
dia, and industry.

We have defined a general algorithm (see sec-
tion 2) based on Natural Language Processing
(NLP) resources that tries to achieve the trans-
lation with an incremental approach. The first
step of the algorithm is based on the mapping of
some lexical resources and has been already devel-
oped. Considering the huge size of SNOMED CT
(296,000 active concepts and around 1,000,000
descriptions in the English version dated 31-01-
2012) the contribution of the specialized dictio-
naries has been limited. In the second step that is
specified in this paper, we have used Finite State
Machines (FSM) in the form of transducers to gen-
erate one-word-terms in Basque taking as a ba-
sis terms from the English release of SNOMED
CT mentioned before. The generation is based
on the translation by means of medical suffixes
(i.e. -dipsia, -megaly) and prefixes (i.e. episio-,
aesthesi-) and in their correct composition, con-
sidering morphotactic rules. (Lovis et al., 1995)
stated that a big group of medical terms can be
created by neologisms, that is, concatenations of
existing morphosemantic units understood by any-
body. This units usually have Greek and Latin ori-
gins and their meaning is known by the specialists.
(Banay, 1948) specified that about three-fourths of
the medical terminology is of Greek origin.

In this work we take advantage of these features
to try to translate terms from the Disorder sub-
hierarchy of SNOMED CT. This corresponds to
one of the 19 top level hierarchies of SNOMED
CT, to the one called Clinical Finding/Disorder.
In our general approach, we prioritized the trans-
lation of the most populated hierarchies: Clinical
Finding/Disorder (139,643 concepts), Procedure
(75,078 concepts) and Body Structure (26,960
concepts). Using lexical resources, we obtained
the equivalents in Basque of the 19.32 % of the
disorders. In this work we will try to obtain the
one-word-terms that are not found in dictionaries.

There are several general-purpose libraries for
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the creation of transducers as XFST (Karttunen
et al., 1997), Nooj1 or AT&T’s FSM (Mohri et
al., 2006). We have used Foma, a free software
tool to specify finite-state automata and transduc-
ers (Hulden, 2009).

In the rest of the paper the translation algorithm
is briefly described in section 2. The use of finite
state machines in order to obtain Basque equiva-
lents is explained in section 3. Finally, some con-
clusions and future work are listed in section 4.

2 Translation of SNOMED CT

The general algorithm (see figure 1) is language-
independent. It could be used to translate any term
if the linguistic resources for the input and output
languages are available.

Figure 1: Schema of the Algorithm.

In the first step of the algorithm (see numbers 1-
2-4 in Figure 1), some specialized dictionaries and
the English, Spanish and Basque versions of the

1http://www.nooj4nlp.net/NooJManual.pdf

International Statistical Classification of Diseases
and Related Health in its 10th version (ICD-10)
are used. For example for the input term “abortus”
all its Basque equivalents “abortu”, “abortatze”
and “hilaurtze” are obtained.

The second phase of the algorithm is described
in this paper in section 3. When a term is not
found in the dictionaries (number 3 in Figure 1)
generation-rules are used to create the translation.

In the case that an output is not obtained in
the previous phases (number 8 in the algorithm),
chunk-level generation rules are used. Our hy-
pothesis is that some chunks of the term will be al-
ready translated. The application should generate
the entire term using the translated components.

In the last step, we want to adapt a rule-
based automatic translation system called Matxin
(Mayor et al., 2011) to the medical domain.

We want to remark that all the processes fin-
ish in the 4th step. That is, we store the gener-
ated translations with the intention of using them
to translate new terms.

3 Finite-State Models and Translation

This section exposes the system that obtains
Basque equivalent terms from English one-word-
terms based on FSMs.

3.1 Translation process
The generation of Basque equivalents is per-
formed in two phases: the identification of the af-
fixes first, and the translation and composition of
the affixes secondly. All the linguistic information
is stored in lexica and 31 rules are written for the
process (1 for identification, 1 for translation and
28 for morphotactics).

Figure 2 shows the Finite State Transducer for
the identification of the affixes. The lexica of the
affixes is loaded (1-6) and then any prefix (the “*”
symbol indicates 0 or more times) followed by one
unique suffix is identified. The letter “o” may be
also identified as it is used to join medical affixes.
The “+” symbol is used for splitting the term.

1 read lexc prefixes.lex
2 define PREFALL
3 define PREF PREFALL.u ;
4 read lexc suffixes.lex
5 define SUFALL
6 define SUFF SUFALL.u ;
7 regex [[[PREF 0:%+] (o 0:%+)]* SUFF] ;

Figure 2: Rules for the affix identification.

The combination of the finite state transducers
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for the translation and for the composition using
morphotactics is shown in Figure 3. First, the lex-
ica for the translation task is loaded (1-4), then
28 rules for the morphotactics are defined (simpli-
fied in the rule numbered 5). The translation rule
(shown in rule number 6) is composed of the word-
start mark (the ˆ symbol), the prefix followed by
the optional linking “o” letter zero or more times,
and a single compulsory suffix; finally the trans-
ducer combines the translation and the morphotac-
tic finite state transducers (7).

