
Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pages 270–278,
Atlanta, Georgia, June 13 2013. c©2013 Association for Computational Linguistics

The Story of the Characters, the DNA and the Native Language

Marius Popescu
University of Bucharest

Department of Computer Science
Academiei 14, Bucharest, Romania
popescunmarius@gmail.com

Radu Tudor Ionescu
University of Bucharest

Department of Computer Science
Academiei 14, Bucharest, Romania
raducu.ionescu@gmail.com

Abstract

This paper presents our approach to the 2013
Native Language Identification shared task,
which is based on machine learning methods
that work at the character level. More pre-
cisely, we used several string kernels and a
kernel based on Local Rank Distance (LRD).
Actually, our best system was a kernel combi-
nation of string kernel and LRD. While string
kernels have been used before in text analysis
tasks, LRD is a distance measure designed to
work on DNA sequences. In this work, LRD is
applied with success in native language iden-
tification.

Finally, the Unibuc team ranked third in the
closed NLI Shared Task. This result is more
impressive if we consider that our approach
is language independent and linguistic theory
neutral.

1 Introduction

This paper presents our approach to the shared task
on Native Language Identification, NLI 2013. We
approached this task with machine learning methods
that work at the character level. More precisely, we
treated texts just as sequences of symbols (strings)
and used different string kernels in conjunction with
different kernel-based learning methods in a series
of experiments to assess the best performance level
that can be achieved. Our aim was to investigate if
identifying native language is possible with machine
learning methods that work at the character level.
By disregarding features of natural language such as
words, phrases, or meaning, our approach has an im-
portant advantage in that it is language independent.

Using words is natural in text analysis tasks like
text categorization (by topic), authorship identifi-
cation and plagiarism detection. Perhaps surpris-
ingly, recent results have proved that methods han-
dling the text at character level can also be very
effective in text analysis tasks (Lodhi et al., 2002;
Sanderson and Guenter, 2006; Popescu and Dinu,
2007; Grozea et al., 2009; Popescu, 2011; Popescu
and Grozea, 2012). In (Lodhi et al., 2002) string
kernels were used for document categorization with
very good results. Trying to explain why treating
documents as symbol sequences and using string
kernels led to such good results the authors sup-
pose that: “the [string] kernel is performing some-
thing similar to stemming, hence providing seman-
tic links between words that the word kernel must
view as distinct”. String kernels were also suc-
cessfully used in authorship identification (Sander-
son and Guenter, 2006; Popescu and Dinu, 2007;
Popescu and Grozea, 2012). For example, the sys-
tem described in (Popescu and Grozea, 2012) ranked
first in most problems and overall in the PAN 2012
Traditional Authorship Attribution tasks. A possible
reason for the success of string kernels in authorship
identification is given in (Popescu and Dinu, 2007):
“the similarity of two strings as it is measured by
string kernels reflects the similarity of the two texts
as it is given by the short words (2-5 characters)
which usually are function words, but also takes into
account other morphemes like suffixes (‘ing’ for ex-
ample) which also can be good indicators of the au-
thor’s style”.

Even more interesting is the fact that two meth-
ods, that are essentially the same, obtained very
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good results for text categorization (by topic) (Lodhi
et al., 2002) and authorship identification (Popescu
and Dinu, 2007). Both are based on SVM and a
string kernel of length 5. How is this possible?
Traditionally, the two tasks, text categorization (by
topic) and authorship identification are viewed as
opposite. When words are considered as features,
for text categorization the (stemmed) content words
are used (the stop words being eliminated), while for
authorship identification the function words (stop
words) are used as features, the others words (con-
tent words) being eliminated. Then, why did the
same string kernel (of length 5) work well in both
cases? In our opinion the key factor is the kernel-
based learning algorithm. The string kernel im-
plicitly embeds the texts in a high dimensional fea-
ture space, in our case the space of all (sub)strings
of length 5. The kernel-based learning algorithm
(SVM or another kernel method), aided by regu-
larization, implicitly assigns a weight to each fea-
ture, thus selecting the features that are important
for the discrimination task. In this way, in the
case of text categorization the learning algorithm
(SVM) enhances the features (substrings) represent-
ing stems of content words, while in the case of au-
thorship identification the same learning algorithm
enhances the features (substrings) representing func-
tion words.

