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Abstract

We present an experiment aimed at improv-
ing interpretation robustness of a tutorial dia-
logue system that relies on detailed semantic
interpretation and dynamic natural language
feedback generation. We show that we can
improve overall interpretation quality by com-
bining the output of a semantic interpreter
with that of a statistical classifier trained on
the subset of student utterances where seman-
tic interpretation fails. This improves on a pre-
vious result which used a similar approach but
trained the classifier on a substantially larger
data set containing all student utterances. Fi-
nally, we discuss how the labels from the sta-
tistical classifier can be integrated effectively
with the dialogue system’s existing error re-
covery policies.

1 Introduction

Giving students formative feedback as they inter-
act with educational applications, such as simu-
lated training environments, problem-solving tutors,
serious games, and exploratory learning environ-
ments, is known to be important for effective learn-
ing (Shute, 2008). Suitable feedback can include
context-appropriate confirmations, hints, and sug-
gestions to help students refine their answers and
increase their understanding of the subject. Pro-
viding this type of feedback automatically, in nat-
ural language, is the goal of tutorial dialogue sys-
tems (Aleven et al., 2002; Dzikovska et al., 2010b;
Graesser et al., 1999; Jordan et al., 2006; Litman and
Silliman, 2004; Khuwaja et al., 1994; Pon-Barry et
al., 2004; VanLehn et al., 2007).

Much work in NLP for educational applications
has focused on automated answer grading (Leacock

and Chodorow, 2003; Pulman and Sukkarieh, 2005;
Mohler et al., 2011). Automated answer assess-
ment systems are commonly trained on large text
corpora. They compare the text of a student answer
with the text of one or more reference answers sup-
plied by human instructors and calculate a score re-
flecting the quality of the match. Automated grad-
ing methods are integrated into intelligent tutoring
systems (ITS) by having system developers antic-
ipate both correct and incorrect responses to each
question, with the system choosing the best match
(Graesser et al., 1999; Jordan et al., 2006; Litman
and Silliman, 2004; VanLehn et al., 2007). Such
systems have wide domain coverage and are robust
to ill-formed input. However, as matching relies on
shallow features and does not provide semantic rep-
resentations of student answers, this approach is less
suitable for dynamically generating adaptive natural
language feedback (Dzikovska et al., 2013).

Real-time simulations and serious games are
commonly used in STEM learning environments
to increase student engagement and support ex-
ploratory learning (Rutten et al., 2012; Mayo, 2007).
Natural language dialogue can help improve learn-
ing in such systems by asking students to explain
their reasoning, either directly during interaction, or
during post-problem reflection (Aleven et al., 2002;
Pon-Barry et al., 2004; Dzikovska et al., 2010b).
Interpretation of student answers in such systems
needs to be grounded in the current state of a dynam-
ically changing environment, and feedback may also
be generated dynamically to reflect the changing
system state. This is typically achieved by employ-
ing hand-crafted parsers and semantic interpreters to
produce structured semantic representations of stu-
dent input, which are then used to instantiate ab-
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stract tutorial strategies with the help of a natural
language generation system (Freedman, 2000; Clark
et al., 2005; Dzikovska et al., 2010b).

Rule-based semantic interpreters are known to
suffer from robustness and coverage problems, fail-
ing to interpret out-of-grammar student utterances.
In the event of an interpretation failure, most sys-
tems have little information on which to base a feed-
back decision and typically respond by asking the
student to rephrase, or simply give away the answer
(though more sophisticated strategies are sometimes
possible, see Section 4). While statistical scoring ap-
proaches are more robust, they may still suffer from
coverage issues when system designers fail to antic-
ipate the full range of expected student answers. In
one study of a statistical system, a human judge la-
beled 33% of student utterances as not matching any
of the anticipated responses, meaning that the sys-
tem had no information to use as a basis for choos-
ing the next action and fell back on a single strategy,
giving away the answer (Jordan et al., 2009).

Recently, Dzikovska et al. (2012b) developed an
annotated corpus of student responses (henceforth,
the SRA corpus) with the goal of facilitating dy-
namic generation of tutorial feedback.1 Student re-
sponses are assigned to one of 5 domain- and task-
independent classes that correspond to typical flaws
found in student answers. These classes can be used
to help a system choose a feedback strategy based
only on the student answer and a single reference
answer. Dzikovska et al. (2013) showed that a sta-
tistical classifier trained on this data set can be used
in combination with a semantic interpreter to sig-
nificantly improve the overall quality of natural lan-
guage interpretation in a dialogue-based ITS. The
best results were obtained by using the classifier
to label the utterances that the semantic interpreter
failed to process.