1 read lexc prefixes.lex
2 define TRANSPRE
3 read lexc suffixes.lex
4 define TRANSSUF
5 define MORPHO ...
6 define TRANS (%ˆ ) [[[TRANSPRE %+] (o:o %+)]*
TRANSSUF] ;
7 regex TRANS .o. MORPH ;

Figure 3: Rules for the affix translation.

Figure 4 shows the whole process with an ex-
ample. First, we identify the prefixes and suffixes
of the English input term by means of the trans-
ducer that marks those affixes (schiz+encephal+y).
Then, we obtain the corresponding Basque equiv-
alent for each part and we form the term (es-
kiz+entzefal+ia).

Input term: schizencephaly
Identified affixes: schiz+encephal+y
Translated affixes: eskiz+entzefal+ia
Output. Basque term: eskizentzefalia

Figure 4: Basque term generation.

As we said before, in order to obtain a well
formed Basque term, we apply different morpho-
tactic rules. For example, in Basque, words start-
ing with the “r” letter are not allowed, and an “e”
is needed at the beginning. Figure 5 shows an ex-
ample where the translated prefix “radio” needs
of the mentioned rule, obtaining “erradio”.

Input term: radionecrosis
Identified affixes: radio+necr+osis
Translated affixes: radio+nekr+osi
Basque term: erradionekrosi

Figure 5: Morphotactic rule application.

3.2 Resources
In order to identify the English medical suffixes
and prefixes we have joined two lists: the “Med-

ical Prefixes, Suffixes, and Combining Forms”
from Stedman’s Medical Dictionary (Stedman’s,
2005) and the “List of medical roots, suffixes and
prefixes” from Wikipedia (Wikipedia, 2013). We
obtained a list of 826 prefixes and 143 suffixes.

For the translation task, we have manually
checked the Basque equivalents of the previ-
ously mentioned medical suffixes and prefixes list
in specialized dictionaries such as Zientzia eta
Teknologiaren Hiztegi Entziklopedikoa (Dictio-
nary of Science and Technology) (Elhuyar, 2009),
Euskalterm (UZEI, 2004) and Erizaintzako Hizte-
gia (Nursing Dictionary) (EHUko Euskara Zerb-
itzua and Donostiako Erizaintza Eskola, 2005).

By means of checking the behavior of the pre-
fixes and suffixes in the English and Basque terms
we have manually deduced the appropriate Basque
equivalent. Table 1 shows an example of obtaining
the equivalent of the “encephal” prefix, deducing
that “entzefal” is the most appropriate equivalent.

English terms Basque terms
echoencephalogram ekoentzefalograma
encephalitis entzefalitis
encephalomyelitis entzefalomielitis
leukoencephalitis leukoentzefalitis
... ...

Table 1: The translation of the “encephal” prefix.

From all the prefixes and suffixes listed, we are
able to deduce 812 prefixes and 139 suffixes for
Basque. Those are currently being supervised by
an expert to give them the highest confidence pos-
sible. This technique allows the inferring of new
medical terms not appearing in dictionaries.

3.3 Results

We selected the one-word-terms of the Disor-
der sub-hierarchy of SNOMED CT. This sub-
hierarchy with terms representing disorders or dis-
eases is formed by 107,448 descriptions, being
3,979 one-word-terms. Even this last quantity is
low considering the whole sub-hierarchy, we must
take into account that the influence of those one-
word-terms is very high, appearing around 79,000
times among all the descriptions.

The total one-word-term set has been split into
two sets, one for defining and developing the sys-
tem and another one for evaluating it. The evalua-
tion set is composed of the 885 one-word-terms
that have been previously translated in the first
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step of the algorithm (see section 2). That is
we have the correct English-Basque pairs as Gold
Standard. For the development set we have se-
lected the remaining 3,094 one-word-terms.

As mentioned before, in this paper we show the
results obtained from the translation of the medi-
cal prefixes and suffixes forming the terms. That
is, we have only translated the terms that have
been completely identified with the medical pre-
fixes and suffixes. For example, terms with the
suffix “thorax” have not been translated as it does
not appear in the prefixes and suffixes list. That is,
the “hydropneumothorax” term has not been trans-
lated even though the “hydro” and “pneumo” pre-
fixes have been identified.

In Table 2 we show the quantities and percent-
ages of the terms that have been completely iden-
tified in both sets. Our set of the one-word-terms
has not been cleaned up to remove the words with-
out any medical affix. Thus, the percentages from
the table will never reach 100 per cent.

Total Identified Percent
Development 3,094 834 26.96%
Evaluation 885 309 34.92%

Table 2: Quantities of completely identified terms.

From the 885 terms in the evaluation set, 728
terms contain at least one medical prefix or suffix,
being 309 completely identified. The results ob-
tained in this fist approach are shown in Table 3
by means of True Positives (TP), False Negatives
(FN), False Positives (FP), Precision (Prec.), Re-
call (Rec.) and F-measure (F-M). A recall of 0.41
is obtained (287 correctly identified from 706 TP
and FN) and a precision of 0.93 (287 out of 309).
The recall will be increased in the future, includ-
ing not completely identified terms in the system.
Thus, we can conclude that the results obtained are
very good concerning precision.

Total TP FN FP Prec. Rec. F-M
728 287 419 22 0.93 0.41 0.56

Table 3: Precision and recall of the evaluating set.