Using string kernels will make the correspond-
ing learning method completely language indepen-
dent, because the texts will be treated as sequences
of symbols (strings). Methods working at the word
level or above very often restrict their feature space
according to theoretical or empirical principles. For
example, they select only features that reflect var-
ious types of spelling errors or only some type of
words, such as function words, for example. These
features prove to be very effective for specific tasks,
but other, possibly good features, depending on the
particular task, may exist. String kernels embed the
texts in a very large feature space (all substrings
of length k) and leave it to the learning algorithm
(SVM or others) to select important features for the
specific task, by highly weighting these features.

A method that considers words as features can not
be language independent. Even a method that uses
only function words as features is not completely
language independent because it needs a list of func-

tion words (specific to a language) and a way to seg-
ment a text into words which is not an easy task for
some languages, like Chinese.

Character n-grams were already used in native
language identification (Brooke and Hirst, 2012;
Tetreault et al., 2012). The reported performance
when only character n-grams were used as features
was modest compared with other type of features.
But, in the above mentioned works, the authors in-
vestigated only the bigrams and trigrams and not
longer n-grams. Particularly, we have obtained sim-
ilar results with (Tetreault et al., 2012) when using
character bigrams, but we have achieved the best
performance using a range of 5 to 8 n-grams (see
section 4.3). We have used with success a similar
approach for the related task of identifying transla-
tionese (Popescu, 2011).

The first application of string kernel ideas came in
the field of text categorization, with the paper (Lodhi
et al., 2002), followed by applications in bioinfor-
matics (Leslie et al., 2002). Computer science re-
searchers have developed a wide variety of methods
that can be applied with success in computational
biology. Such methods range from clustering tech-
niques used to analyze the phylogenetic trees of dif-
ferent organisms (Dinu and Sgarro, 2006; Dinu and
Ionescu, 2012b), to genetic algorithms used to find
motifs or common patterns in a set of given DNA
sequences (Dinu and Ionescu, 2012a). Most of these
methods are based on a distance measure for strings,
such as Hamming (Chimani et al., 2011; Vezzi et
al., 2012), edit (Shapira and Storer, 2003), Kendall-
tau (Popov, 2007), or rank distance (Dinu, 2003). A
similar idea to character n-grams was introduced in
the early years of bioinformatics, where k-mers are
used instead of single characters 1. There are recent
studies that use k-mers for the phylogenetic analy-
sis of organisms (Li et al., 2004), or for sequence
alignment (Melsted and Pritchard, 2011). Analyz-
ing DNA at substring level is also more suited from
a biological point of view, because DNA substrings
may contain meaningful information. For example,
genes are encoded by a number close to 100 base
pairs, or codons that encode the twenty standard
amino acids are formed of 3-mers. Local Rank Dis-

1In biology, single DNA characters are also referred to as
nucleotides or monomers. Polymers are also known as k-mers.
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tance (LRD) (Ionescu, 2013) has been recently pro-
posed as an extension of rank distance. LRD drops
the annotation step of rank distance, and uses k-mers
instead of single characters. The work (Ionescu,
2013) shows that LRD is a distance function and that
it has very good results in phylogenetic analysis and
DNA sequence comparison. But, LRD can be ap-
plied to any kind of string sequences, not only to
DNA. Thus, LRD was transformed into a kernel and
used for native language identification. Despite the
fact it has no linguistic motivation, LRD gives sur-
prisingly good results for this task. Its performance
level is lower than string kernel, but LRD can con-
tribute to the improvement of string kernel when the
two methods are combined.

The paper is organized as follows. In the next
section, the kernel methods we used are briefly de-
scribed. Section 3 presents the string kernels and
the LRD, and shows how to transform LRD into a
kernel. Section 4 presents details about the experi-
ments. It gives details about choosing the learning
method, parameter tuning, combining kernels and
results of submitted systems. Finally, conclusions
are given in section 5.