In this paper we further extend this result by
showing that we can obtain similar results by train-
ing the classifier directly on the subset of utterances
that cannot be processed by the interpreter. The
distribution of labels across the classes is differ-
ent in this subset compared to the rest of the cor-
pus. Therefore we can train a subset-specific classi-

1http://www.cs.york.ac.uk/semeval-2013/
task7/index.php?id=data

fier, reducing the amount of annotated training data
needed without compromising performance of the
combined system.

The rest of the paper is organized as follows. In
Section 2 we describe an architecture for combining
semantic interpretation and classification in a sys-
tem with dynamic natural language feedback gener-
ation. In Section 3 we describe an experiment to im-
prove combined system performance using a classi-
fier trained only on non-interpretable utterances. We
discuss future improvements in Section 4.

2 Background

The SRA corpus is made up of two subsets: (1)
the SciEntsBank subset, consisting of written re-
sponses to assessment questions (Nielsen et al.,
2008b), and (2) the Beetle subset consisting of ut-
terances collected from student interactions with the
BEETLE II tutorial dialogue system (Dzikovska et
al., 2010b). The SRA corpus annotation scheme
defines 5 classes of student answers (“correct”,
“partially-correct-incomplete”, “contradictory”, “ir-
relevant” and “non-domain”). Each utterance is as-
signed to one of the 5 classes based on pre-existing
manual annotations (Dzikovska et al., 2012b).

We focus on the Beetle subset because the Beetle
data comes from an implemented system, meaning
that we also have access to the semantic interpreta-
tions of student utterances produced by the BEETLE

II interpretation component. The system uses fine-
grained semantic analysis to produce detailed diag-
noses of student answers in terms of correct, incor-
rect, missing and irrelevant parts. We developed a
set of rules to map these diagnoses onto the SRA
corpus 5-class annotation scheme to support system
evaluation (Dzikovska et al., 2012a).

In our previous work (Dzikovska et al., 2013), we
used this mapping as the basis for combining the
output of the BEETLE II semantic interpreter with
the output of a statistical classifier, using a rule-
based policy to determine which label to use for
each instance. If the label from the semantic in-
terpreter is chosen, then the full range of detailed
feedback strategies can be used, based on the corre-
sponding semantic representation. If the classifier’s
label is chosen, then the system can fall back to us-
ing content-free prompts, choosing an appropriate
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prompt based on the SRA corpus label.
We evaluated 3 rule-based combination policies,

chosen to reduce the effects of the errors that the
semantic interpreter makes, and taking into account
tutoring goals such as reducing student frustration.
The best performing policy takes the classifier’s out-
put if and only if the semantic interpreter is unable
to process the utterance.2 This allows the system to
choose from a wider set of content-free prompts in-
stead of always telling the student that the utterance
was not understood.

As discussed earlier, non-interpretable utterances
present a problem for both rule-based and statistical
approaches. Therefore, we carried out an additional
set of experiments, focusing on the performance of
system combinations that use policies designed to
address non-interpretable utterances. We discuss our
results and future directions in the rest of the paper.

3 Improving Interpretation Robustness

3.1 Experimental Setup
The Beetle portion of the SRA corpus contains 3941
unique student answers to 47 different explanation
questions. Each question is associated with one or
more reference answers provided by expert tutors,
and each student answer is manually annotated with
the label assigned by the BEETLE II interpreter and
a gold-standard correctness label.

In our experiments, we follow the procedure de-
scribed in (Dzikovska et al., 2013), using 10-fold
cross-validation to evaluate the performance of the
various stand-alone and combined systems. We re-
port the per-class F1 scores as evaluation metrics,
using the macro-averaged F1 score as the primary
evaluation metric.

Dzikovska et al. (2013) used a statistical classi-
fier based on lexical overlap, taken from (Dzikovska
et al., 2012a), and evaluated 3 different rule-based
policies for combining its output with that of the se-
mantic interpreter. In two of those policies the inter-
preter’s output is always used if it is available, and
the classifier’s label is used for a (subset of) non-
interpretable utterances:

1. NoReject: the classifier’s label is used in all
cases where semantic interpretation fails, thus

2We will refer to such utterances as “non-interpretable” fol-
lowing (Bohus and Rudnicky, 2005).

creating a system that never rejects student in-
put as non-interpretable

2. NoRejectCorrect: the classifier’s label is
used for non-interpretable utterances which are
labeled as “correct” by the classifier. This more
conservative policy aims to ensure that correct
student answers are always accepted, but incor-
rect answers may still be rejected with a request
to rephrase.