Moreover, the quality of the results obtained is
also very good. We have been able to give cor-
rect equivalents to complex terms such as “hyper-
prolactinemia”, that has five medical prefixes and
suffixes (“hyper+pro+lact+in+emia”).

We have also analyzed the incorrect results in
order to be able to improve the system. For exam-
ple, the prefix “myc” has been translated as “miz”,
but we realized that whenever the prefix is fol-
lowed by an “o”, it should be “mik” in order to
generate a correct Basque term. Many of the mis-
takes are easily rectifiable for the final purpose of
translating SNOMED CT.

4 Conclusions and future work

We implemented an application that generates
Basque terms for diseases in English, by means
of finite-state transducers. This application is one
of the phases in the way to translate SNOMED CT
into Basque. In order to translate the medical pre-
fixes and suffixes, we have manually generated the
translation pairs for 951 prefixes and suffixes, ob-
taining a very useful resource for Basque.

The FSTs exposed in this paper could be eas-
ily applicably to other languages whether an affix
lexicon with its translation is defined and the mor-
photactic rules adapted to the target language.

As we have seen in section 3.3, most of the En-
glish terms have not been identified completely
and that prevented the translation of them. To cope
with this problem we have two developing paths:
the deduction of new suffixes and prefixes from
specialized dictionaries (Hulden et al., 2011); and
the implementation of transliteration transforma-
tions to those parts (Alegria et al., 2006).

We have only applied the transducers to the Dis-
order sub-hierarchy, and we will have to check
the results we can obtain applying it to the Find-
ing sub-hierarchy and to the Procedure and Body
Structure hierarchies. We found terms such as
“electroencephalography” or “oligomenorrhea” in
those hierarchies, formed with medical prefixes
and suffixes identified for this task.

The promising results obtained will contribute
to the translation of the whole SNOMED CT, but
also to the normalization of Basque in the bio-
sanitary domain, as new terms are generated.
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Abstract 

Syncretism is the area of the morphology-
syntax interface where morphology fails the 
syntax. Inadequate treatment in the design of a 
morphological analyzer can lead to unbalanced 
performance of the analyzer either at genera-
tion, or at analysis. Furthermore, adequate and 
consistent treatment of syncretism is needed if 
the analyzer is to be used for language model-
ing, especially modeling of the syncretism. In 
this paper I will show that it is possible to cre-
ate a morphological analyzer that can be tai-
lored to various intended uses with minimal 
effort. 

1 Introduction 

Syncretism may seem to be a minor morphologi-
cal phenomenon, but this is the place in the mor-
phology-syntax interface where morphology fails 
syntax. Inadequate treatment in the design stage 
of a morphological analyzer can lead to undesir-
able ambiguities in generation or analysis. 

A morphological analyzer can have different 
applications. It can be used in a pipeline with a 
POS tagger, a shallow or deep-syntactic parser, a 
semantic parser, for generation or language mod-
eling, among other things. 

Depending on the intended use, one might 
wish to avoid the ambiguity in analysis caused 
by multiple possible readings of syncretic forms 
if they are morphosyntactically fully specified. 
On the other hand, underspecification at the lexi-
cal level will lead to multiple output strings at 
generation.  

In this paper I will show that it is possible to 
create a morphological analyzer that can be tai-
lored with minimal effort to various intended 
uses. 

In section 2 I will briefly discuss syncretism, 
what types of syncretism exist, and how one can 
model syncretism using or not using rules of re-
ferral. The prototypical finite-state morphologi-
cal analyzer for German that I am currently 

working on will be described in section 3, while 
in section 4 I will present the paradigms of adjec-
tival agreement in standard German that are 
heavily affected by syncretism. In section 5 I will 
explain on the basis of the German example and 
examples from other languages how with mini-
mal changes one can tune the prototypical mor-
phological analyzer to perform the different tasks 
outlined earlier in this section. 

In section 6 I will draw some conclusions, and 
in the Appendix I will show a code excerpt. 

2 Syncretism  

Syncretism is the identity of two or more in-
flected forms of the same lexeme. The identity of 
two forms that belong to different lexemes 
should be treated as accidental homonymy. Thus 
the form books is not syncretic since book-N.PL 
and book-V.PRES.3SG belong to different lex-
emes. However, the form book is syncretic 
within the paradigm of the verb book since it is 
associated with a set of morphosyntactically dis-
tinct feature values, e.g., book-V.PRES.1SG, 
book-V.PRES.2SG. book-V.PRES.1PL. book-
V.PRES.2PL, etc. 

One of the characteristics of syncretism is di-
rectionality. “Directionality concerns the possi-
ble morphological affiliation of the syncretic 
form to one of its component values” (Baerman, 
Brown and Corbett 2005, p. 24).  

Since syncretism involves a set of morphosyn-
tactic values that are associated with a single 
form, the question is how exactly they are asso-
ciated. There are two options (cf. Baerman, 
Brown and Corbett 2005, p. 133): a) the form is 
related to the set as a whole or b) the form is re-
lated to one of the values and the other morpho-
syntactic values “borrow” the form. Stump 
(2001) calls the former symmetric rules and the 
latter directional rules.  Symmetric rules simply 
map a form/string to a set of values in one step, 
whereas directional rules entail more than one 
step. In the first step there is a mapping of a 
form/string to a particular value of the set, and in 
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the consecutive step(s) this value is associated 
with the rest of the set. We call such directional 
rules rules of referral (cf. Zwicky 1985). 