2 Kernel Methods and String Kernels

Kernel-based learning algorithms work by embed-
ding the data into a feature space (a Hilbert space),
and searching for linear relations in that space. The
embedding is performed implicitly, that is by speci-
fying the inner product between each pair of points
rather than by giving their coordinates explicitly.

Given an input set X (the space of examples), and
an embedding vector space F (feature space), let φ :
X → F be an embedding map called feature map.

A kernel is a function k, such that for all x, z ∈
X , k(x, z) =< φ(x), φ(z) >, where < ·, · > de-
notes the inner product in F .

In the case of binary classification problems,
kernel-based learning algorithms look for a discrim-
inant function, a function that assigns +1 to exam-
ples belonging to one class and −1 to examples be-
longing to the other class. This function will be a lin-
ear function in the space F , that means it will have
the form:

f(x) = sign(< w,φ(x) > +b),

for some weight vector w. The kernel can be
exploited whenever the weight vector can be ex-
pressed as a linear combination of the training

points,
n∑

i=1
αiφ(xi), implying that f can be ex-

pressed as follows:

f(x) = sign(
n∑

i=1

αik(xi, x) + b).

Various kernel methods differ by the way in which
they find the vector w (or equivalently the vector
α). Support Vector Machines (SVM) try to find the
vector w that defines the hyperplane that maximally
separates the images in F of the training examples
belonging to the two classes. Mathematically, SVMs
choose the w and the b that satisfy the following op-
timization criterion:

min
w,b

1

n

n∑
i=1

[1− yi(< w,φ(xi) > +b)]+ + ν||w||2

where yi is the label (+1/−1) of the training ex-
ample xi, ν a regularization parameter and [x]+ =
max(x, 0).

Kernel Ridge Regression (KRR) selects the vec-
tor w that simultaneously has small empirical er-
ror and small norm in Reproducing Kernel Hilbert
Space generated by kernel k. The resulting mini-
mization problem is:

min
w

1

n

n∑
i=1

(yi− < w,φ(xi) >)2 + λ||w||2

where again yi is the label (+1/−1) of the training
example xi, and λ a regularization parameter.

Details about SVM and KRR can be found
in (Taylor and Cristianini, 2004). The important fact
is that the above optimization problems are solved
in such a way that the coordinates of the embedded
points are not needed, only their pairwise inner prod-
ucts which in turn are given by the kernel function
k.

3 String Kernels and Local Rank Distance

The kernel function offers to the kernel methods the
power to naturally handle input data that are not in
the form of numerical vectors, for example strings.
The kernel function captures the intuitive notion of
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similarity between objects in a specific domain and
can be any function defined on the respective do-
main that is symmetric and positive definite. For
strings, many such kernel functions exist with vari-
ous applications in computational biology and com-
putational linguistics (Taylor and Cristianini, 2004).

3.1 String Kernels
Perhaps one of the most natural ways to measure the
similarity of two strings is to count how many sub-
strings of length p the two strings have in common.
This gives rise to the p-spectrum kernel. Formally,
for two strings over an alphabet Σ, s, t ∈ Σ∗, the
p-spectrum kernel is defined as:

kp(s, t) =
∑
v∈Σp

numv(s) · numv(t)

where numv(s) is the number of occurrences of
string v as a substring in s 2. The feature map de-
fined by this kernel associates to each string a vector
of dimension |Σ|p containing the histogram of fre-
quencies of all its substrings of length p (p-grams).

A variant of this kernel can be obtained if the
embedding feature map is modified to associate to
each string a vector of dimension |Σ|p containing
the presence bits (instead of frequencies) of all its
substrings of length p. Thus the character p-grams
presence bits kernel is obtained:

k0/1
p (s, t) =

∑
v∈Σp

inv(s) · inv(t)

where inv(s) is 1 if string v occurs as a substring in
s and 0 otherwise.

Normalized versions of these kernels ensure a fair
comparison of strings of different lengths:

k̂p(s, t) =
kp(s, t)√

kp(s, s) · kp(t, t)

k̂0/1
p (s, t) =

k
0/1
p (s, t)√

k
0/1
p (s, s) · k0/1

p (t, t)

.