We conducted a new experiment to evaluate these
two policies together with an enhanced classifier,
discussed in the next section.

3.2 Classifier

For this paper, we extended the classifier from the
previous study (Dzikovska et al., 2013), which we
will call Sim8, with additional features to improve
handling of lexical variability and negation.
Sim8 uses the Weka 3.6.2 implementation of

C4.5 pruned decision trees, with default parameters.
It uses 8 features based on lexical overlap similarity
metrics provided by Perl’s Text::Similarity
package v.0.09: 4 metrics measuring overlap be-
tween the student answer and the expected answer,
and the same 4 metrics applied to the student’s an-
swer and the question text.

In our enhanced classifier, Sim20, we extended
the baseline feature set with 12 additional features.
8 of these are direct analogs of the baseline features,
this time computed on the stemmed text to reduce
the impact of syntactic variation, using the Porter
stemmer from the Lingua::Stem package.3 In
addition, 4 features were added to improve negation
handling and thus detection of contradictions. These
are:

• QuestionNeg, AnswerNeg: features in-
dicating the presence of a negation marker
in the question and the student’s answer re-
spectively, detected using a regular expression.
We distinguish three cases: a negation marker

3We also experimented with features that involve removing
stop words before computing similarity scores, and with using
SVMs for classification, but failed to obtain better performance.
We continue to investigate different SVM kernels and alterna-
tive classification algorithms such as random forests for our fu-
ture work.
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Standalone Sem. Interp. + Sim20 Sem. Interp. + Sim20NI

Sem. Interp. Sim8 Sim20 no rej no rej corr no rej no rej corr
correct 0.66 0.71 0.71 0.70 0.70 0.70 0.70
pc inc 0.48 0.38 0.40 0.51 0.48 0.50 0.48
contra 0.27 0.40 0.45 0.47 0.27 0.51 0.27
irrlvnt 0.21 0.05 0.08 0.22 0.21 0.22 0.21
nondom 0.65 0.73 0.78 0.83 0.65 0.83 0.65
macro avg 0.45 0.45 0.48 0.55 0.46 0.55 0.46

Table 1: F1 scores for three stand-alone systems, and for combination systems using the Sim20 and Sim20NI
classifiers together with the semantic interpreter. Stand-alone performance for Sim20NI is not shown since it was
trained only on the non-interpretable data subset and is therefore not applicable for the complete data set.

likely to be associated with domain content
(e.g., “not connected”); a negation marker more
likely to be associated with general expressions
of confusion (such as “don’t know”); and no
negation marker present.

• BestOverlapNeg: true if the reference an-
swer that has the highest F1 overlap with the
student answer includes a negation marker.

• BestOverlapPolarityMatch: a flag
computed from the values of AnswerNeg and
BestOverlapNeg. Again, we distinguish
three cases: they have the same polarity (both
the student answer and the reference answer
contain negation markers, or both have no
negation markers); they have opposite polar-
ity; or the student answer contains a negation
marker associated with an expression of confu-
sion, as described above.

3.3 Evaluation
Evaluation results are shown in Table 1. Unless
otherwise specified, all performance differences dis-
cussed in the text are significant on an approximate
randomization significance test with 10,000 itera-
tions (Yeh, 2000).

Adding the new features to create the Sim20
classifier resulted in a performance improvement
compared to the Sim8 classifier, raising macro-
averaged F1 from 0.45 to 0.48, with an improvement
in contradiction detection as intended. But these im-
provements did not translate into improvements in
the combined systems. Combinations using Sim20
performed exactly the same as the combinations us-
ing Sim8 (not shown due to space limitations, see

(Dzikovska et al., 2013)). Clearly, more sophisti-
cated features are needed to obtain further perfor-
mance gains in the combined systems.

However, we noted that the subset of non-
interpretable utterances in the corpus has a differ-
ent distribution of labels compared to the full data
set. In the complete data set, 1665 utterances (42%)
are labeled as correct and 1049 (27%) as contradic-
tory. Among the 1416 utterances considered non-
interpretable by the semantic interpreter, 371 (26%)
belong to the “correct” class, and 598 (42%) to “con-
tradictory” (other classes have similar distributions
in both subsets). We therefore hypothesized that a
combination system that uses the classifier output
only if an utterance is non-interpretable, may ben-
efit from employing a classifier trained specifically
on this subset rather than on the whole data set.