Lack of directionality is often caused by unin-
flectedness, loss of inflection, or the merger of 
the reflexes of two or more phonemes. Examples 
of directional and non-directional syncretism are 
presented in section 5. 

Syncretism can be caused phonologically, i.e., 
it can be the result solely of a phonological rule, 
lexically, i.e., within a single lexical item, or 
morphologically, i.e., spanning over at least one 
inflectional class. 

3 The Prototypical Morphological Ana-
lyzer for German 

The prototypical morphological analyzer for 
German consists of a lexc lexicon that describes 
the morphotactics of the language, and of phono-
logical and orthographical alternations and reali-
zational rules, and possibly also rules of referral, 
that are handled elsewhere by finite-state replace 
rules.  

The bases for the regular inflectional classes 
are stored separately in text files. Bases of words 
that are subject to morphographemic alternations 
(e.g. Umlaut) have abstract representations at the 
surface level and lemmata on the lexical level. 
There are no semantic features in the current ver-
sion of the lexicon.  

The tagset that is used in this version of the 
analyzer is compatible with the MULTEXT-East 
morphosyntactic specifications (cf. MULTEXT-
East morphosyntactic specifications, Version 4, 
2010). It was chosen in preference to the Stutt-
gart-Tübingen tagset (STTS) (Telljohann et al., 
2009) because it implements atomic values and 
is compatible with the tagsets for other (Euro-
pean) languages. 

Here is an excerpt from a text file that contains 
qualitative-adjective bases with Umlaut:  

{alt}:{1lt}  
 
On the left is the lemma (alt ‘old’) that will 

appear in the analysis output and on the right is 
the abstract form that contains the abstract sym-
bol 1 for a lowercase a which is subject to Um-
laut alternations under certain conditions. 

And here is an excerpt from the lexc lexicon: 

LEXICON Adjectives 
LxAQUAL          Adj ; 
LxAQUAL          AdjCmpSpl ; 
 

LEXICON Adj 
<"+A" 0:"+Uninfl"> # ; 
<"+A" 0:"+Pos">  AStrong; 
<"+A" 0:"+Pos">  AWeakMixed; 
 
LEXICON AdjCmpSpl 
<"+A" 0:"+Cmp" 0:"+Uninfl"> #; 
<"+A" 0:"+Cmp">  AStrong; 
<"+A" 0:"+Spl">  AStrong; 
<"+A" 0:"+Cmp">  AWeakMixed; 
<"+A" 0:"+Spl">  AWeakMixed; 
 
LEXICON AStrong 
…  

This excerpt partially illustrates the morpho-
tactics of the adjectives. The rest - inflection for 
gender/number/case - will not be presented be-
cause of space limitations. The excerpt shows 
that at the surface level the forms are morpho-
syntactically fully specified, while at the lexical 
level the morphological tags are suppressed and 
only the POS information is available. 

The analyzer has parallel implementations in 
xfst (cf. Beesley and Karttunen 2003) and foma 
(cf. Hulden 2009a and 2009b).  

An example derivation and a detailed excerpt 
from the analyzer are provided in the Appendix.  

4 The Paradigms of Adjective Agree-
ment in Standard German  

German adjectives are inflected for 3 genders 
(masculine, feminine, and neuter), 2 numbers 
(singular and plural) and 4 cases (nominative, 
accusative, dative, and genitive). There are no 
gender differences in the plural. 

There are three adjective agreement paradigms 
in Standard German: a) the strong declension 
(SD); b) the weak declension (WD); c) the mixed 
declension (MD). Additionally, there is a single 
uninflected1 form that is used predicatively and 
is chosen as the lemma.  

Below are the positive strong inflected forms 
of schnell ‘fast’: 

 
 Masc Neut Femn Plur 
Nom schneller schnelles schnelle schnelle 
Acc schnellen schnelles schnelle schnelle 
Dat schnellem schnellem schneller schnellen 
Gen schnellen schnellen schneller schneller 

 

                                                 
1 This form is uninflected for gender/number/case but 
can be inflected for degree of comparison if the adjec-
tive is qualitative. 
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Five inflected forms (schneller, schnelles, 
schnelle, schnellen, schnellem,) are associated 
with 5 syncretic sets of fully specified morpho-
syntactic feature values of the positive degree of 
a German adjective. These sets are disjunctive 
and their union represents the 48 possible feature 
values of the positive degree of an adjective in 
German. The same applies to the comparative 
and superlative degree. To make things even 
more complicated, the uninflected comparative 
form (e.g., schneller) is identical with some of 
the inflected forms for the positive degree.  

5 Fine-Tuning of the Prototypical Ana-
lyzer for Different Uses  

Now let us consider what can be done so that the 
analyzer performs optimally in all the cases of 
intended uses that were listed in section 1. 