Taking into account p-grams of different length
and summing up the corresponding kernels, new
kernels (called blended spectrum kernels) can be ob-
tained.

2Note that the notion of substring requires contiguity. See
(Taylor and Cristianini, 2004) for a discussion about the ambi-
guity between the terms substring and subsequence across dif-
ferent traditions: biology, computer science.

3.2 Local Rank Distance
Local Rank Distance is an extension of rank distance
that drops the annotation step and uses n-grams in-
stead of single characters. Thus, characters in one
string are simply matched with the nearest similar
characters in the other string. To compute the LRD
between two strings, the idea is to sum up all the off-
sets of similar n-grams between the two strings. For
every n-gram in one string, we search for a similar
n-gram in the other string. First, look for similar n-
grams in the same position in both strings. If those
n-grams are similar, sum up 0 since there is no offset
between them. If the n-grams are not similar, start
looking around the initial n-gram position in the sec-
ond string to find an n-gram similar to the one in the
first string. If a similar n-gram is found during this
process, sum up the offset between the two n-grams.
The search goes on until a similar n-gram is found or
until a maximum offset is reached. LRD is formally
defined next.
Definition 1 Let S1, S2 ∈ Σ∗ be two strings with
symbols (n-grams) from the alphabet Σ. Local Rank
Distance between S1 and S2 is defined as:

∆LRD(S1, S2) = ∆left + ∆right

=
∑

xs∈S1

min
xs∈S2

{|posS1(xs)− posS2(xs)|,m}+

+
∑

ys∈S2

min
ys∈S1

{|posS1(ys)− posS2(ys)|,m},

where xs and ys are occurrences of symbol s ∈ Σ in
strings S1 and S2, posS(xs) represents the position
(or the index) of the occurrence xs of symbol s ∈ Σ
in string S, and m ≥ 1 is the maximum offset.

A string may contain multiple occurrences of a
symbol s ∈ Σ. LRD matches each occurrence xs

of symbol s ∈ Σ from a string, with the nearest oc-
currence of symbol s in the other string. A sym-
bol can be defined either as a single character, or
as a sequence of characters (n-grams). Overlapping
n-grams are also permitted in the computation of
LRD. Notice that in order to be a symmetric distance
measure, LRD must consider every n-gram in both
strings. The complexity of an algorithm to compute
LRD can be reduced to O(l × m) using advanced
string searching algorithms, where l is the maximum
length of the two strings involved in the computation
of LRD, and m is the maximum offset.
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To understand how LRD actually works, consider
example 1 where LRD is computed between strings
s1 and s2 using 1-grams (single characters).

Example 1 Let s1 = CCBAADACB, s2 =
DBACDCA, and m = 10 be the maximum offset.
The LRD between s1 and s2 is given by:

∆LRD(s1, s2) = ∆left + ∆right

where the two sums ∆left and ∆right are computed
as follows:

∆left =
∑

xs∈s1

min
xs∈s2

{|poss1(xs)− poss2(xs)|, 10}

= |1− 4|+ |2− 4|+ |3− 2|+ |4− 3|+ |5− 3|+
+ |6− 5|+ |7− 7|+ |8− 6|+ |9− 2| = 19

∆right =
∑

ys∈s2

min
ys∈s1

{|poss1(ys)− poss2(ys)|, 10}

= |1− 6|+ |2− 3|+ |3− 4|+ |4− 2|+ |5− 6|+
+ |6− 8|+ |7− 7| = 12.

In other words, ∆left considers every symbol
from s1, while ∆right considers every symbol from
s2. Observe that ∆LRD(s1, s2) = ∆LRD(s2, s1).

LRD measures the distance between two strings.
Knowing the maximum offset (used to stop sim-
ilar n-gram searching), the maximum LRD value
between two strings can be computed as the prod-
uct between the maximum offset and the number of
pairs of compared n-grams. Thus, LRD can be nor-
malized to a value in the [0, 1] interval. By normal-
izing, LRD is transformed into a dissimilarity mea-
sure. LRD can be also used as a kernel, since kernel
methods are based on similarity. The classical way
to transform a distance or dissimilarity measure into
a similarity measure is by using the Gaussian-like
kernel (Taylor and Cristianini, 2004):

k(s1, s2) = e
−
LRD(s1, s2)

2σ2

where s1 and s2 are two strings. The parameter
σ is usually chosen to match the number of fea-
tures (characters) so that values of k(s1, s2) are well
scaled.

