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Abstract

We present a computational notion of Lexical 
Tightness that measures global cohesion of con-
tent words in a text. Lexical tightness represents 
the degree to which a text tends to use words 
that are highly inter-associated in the language. 
We demonstrate the utility of this measure for 
estimating text complexity as measured by US 
school grade level designations of texts. Lexical 
tightness strongly correlates with grade level in 
a collection of expertly rated reading materials. 
Lexical  tightness  captures  aspects  of  prose 
complexity that are not covered by classic read-
ability indexes, especially for literary texts. We 
also present initial findings on the utility of this 
measure for automated estimation of complex-
ity for poetry.

1 Introduction

Adequate estimation of text complexity has a long 
and rich history.  Various readability metrics have 
been designed in the last 100 years (DuBay, 2004). 
Recent work on computational  estimation of text 
complexity for school- and college-level texts in-
cludes (Vajjala and Meurers 2012; Graesser et al., 
2011;  Sheehan et  al.,  2010;  Petersen  and Osten-
dorf, 2009; Heilman et al., 2006). Several commer-
cial  systems were recently evaluated in the Race 
To The Top competition (Nelson et al.,  2012) in 
relation to the US Common Core State Standards 
for instruction (CCSSI, 2010). 

A variety of factors influence text  complexity, 
including vocabulary, sentence structure, academic 
orientation,  narrativity,  cohesion,  etc.  (Hiebert, 

2011)  and  corresponding  features  are  utilized  in 
automated  systems  of  complexity  evaluation
(Vajjala and Meurers, 2012; Graesser et al., 2011; 
Sheehan et al., 2010).

We focus on text complexity levels expressed as 
US school grade level equivalents1. Our interest is 
in  quantifying  the  differences  among  texts  (es-
say-length  reading  passages)  at  different  grade 
levels, for the purposes of automatically evaluating 
text complexity.  The work described in this paper 
is part of an ongoing project that investigates novel 
features indicative of text complexity.

The paper is organized as follows. Section 2.1 
presents our methodology for building word asso-
ciation profiles  for  texts.  Section 2.2 defines  the 
measure of lexical tightness (LT). Section 2.3 de-
scribes the datasets used in this study. Sections 3.1 
and  3.2  present  our  study  of  the  relationship 
between LT and text complexity.  Section 3.3 de-
scribes application to poetry. Section 3.4 evaluates 
an improved measure (LTR). Section 4 reviews re-
lated work.

2 Methodology

2.1 Word-Association Profile

We define WAPT – a word association profile of a 
text T – as the distribution of association values for 
all pairs of content words of text T, where the asso-
ciation values are estimated from a very large cor-
pus of texts. In this work, WAP is purely illustrat-
ive, and sets the stage for lexical tightness.
1 For age equivalents of grade levels see 
http://en.wikipedia.org/wiki/Educational_stage 
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There exists an extensive literature on the use of 
word-association measures for NLP, especially for 
detection  of  collocations  (Pecina,  2010;  Evert, 
2008).  The  use  of  pointwise  mutual  information 
(PMI) with word-space models is noted in (Zhang 
et al., 2012; Baroni and Lenci, 2010; Mitchell and 
Lapata, 2008; Turney, 2001). We begin with PMI, 
and provide a modified measure in later sections.

To obtain comprehensive information about co-
occurrence behavior of words in English, we build 
a  first-order  co-occurrence  word-space  model 
(Turney  and  Pantel,  2010;  Baroni  and  Lenci, 
2010). The model was generated from a corpus of 
texts  of  about  2.5  billion  word  tokens,  counting 
non-directed co-occurrence in  a  paragraph,  using 
no  distance  coefficients  (Bullinaria  and  Levy, 
2007). About 2 billion word tokens come from the 
Gigaword  2003  corpus  (Graff  and  Cieri,  2003). 
Additional 500 million word tokens come from an 
in-house corpus containing texts from the genres of 
fiction and popular science. The matrix of 2.1x2.1 
million  word  types  and  their  co-occurrence  fre-
quencies, as well as single-word frequencies, is ef-
ficiently compressed using the TrendStream tech-
nology (Flor, 2013), resulting in a database file of 
4.7GB.  The  same  toolkit  allows  fast  retrieval  of 
word  probabilities  and  statistical  associations  for 
pairs of words.2 

In this study we use all content word tokens of a 
text.  We use the OpenNLP tagger3 to POS-tag a 
text and only take into account nouns, verbs, ad-
jective and adverbs.  We further  apply a stop-list 
(see Appendix A) to filter out auxiliary verbs.

To illustrate why WAP is an interesting notion, 
consider  this  toy  example:  The  texts  “The  dog 
barked and wagged its tail” vs. “Green ideas sleep  
furiously”. Their matrices of pairwise word associ-
ations are presented in Table 1. For the first text, 
all  the  six  content  word  pairs  score  above 
PMI=5.5.  On  the  other  hand,  for  “Green  ideas 
sleep  furiously”,  all  the  six  content  word  pairs 
score below PMI=2.2. The first text puts together 
words that often go together in English, and this 
might be one of the reasons it seems easier to un-
derstand than the second text.

We use histograms to illustrate word-association 
profiles  for  real  texts,  containing  hundreds  of 

2 The distributional word-space model includes counts for 2.1 
million words and 1279 million word pairs (types). Associ-
ation measures are computed on the fly. 
3 http://opennlp.apache.org  

words.  For  a 60-bin histrogram spanning all  ob-
tained PMI values,  the  lowest  bin contains  pairs 
with PMI≤–5, the highest bin contains pairs with 
PMI>4.83, while the rest of the bins contain word 
pairs  (a,b)  with  -5<PMI(a,b)≤4.83.  Figure  1 
presents  WAP  histograms  for  two  real  text 
samples, one for grade level 3 (age 8-9) and one 
for grade level 11 (age 16-17). We observe that the 
shape of distribution is normal-like. The distribu-
tion of GL3 text is shifted to the right – it contains 
more highly associated word-pairs than the text of 
GL11.  In  a  separate  study  we  investigated  the 
properties of WAP distribution (Beigman-Kleban-
ov and Flor,  2013).  The normal-like  shape turns 
out to be stable across a variety of texts.