5.1 Intended Use in a Pipeline with a POS 
Tagger 

The code excerpt from the lexicon in section 3 
illustrates how the use of underspecification at 
the lexical level can reduce ambiguities in the 
analysis when only lemmata and POS tags are 
needed by the next application in the pipeline. 
Thus the output for schneller will be:  

schnell +A  
   
and not: 

schnell +A+Cmp+Uninfl 
schnell +A+Pos+SD+Masc+Sg+Nom 
schnell +A+Pos+SD+Femn+Sg+Dat 
schnell +A+Pos+SD+Femn+Sg+Gen 
schnell +A+Pos+SD+Pl 
schnell +A+Pos+MD+Masc+Sg+Nom 

5.2 Intended Use in a Pipeline with a Deep-
Syntactic or Semantic Parser, or for 
Generation 

On the other hand, deep-syntactic and semantic 
parsers will benefit from the ambiguous output 
listed in the previous subsection. To achieve this 
we need to modify the lexical level accordingly: 

LEXICON Adj 
<"+A" "+Uninfl"> # ; 
<"+A" "+Pos">  AStrong; 
<"+A" "+Pos">  AWeakMixed; 
 
LEXICON AdjCmpSpl 
<"+A" "+Cmp" "+Uninfl"> #; 
<"+A" "+Cmp">  AStrong; 

<"+A" "+Spl">  AStrong; 
<"+A" "+Cmp">  AWeakMixed; 
<"+A" "+Spl">  AWeakMixed; 
 
LEXICON AStrong 
…  

Now the lexicon and the surface level are 
identical. The rest – inflection for gen-
der/number/case – is modified in the same way 
but will not be presented due to space limitations. 

This version of the lexicon can also be used 
for generation. 

5.3 Intended Use: Modeling of Syncretism. 

In this case it is not essential if the lexical level is 
underspecified or fully specified. It is important 
for the surface level to be fully specified. 

The modeling of syncretism is performed in 
the xfst/foma file that contains the phonological 
and orthographical alternations and realizational 
rules, and possibly also rules of referral. 

As we have seen in section 2, there are differ-
ent types of syncretism, e.g., phonologically, lex-
ically or morphologically determined syncretism, 
and different rules, e.g., symmetric or directional. 

An example of phonologically determined 
syncretism is the collapse of the full forms of the 
personal pronouns for accusative and dative in 
the 2nd person singular in Bulgarian. The reason 
for this is the merger of the reflexes of the jat-
sound (the ending for dative) and the e-sound 
(the ending for accusative). Thus tebĕ ‘you-
2SG.DAT’ and tebe ‘you-2SG.ACC‘ collapsed 
into tebe. In this case a realizational rule is more 
appropriate than the use of a rule of referral: 

+Acc|+Dat -> e || 
        +PronP +2P +Sg _ ; 

On the other hand, the syncretism involving 
the forms for genitive, dative, and locative singu-
lar of 3rd-declension-class (D3) Russian nouns, 
e.g., kosti from kost’ ‘bone’ (cf. Baerman, Brown 
and Corbett 2005, p. 208) is better modeled using 
a cascade of rules of referral, followed by a reali-
zational rule, since this is a directional syncre-
tism. The syncretism of dative and locative sin-
gular is well established throughout the Russian 
nominal declension, with locative providing the 
form. In this case, however, genitive provides the 
form for all three feature values: 

+Dat -> +Loc || 
        +N +D2|+D3 +Sg _ ; 
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+Loc -> +Gen || 
        +N +D3 +Sg _ ; 

+Gen -> i || 
        +N +D3 +Sg _ ; 

 
For more examples of directional rules of re-

ferral, cf. Kilbury (2011) among others. 

6 Conclusions 

In this paper I have shown that it is possible to 
create a morphological analyzer that can be tai-
lored to various intended uses with minimal ef-
fort. The most important properties of such an 
analyzer are: a) the surface level in the lexicon 
consists of tags that represent the (language spe-
cific) values of fully specified morphosyntactic 
features; b) the realizations are described outside 
the lexicon. 

The fine-tuning is achieved by modifying the 
lexical level to the desired degree of (un-
der)specificity and by restructuring the realiza-
tional rules, and possibly by adding rules of re-
ferral. 
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Appendix. Derivations of fettarm ‘low-fat’. 
 
Below are the upper and the lower side of the 
adjective fettarm that has been through several 
continuation lexicons of the lexc-lexicon. The 
desired analysis output is on the upper side, 
while the morphotactics is on the lower side. The 
realizational rules operate only on the lower side.  

 
Upper: fett#arm 0 +A 0 0 0 0 0 
Lower: fett1rm +Uml +A +Pos +SD +Msc +Sg +Nom 
 
Rule (1) below defines the realization of 1 as ä: 
(1) define UML  [1 -> ä || _ $["+Uml" "+A" ["+Cmp"|"+Spl"] ] ; 

Since the conditions are not met, the lower-
side string remains unchanged. The next rule (2) 
defines the realization of the adjectival suffix -er: 
(2) define AEr   [ [ [ "+SD" | "+MD" ] "+Masc" "+Sg" "+Nom" |  
                             "+SD" "+Femn" "+Sg" [ "+Dat" | "+Gen" ] |  
              "+SD" ["+Masc" | "+Femn" | "+Neut"] "+Pl" "+Gen" ]  