4 Experiments

4.1 Dataset

The dataset for the NLI shared task is the TOEFL11
corpus (Blanchard et al., 2013). This corpus con-
tains 9900 examples for training, 1100 examples for
development (or validation) and another 1100 ex-
amples for testing. Each example is an essay writ-
ten in English by a person that is a non-native En-
glish speaker. The people that produced the essays
have one of the following native languages: German,
French, Spanish, Italian, Chinese, Korean, Japanese,
Turkish, Arabic, Telugu, Hindi. For more details
see (Blanchard et al., 2013).

We participated only in the closed NLI shared
task, where the goal of the task is to predict the
native language of testing examples, only by us-
ing the training and development data. In our ap-
proach, documents or essays from this corpus are
treated as strings. Thus, when we refer to strings
throughout this paper, we really mean documents
or essays. Because we work at the character level,
we didn’t need to split the texts into words, or to do
any NLP-specific preprocessing. The only editing
done to the texts was the replacing of sequences of
consecutive space characters (space, tab, new line,
etc.) with a single space character. This normaliza-
tion was needed in order to not artificially increase
or decrease the similarity between texts as a result
of different spacing. Also all uppercase letters were
converted to the corresponding lowercase ones. We
didn’t use the additional information from prompts
and English language proficiency level.

4.2 Choosing the Learning Method

SVM and KRR produce binary classifiers and native
language identification is a multi-class classification
problem. There are a lot of approaches for com-
bining binary classifiers to solve multi-class prob-
lems. Typically, the multiclass problem is broken
down into multiple binary classification problems
using common decomposing schemes such as: one-
versus-all (OVA) and one-versus-one (OVO). There
are also kernel methods that directly take into ac-
count the multiclass nature of the problem such as
the kernel partial least squares regression (KPLS).

We conducted a series of preliminary experiments
in order to select the learning method. In these ex-
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Figure 1: 10-fold cross-validation accuracy on the train set for different n-grams.

Method Accuracy
OVO SVM 72.72%
OVA SVM 74.94%
OVO KRR 73.99%
OVA KRR 77.74%
KPLS 74.99%

Table 1: Accuracy rates using 10-fold cross-validation on
the train set for different kernel methods with k̂5 kernel.

periments we fixed the kernel to the p-spectrum nor-
malized kernel of length 5 (k̂5) and plugged it in
the following learning methods: OVO SVM, OVA
SVM, OVO KRR, OVA KRR and KPLS. Note that
in this stage we were interested only in selecting the
learning method and not in finding the best kernel.
We chose the k̂5 because it was reported to work
well in the case of the related task of identifying
translationese (Popescu, 2011).

We carried out a 10-fold cross-validation on the
training set and the result obtained (with the best pa-
rameters setting) are shown in Table 1.

The results show that for native language identi-
fication the one-vs-all scheme performs better than
the one-versus-one scheme. The same fact was re-
ported in (Brooke and Hirst, 2012). See also (Rifkin
and Klautau, 2004) for arguments in favor of one-
vs-all. The best result was obtained by one-vs-all
Kernel Ridge Regression and we selected it as our

learning method.

4.3 Parameter Tuning for String Kernel

To establish the type of kernel, (blended) p-spectrum
kernel or (blended) p-grams presence bits kernel,
and the length(s) of of n-grams that must be used,
we performed another set of experiments. For both
p-spectrum normalized kernel and p-grams presence
bits normalized kernel, and for each value of p from
2 to 10, we carried out a 10-fold cross-validation on
the train set. The results are summarized in Figure 1.
As can be seen, both curves have similar shapes,
both achieve their maximum at 8, but the accuracy of
the p-grams presence bits normalized kernel is gen-
erally better than the accuracy of the p-spectrum nor-
malized kernel. It seem that in native language iden-
tification the information provided by the presence
of an n-gram is more important than the the infor-
mation provided by the frequency of occurrence of
the respective n-gram. This phenomenon was also
noticed in the context of sexual predator identifica-
tion (Popescu and Grozea, 2012).