If our hypothesis is true, it offers an interesting
possibility for combining rule-based and statistical
classifiers in similar setups: if the classifier can be
trained using only the examples that are problematic
for the rule-based system, it can provide improved
robustness at a significantly lower annotation cost.

We therefore trained another classifier,
Sim20NI, using the same feature set as Sim20,
but this time using only the instances rejected
as non-interpretable by the semantic interpreter
in each cross-validation fold (1416 utterances,
36% of all data instances). We again used the
NoReject and NoRejectCorrect policies to
combine the output of Sim20NI with that of the
semantic interpreter. Evaluation results confirmed
our hypothesis. The system combinations that
use Sim20 and Sim20NI perform identically on
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macro-averaged F1, with NoReject being the best
combination policy in both cases and significantly
outperforming the semantic interpreter alone. How-
ever, the Sim20NI classifier has the advantage of
needing significantly less annotated data to achieve
this performance.

4 Discussion and Future Work

Our research focuses on combining deep and shal-
low processing by supplementing fine-grained se-
mantic interpretations from a rule-based system
with more coarse-grained classification labels. Al-
ternatively, we could try to learn structured se-
mantic representations from annotated text (Zettle-
moyer and Collins, 2005; Wong and Mooney, 2007;
Kwiatkowski et al., 2010), or to learn more fine-
grained assessment labels (Nielsen et al., 2008a).
However, such approaches require substantially
larger annotation effort. Therefore, we believe it is
worth exploring the use of the simpler 5-label anno-
tation scheme from the SRA corpus. We previously
showed that it is possible to improve system perfor-
mance by combining the output of a symbolic inter-
preter with that of a statistical classifier (Dzikovska
et al., 2013). The best combination policy used the
statistical classifier to label utterances rejected as
non-interpretable by the rule-based interpreter.

In this paper, we showed that similar results can
be achieved by training the classifier only on non-
interpretable utterances, rather than on the whole la-
beled corpus. The student answers that the inter-
preter has difficulty with have a distinct distribution,
which is effectively utilized by training a classifier
only on this subset. This reduces the amount of an-
notated training data needed, reducing the amount of
manual labor required.

In future, we will further investigate the best com-
bination of parsing and statistical classification in
systems that offer sophisticated error recovery poli-
cies for non-understandings. Our top-performing
policy, NoReject, uses deep parsing and semantic
interpretation to produce a detailed semantic analy-
sis for the majority of utterances, and falls back on a
shallower statistical classifier for utterances that are
difficult for the interpreter. This policy assumes that
it is always better to use a content-free prompt than
to reject a non-interpretable student utterance. How-

ever, interpretation problems can arise from incor-
rect uses of terminology, and learning to speak in
the language of the domain has been positively cor-
related with learning outcomes (Steinhauser et al.,
2011). Therefore, rejecting some non-interpretable
answers as incorrect could be a valid tutoring strat-
egy (Sagae et al., 2010; Dzikovska et al., 2010a).

The BEETLE II system offers several error re-
covery strategies intended to help students phrase
their answers in more acceptable ways by giving a
targeted help message, e.g., “I am sorry, I’m hav-
ing trouble understanding. Paths cannot be broken,
only components can be broken” (Dzikovska et al.,
2010a). Therefore, it may be worthwhile to con-
sider other combination policies. We evaluated the
NoRejectCorrect policy, which uses the statis-
tical classifier to identify correct answers rejected
by the semantic interpreter and asks for rephrasings
in other cases. Using this policy resulted in only a
small improvement in system performance. A dif-
ferent classifier geared towards more accurate iden-
tification of correct answers may help, and we are
planning to investigate this option in the future.

Alternatively, we could consider a combination
policy which looks for rejected answers that the
classifier identifies as contradictory and changes the
wording of the targeted help message to indicate that
the student may have made a mistake, instead of
apologizing for the misunderstanding. This has the
potential to help students learn correct terminology
rather than presenting the issue as strictly an inter-
pretation failure.

Ultimately, all combination policies must be
tested with users to ensure that improved robust-
ness translates into improved system effectiveness.
We have previously studied the effectiveness of our
targeted help strategies with respect to improving
learning outcomes (Dzikovska et al., 2010a). A sim-
ilar study is required to evaluate our combination
strategies.
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