-> %+ e r || _ .#.]  ; 
The string is now: fett1rm+Uml+A+Pos+er. Rule 

(3) defines the realization of the comparative –er 
suffix: 
(3) define ACmp    [ "+Cmp" -> %+ e r || _ [%+|"+Uninfl"] ] ; 

Since the conditions are not met, the surface 
string remains unchanged. The next rule (4) de-
fines the realization of 1 as a: 
(4) define UMLT       [1 -> a, 2 -> o, 3 -> u, 4 -> A] ; 

The lower-side string is: fettarm+Uml+A+Pos+er. 
The last rule (5) deletes the + and the remaining 
tags that were not used in the realization: 
(5) define TagDel      [RestTag -> 0 ] ; 

The lower-side string is now: fettarmer. 
A lower-side string fett1rm+Uml+A+Cmp+Uninfl 

will render fettärm+Uml+A+Cmp+Uninfl after the ap-
plication of rule (1), fettärm+Uml+A+er+Uninfl after 
rule (3), and fettärmer after rule (5). 
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Abstract 

This work presents the finite state approach to 
the Kazakh nominal paradigm. The 
development and implementation of a finite-
state transducer for the nominal paradigm of 
the Kazakh language belonging to 
agglutinative languages were undertaken. The 
morphophonemic constraints that are imposed 
by the Kazakh language synharmonism 
(vowels and consonants harmony) on the 
combinations of letters under affix joining as 
well as morphotactics are considered. 
Developed Kazakh finite state transducer 
realizes some morphological 
analysis/generation functions. A preliminary 
testing on the use of the morphological 
analyzer after OCR preprocessing for 
correcting errors in the Kazakh texts was 
made.  

1 Introduction 

Morphological transformations of words of a 
natural language are relevant to many 
application areas relating to information 
processing. Finite state methodology is 
sufficiently mature and well-developed for use 
in a number of areas of natural language 
processing (NLP).  This paper presents the 
development and implementation of a finite-
state transducer for a nominal paradigm of the 
Kazakh language. The morphophonemic 
constraints that are imposed by the Kazakh 
language synharmonism (vowels and consonants 
harmony) on the combinations of letters under 
affix joining as well as morphotactics are 
considered. Then on the basis of the nominal 
paradigm formalization it is possible to build a 
computer implementation of morphological 
analysis/synthesis of word forms (morphological 
module) with using of two-level morphology 
(Koskenniemi, 1983) and finite state 

morphology (Beesley and Karttunen, 2003). Our 
morphological module, in turn, is the part of 
larger Web 2.0 service-oriented system of the 
Kazakh text recognition involving the Kazakh 
OCR-module (Kairakbay et al, 2012).  
The finite state and two-level morphology 
approach has been used successfully in a broad 
number of NLP applications including 
agglutinative languages. Among them one can 
be noted the Basque language (Alegria et al, 
1996, 2002) belonging to ergative-absolutive 
languages with agglutinative features, 
nonconcatenative Arabic language (Beesley, 
2001; Attia et al, 2011), pure agglutinative 
languages as Turkish (Oflazer, 1994, 1996; 
Eryiğit and Adalı, 2004; Çöltekin, 2010), 
Turkmen language (Tantuğ et al, 2006), 
Crimean Tatar language (Altintas and Cicekli, 
2001), Uygur language (Orhun et al, 2009; 
Wumaier et al, 2009), Kyrgyz language 
(Washington et al, 2012), Kazakh language 
(Altenbek and Wang, 2010), and many others.  
Last cited paper studies the Kazakh as minority 
language in Xinjiang of China where obsolete 
alphabet based on Arabic notations is used, so 
that is just indirectly related to our research. 
The Kazakh language (Baskakov et al, 1966; 
Krippes, 1996; Mussayev, 2008) belongs to 
Ural-Altaic family of agglutinating languages 
(Baskakov, 1981). In such languages the concept 
of the word is much broader than simply a set of 
items of vocabulary. As an illustration for the 
inflectional paradigm of the Kazakh language 
let’s give the following example a Kazakh word 
(Mussayev, 2008): “ata +lar +ymyz +da +ġy 
+lar+dìkì+n”1 that is equivalent to English 
sentence “that there is at the items belonging to 
our fathers”.  

                                                           
1 Further we follow the notations of ISO 9 (1995) for the 
transliteration of modern Kazakh letters. 
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Historically a variety of alphabets had been used 
for the Kazakh language. Arabic alphabet was 
used from the tenth century until 1929. This 
alphabet is still prevalent in Xinjiang, China and 
in some Kazakh Diaspora abroad. From 1929 to 
1940 there was the Latin alphabet which was 
replaced then on the Cyrillic alphabet. Modern 
Kazakh alphabet based on Cyrillic contains 33 
standard Cyrillic characters of Russian and 9 
additional characters that reflect specific sounds 
of the Kazakh language. 

2 The Kazakh Nominal Paradigm 

Morphophonemics of the Kazakh language can 
be expressed by the following set of rules. 
Vowels harmony 
Consonance of syllables 
− Vowel is a syllable-forming element; 
− The number of syllables in a word is equal to 

the number of vowels in the word; 
− Vowel determines a type of word: original 

Kazakh words are either only the back or 
front only; 

− If the preceding syllable contains a back 
(front) vowel the appended affixes should be 
back (front); 

− Exceptions apply to the borrowed words 
only. 