We also experimented with different blended ker-
nels to see if combining n-grams of different lengths
can improve the accuracy. The best result was ob-
tained when all the n-grams with the length in the
range 5-8 were used, that is the 5-8-grams presence
bits normalized kernel (k̂0/1

5−8). The 10-fold cross-
validation accuracy on the train set for this kernel
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Method Accuracy
KRR + KLRD6 42.1%
KRR + KnLRD4 70.8%
KRR + KnLRD6 74.4%
KRR + KnLRD8 74.8%

Table 2: Accuracy rates, using 10-fold cross-validation
on the training set, of LRD with different n-grams, with
and without normalization. Normalized LRD is much
better.

was 80.94% and was obtained for the KRR param-
eter λ set to 10−5. The authors of (Bykh and Meur-
ers, 2012) also obtained better results using n-grams
with the length in a range than using n-grams of a
fixed length.

4.4 Parameter Tuning for LRD Kernel

Parameter tuning for LRD kernel (KLRD) was also
done by using 10-fold cross validation on the train-
ing data. First, we observed that the KRR based on
LRD works much better with the normalized version
of LRD (KnLRD). Another concern was to choose
the right length of n-grams. We tested with several
n-grams such as 4-grams, 6-grams and 8-grams that
are near the mean English word length of 5-6 let-
ters. The tests show that the LRD kernels based on
6-grams (KnLRD6) and 8-grams (KnLRD8) give the
best results. In the end, the LRD kernels based on 6-
grams and 8-grams are combined to obtain even bet-
ter results (see section 4.5). Finally, the maximum
offset parameter m involved in the computation of
LRD was chosen so that it generates search window
size close to the average number of letters per docu-
ment from the TOEFL 11 set. There are 1802 char-
acters per document on average, and m was chosen
to be 700. This parameter was also chosen with re-
spect to the computational time of LRD, which is
proportional to the parameter value. Table 2 shows
the results of the LRD kernel with different parame-
ters cross validated on the training set. For KnLRD,
the σ parameter of the Gaussian-like kernel was set
to 1. The reported accuracy rates were obtained with
the KRR parameter λ set to 10−5.

Regarding the length of strings, we observed that
LRD is affected by the variation of string lengths.
When comparing two documents with LRD, we
tried to cut the longer one to match the length of

Method Accuracy
KRR + KnLRD6+8 75.4%

KRR + k̂0/1
5−8 + KnLRD6+8 81.6%

KRR + (k̂0/1 +KnLRD)6+8 80.9%

Table 3: Accuracy rates of different kernel combinations
using 10-fold cross-validation on the training set.

the shorter. This made the accuracy even worse. It
seems that the parts cut out from longer documents
contain valuable information for LRD. We decided
to use the entire strings for LRD, despite the noise
brought by the variation of string lengths.

4.5 Combining Kernels

To improve results, we thought of combining the
kernels in different ways. First, notice that the
blended string kernels presented in section 4.3 are
essentially a sum of the string kernels with different
n-grams. This combination improves the accuracy,
being more stable and robust. In the same manner,
the LRD kernels based on 6-grams and 8-grams, re-
spectively, were summed up to obtain the kernel de-
noted by KnLRD6+8 . Indeed, the KnLRD6+8 kernel
works better (see Table 3).

There are other options to combine the string ker-
nels with LRD kernels, besides summing them up.
One option is by kernel alignment (Cristianini et al.,
2001). Instead of simply summing kernels, kernel
alignment assigns weights for each to the two ker-
nels based on how well they are aligned with the
ideal kernel Y Y ′ obtained from labels. Thus, the 5-
8-grams presence bits normalized kernel (k̂0/1

5−8) was
combined with the LRD kernel based on sum of 6,8-
grams (KnLRD6+8), by kernel alignment. From our
experiments, kernel alignment worked slightly bet-
ter than the sum of the two kernels. This also sug-
gests that kernels can be combined only by kernel
alignment. The string kernel of length 6 was aligned
with the LRD kernel based on 6-grams. In the same
way, the string kernel of length 8 was aligned with
the LRD kernel based on 8-grams. The two kernels
obtained by alignment are combined together, again
by kernel alignment, to obtain the kernel denoted by
(k̂0/1 +KnLRD)6+8. The results of all kernel com-
binations are presented in Table 3. The reported ac-
curacy rates were obtained with the KRR parameter
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Method Submission CV Tr. Dev. CV Tr.+Dev. Test
KRR + k̂0/1

5−8 Unibuc-1 80.9% 85.4% 82.5% 82.0%
KRR + KnLRD6+8 Unibuc-2 75.4% 76.3% 75.7% 75.8%

KRR + k̂0/1
5−8 + KnLRD6+8 Unibuc-3 81.6% 85.7% 82.6% 82.5%

KRR + (k̂0/1 +KnLRD)6+8 Unibuc-4 80.9% 85.6% 82.0% 81.4%

KRR + k̂0/1
5−8 + KnLRD6+8 + heuristic Unibuc-5 - - - 82.7%

Table 4: Accuracy rates of submitted systems on different evaluation sets. The Unibuc team ranked third in the closed
NLI Shared Task with the kernel combination improved by the heuristic to level the predicted class distribution.

λ set to 10−5.

4.6 Results and Discussion

For the closed NLI Shared Task we submitted the
two main systems, namely the 5-8-grams presence
bits normalized kernel and the LRD kernel based on
sum of 6,8-grams, separately. Another two submis-
sions are the kernel combinations discussed in sec-
tion 4.5. These four systems were tested using sev-
eral evaluation procedures, with results shown in Ta-
ble 4. First, they were tested using 10-fold cross val-
idation on the training set. Next, the systems were
tested on the development set. In this case, the sys-
tems were trained on the entire training corpus. An-
other 10-fold cross validation procedure was done
on the corpus obtained by combining the training
and the development sets. The folds were provided
by the organizers. Finally, the results of our systems
on the NLI Shared Task test set are given in the last
column of Table 4. For testing, the systems were
trained on the entire training and development set,
with the KRR parameter λ set to 2 · 10−5.

We didn’t expect KnLRD6+8 kernel to perform
very well on the test set. This system was submitted
just to be compared with systems submitted by other
participants. Considering that LRD is inspired from
biology and that it has no ground in computational
linguistics, it performed very well, by standing in the
top half of the ranking of all submitted systems.

The kernel obtained by aligning the k̂
0/1
5−8 and

KnLRD6+8 kernels gives the best results, no matter
the evaluation procedure. It is followed closely by
the other two submitted systems.

We thought of exploiting the distribution of the
testing set in our last submitted system. We knew
that there should be exactly 100 examples per class
for testing. We took the kernel obtained by com-

bining the k̂0/1
5−8 and KnLRD6+8 kernels, and tried to

adjust its output to level the predicted class distribu-
tion. We took all the classes with more than 100 ex-
amples and ranked the examples by their confidence
score (returned by regression) to be part of the pre-
dicted class. The examples ranked below 100 were
chosen to be redistributed to the classes that had less
than 100 examples per class. Examples were redis-
tributed only if their second most confident class had
less than 100 examples. This heuristic improved the
results on the test set by 0.2%, enough to put us on
third place in the closed NLI Shared Task.

5 Conclusion

In this paper, we have presented our approach to
the 2013 NLI Shared Task. What makes our sys-
tem stand out is that it works at the character level,
making the approach completely language indepen-
dent and linguistic theory neutral. The results ob-
tained were very good. A standard approach based
on string kernels, that proved to work well in many
text analysis tasks, obtained an accuracy of 82% on
test data with a difference of only 1.6% between it
and the top performing system. A second system
based on a new kernelKLRD, inspired from biology
with no ground in computational linguistics, per-
formed also unexpectedly well, by standing in the
top half of the ranking of all submitted systems. The
combination of the two kernels obtained an accuracy
of 82.5% making it to the top ten, while an heuristic
improvement of this combination ranked third with
an accuracy of 82.7%. Obviously, an explanation
for these results was needed. It will be adressed in
future work.
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