Consonance of sounds 
− Consonants ġ, ķ, h, ḥ are combined only with 

back vowels a, o, u̇, y; 
− Consonants g, k are combined only with front 

vowels a̋, ô, ù, ì, e. 
Consonants harmony 
Progressive assimilation: a subsequent 
consonant has become like the preceding 
consonant on the syllable boundary; 
Regressive assimilation: the subsequent sound 
affects to the preceding one. 
The order of attachment of inflectional affixes 
(morphotactics) to the Kazakh stem is as 
follows: 
Stem + plural affix + possessive personal affix + 

possessive abstract affix + case affix 
The choice of concrete surface form of affix 
formal representation is determined by the 
phonological rules, i.e. by the vowels and 
consonants harmony. Then: 
− Plural affix is appended directly to the stem. 

Singular is determined by the absence of 
plural affix; 

− Possession affix is placed after plural affix (if 
any);  

− Plural and possessive affixes can be swapped 
for collective nouns;  

− Case affixes that are located after the plural 
and possessive affixes are the same for all 
categories of nouns; 

− Possession affix -Dìkì/(n)ìkì can append 
additionally after other possession affixes 
under predicative substantivation. 

Total number of formulated rules for the Kazakh 
nominal paradigm morphophonemics and 
morphotactics by now is 46 (ongoing and not 
final status). According these rules we can 
generate in the nominal paradigm from one noun 
root 112 word forms. Full details concerning the 
Kazakh nominal paradigm can be found in 
(Kairakbay, 2013). 

3 Finite State Transducer for the 
Kazakh Nominal Paradigm 

Creating a morphological analyzer/generator is 
based on the nominal paradigm of the Kazakh 
language as applied to the noun. For the 
formation the finite state transducer we used 
XFST (Xerox Finite State Tools) (Beesley and 
Karttunen, 2003).  
Properly a process of building up morphological 
analyzer consists of the following steps: 
− Noun morphotactics description; 
− Morphophonemics rules description; 
− Finite state automata (transducer) network 

formation. 
Let’s consider these steps more in details.  

3.1 Noun morphotactics description 

Morphotactics description is carried out using a 
special language lexc.  lexc is high-level and 
declarative programming language. The finite 
state automata formation is done by a special 
compiler lexc (Lexicon Compiler). Affix 
morphemes are designated with so-called 
Multichar Symbols. These symbols need to be 
described at the beginning of the file after 
Multichar_Symbols declaration. The following 
is an example of declaring Multichar Symbols: 

Multichar_Symbols 
+N  ! Noun 
+Pl  ! Plural 
+Sngl  ! Singular 
+Poss12Sngl ! Possession 1-2:Singular 
+Poss12Pl ! Possession 1-2:Plural 

After Multichar Symbols declaration lexc 
program body is described. The body consists of 
LEXICONs. LEXICON is one of morpheme 
composing a word. At the beginning LEXICON 
Root must be declared. It corresponds to the 
Start State of the resulting Network. There can 
be declared roots of words if file is formed for 
one part of speech or we can declare part of 
speech if network is building up for the whole 
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language. After LEXICON Root all remaining 
morphemes are described according the 
morphotactics rules. Next is an example of lexc 
file body for the Kazakh nouns: a̋ke – father 
(English), tôlem – payment (English). 
LEXICON Root 
 Noun; 
LEXICON Noun 
 a̋ke  NounTag; 
 tôlem  NounTag; 
 LEXICON NounTag 
%+N:0    SingularPlural; 
LEXICON SingularPlural 
%+Pl:lAr/DAr   #; 
%+Sngl:0   #; 
This is the example of description of noun 
partial morphotactics. In LEXICON Root a part 
of speech is declared – noun as Noun. Then 
LEXICON Root which contains word roots (a̋ke, 
tôlem, etc.) is necessary to describe, and to point 
out transition to the next morpheme NounTag. 
LEXICON NounTag does not contain any 
morpheme if we point out null in expression 
%+N:0 but it adds Multichar Symbol +N which 
allows us to identify the word as noun at 
morphological analysis. % sign shields the + 
sign to use it only as a symbol, not lexc-operator 
because else the compilator will generate an 
error in given case. Further next morpheme 
SingularPlural is pointed out in LEXICON 
NounTag. In LEXICON SingularPlural we add 
plural morpheme lAr/DAr (formalized 
denotation lAr/DAr after morphophonemic rules 
is transformed to one of final endings: lar/ler, 
dar/der, tar/ter) and respective Multichar 
Symbol: +Pl. Symbol # indicates end of the 
word. Recall that this example is only a small 
part of the whole and does not describe a noun 
morphotactics for the Kazakh language. As a 
whole the description of all noun morphotactics 
is carried in a like manner. 

3.2 Morphophonemics rules description  

Morphophonemic rules are described in XFST 
by regular expressions and replace rules. Let’s 
present a general scheme of replacement rule: 
upper -> lower || left _ right, where upper, 
lower, left, and right are regular expressions 
designating regular languages. 
Example for Kazakh: a -> e || [g | k | ņ] _ [g | k | 
ņ] which can be read in natural language as 
“character ‘a’ replaces onto character ‘e’ if one 
of the letters [g | k | ņ] is located before it, and of 
the letters [g | k | ņ] is located after it”. Here is 
an example of morphophonemics rules writing 
for the plural affix. 

define plural1f  [ {lAr/DAr} -> {der} || FrontStem 

[LMNN | JZ] _ ]; 
define plural1b [ {lAr/DAr} -> {dar} || BackStem  
[LMNN | JZ] _ ]; 
where plural1f, plural1b, plural2f, plural2b, 
plural3f, plural3b are declared names of replace 
rules (name can be any suitable word consisting 
of Latin letters and numbers); FrontStem, 
BackStem, LMNN, JZ are the regular 
expressions. 
define Consonants [ b | v | g | ġ | d | ž | z | j | k | ķ | l | 
m | n | ņ | p | r | s | t | f | h | ḥ | c | č | š | ŝ | " | ‘ ]; # 
Expression of consonants 
define BackVowels [ a | o | u̇ | y | ë | û | â | u | i ]; # 
Definition of back vowels 
define FrontVowels [a̋ | ô | ù | ì | e | u | i ]; # 
Definition of front vowels 
define BackStem [ Consonants* BackVowels+ 
Consonants* ]; # Definition of back syllable 
define FrontStem [ Consonants* FrontVowels+ 
Consonants* ]; # Definition of front syllable 
define JZ [ ž | z ]; # Definition of letters ž or z 
define LMNN [ l | m | n | ņ ]; # Definition of letters l, 
m, n, and ņ 
Let’s analyze one of the rule: [ {lAr/DAr} -> 
{der} || FrontStem [LMNN | JZ] _ ]; 
This rule can be interpreted as “Replace 
{lAr/DAr} onto {der} if preceding front syllable 
is ending on one of characters [l m n ņ ž z]”. In a 
like manner we describe all morphophonemic 
rules including all exceptions. 

3.3 Finite state automata (transducer) 
network formation 

Once we have described morphotactics and the 
necessary rules of morphophonemics we need to 
compose them into a finite transducer network 
for the final analysis and generation of word 
forms. The joining up takes place by using the 
XFST instruments. After coupling of networks 
into transducer the following set of word forms 
is obtained:  
Upper side: 
a̋ke+N+Pl 
a̋ke+N+Sngl 
tôlem+N+Sngl 
tôlem+N+Pl 
Lower side: 
a̋keler 
a̋ke 
tôlem 
tôlemder 
Simplified finite state representation of the 
Kazakh nominal paradigm is shown in fig.1. 

4 Error correction 

For very preliminary testing we chose 5 pages of 
text containing 1630 words of economic and 
business lexis. This text beforehand was 
processed by our OCR-module for the Kazakh 
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language text recognition. Then we used the 
generated from Bektayev (1996) dictionary word 

forms by morphological module for the

 
Figure 1. Simplified Finite State Representation of the Kazakh Nominal Paradigm 

comparing with the words from OCR-processed 
text with the aim of search matching (edit 
distance equals 1). Results are given in the table 
1. 
As seen using of constructed nominal paradigm 
allows to improve correction ratio of OCR-
module in 1,67 times on average. Introduced 
errors (in last column of table) are connected 
with incompleteness of the Kazakh language 
paradigms formulation for another (than a noun) 
parts of speech. If we take into account only the 
number of corrected words which were caused 
exactly by formulated nominal paradigm then 
we get average 78%-level of correction. Further 
improvement can be achieved by the 
completeness of formulation of the Kazakh 
language paradigms, addition of specific 
professional lexicons, editing and cleaning up of 
dictionary base, and using error-tolerant 
algorithms of error correction (Oflazer, 1996). 

5 Conclusion 

We’ve presented in the paper the finite state 
approach to the Kazakh nominal paradigm. The 
main objective is to describe the formalized 
Kazakh nominal paradigm and to construct its 
finite state representation with the formation of 
correspondent finite state transducer that realizes 
morphological analysis/synthesis functions. We 
had a very preliminary testing on the use of 
morphological analyzer after OCR-processing 
module for correcting errors in the sample 
Kazakh text. Further the quality would be 
improved via the completeness of formulation of 
the Kazakh language paradigms, addition of 
specific professional lexicons, addition, editing 
and cleaning up of dictionary’s database, and 
using error-tolerant algorithm of error 
correction.  

File name The number 
of words 

The number of incorrect 
words after OCR-

processing (% from the 
number of words) 

The number of corrected words 
(% from number of errors) 

The number of 
introduced errors (% 
from  the number of 

words) 
scan1.tif 315 31(10%) 29(94%) 23(7%) 
scan2.tif 295 14(5%) 11(79%) 19(6%) 
scan3.tif 293 21(7%) 17(81%) 17(6%) 
scan4.tif 352 41(12%) 32(78%) 21(6%) 
scan5.tif 375 50(13%) 33(66%) 18(5%) 
In total 1630 157(10%) 122(78%) 98(6%) 

Table 1. Preliminary Testing of Error Correction in Selected Text (Economic and Business Lexis)  
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