The dog barked and wagged its tail:
dog barked wagged tail

dog 7.02 7.64 5.57
barked 9.18 5.95
wagged 9.45
tail
Green ideas sleep furiously:

green ideas sleep furiously
green 0.44 1.47 2.05
ideas 1.01 0.94
sleep 2.18
furiously

Table 1. Word association matrices (PMI values) for 
two illustrative examples.
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Figure  1.  Word  Association  Profiles  for  two  sample 
texts,  showing 60-bin histograms with smoothed lines 
instead of bars. The last bin of the histogram contains 
all pairs with PMI>4.83, hence the uptick at PMI=5.
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2.2 Lexical Tightness

In this section we consider how to derive a single 
measure to represent each text for further analyses. 
Given the stable  normal-like  shape of  WAP,  we 
use average (mean) value per text for further in-
vestigations. We experimented with several associ-
ation measures.

Point-wise mutual information is defined as fol-
lows (Church and Hanks, 1990): 

PMI = log2
p a ,b 

p a p b

Normalized PMI (Bouma, 2009):

NPMI = 2 2
( , )log log ( , )

( ) ( )
p a b p a b

p a p b
  − 
 

Unlike the standard PMI (Manning and Schütze, 
1999), NPMI has the property that its values are 
mostly constrained in the range {-1,1}, it is less in-
fluenced by rare extreme values, which is conveni-
ent  for  summing  values  over  multiple  pairs  of 
words.  Additional  experiments  on  our  data  have 
shown that ignoring negative NPMI values4.  works 
best.  Thus,  we  define  Positive  Normalized  PMI 
(PNPMI) for a pair of words  a and b as follows:

PNPMI(a,b) 

=  NPMI(a,b)  if NPMI(a,b)>0

=  0  if NPMI(a,b)≤0
or if database has no data for 
co-occurrence of a and b.5

We define Lexical Tightness (LT) of a text as 
the mean value of PNPMI for all pairs of content-
word tokens in a text. Thus, if a text has N words, 
and after filtering we remain with K content words, 
the total number of pairs is K*(K-1)/2. 

Lexical tightness represents the degree to which 
a text tends to use words that are highly inter-asso-
ciated in the language. We conjecture that lexically 
tight texts (with higher values of LT) are easier to 
read  and  would  thus  correspond  to  lower  grade 
levels.

4 Ignoring negative values is described by Bullinaria and Levy 
(2007), also Mohammad and Hirst (2006).
5In our text collection, the average percentage of word-pairs 
not found in database is 5.5% per text.

2.3 Datasets

Our data consists of two sets of passages. The first 
set consists of 1012 passages (636K words) – read-
ing materials that were used in various tests in state 
and national assessment  frameworks in the USA. 
Part of this set is taken from Sheehan et al. (2007) 
(from testing programs and US state departments 
of education), and part was taken from the Standar-
dized State Test Passages set of the Race To The 
Top (RTT)  competition  (Nelson et  al.,  2012).  A 
distinguishing feature of this dataset is that the ex-
act grade level specification was available for each 
text. Table 2 provides the breakdown by grade and 
genre.  Text length in this set ranged between 27 
and 2848 words, with average 629 words. Average 
text length in the literary subset was 689 words and 
in the informational subset 560 words.

Grade
Level

Genre TotalInf Lit Other
1 2 4 1 7
2 2 4 3 9
3 49 63 10 122
4 54 77 8 139
5 47 48 15 110
6 44 43 6 93
7 39 61 6 106
8 73 66 19 158
9 25 25 3 53

10 29 52 2 83
11 18 25 0 43
12 47 20 22 89

Total 429 488 95 1012
Table 2. Counts of texts by grade level and genre, set #1 

Grade
Band GL Genre TotalInf Lit Other
2–3 2.5 6 10 4 20
4–5 4.5 16 10 4 30
6–8 7 12 16 13 41

9–10 9.5 12 10 17 39
11+ ' 11.5 8 10 20 38

Total 54 56 58 168
Table  3. Counts of texts by grade band and genre, for 
dataset #2. GL specifies our grade level designation.

The second dataset comprises 168 texts (80.8K 
word  tokens)  from Appendix  B of  the  Common 
Core State Standards (CCSSI, 2010)6, not includ-

6 www.corestandards.org/assets/Appendix_B.pdf 
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ing  poetry  items.  Exact  grade  level  designations 
are not  available for this set,  rather the texts are 
classified into grade bands, as established by ex-
pert  instructors  (Nelson  et  al.,  2012).  Table  3 
provides the breakdown by grade and genre. Text 
length  in  this  set  ranged  between  99  and  2073 
words,  with  average  481  words.  Average  text 
length in the literary subset was 455 words and in 
the informational subset 373 words.

Our  collection  is  not  very  large  in  terms  of 
typical datasets used in NLP research. However, it 
has two unique facets: grading and genres. Rather 
than having grade-ranges, set #1 has exact grade 
designations  for each text.  Moreover,  these  were 
rated by educational experts and used in state and 
nationwide testing programs. 

Previous research has emphasized the importan-
ce of genre effects for predicting readability and 
complexity (Sheehan et al., 2008) and for text ad-
aptation (Fountas and Pinnell, 2001). For all texts 
in our collection, genre designations (information-
al, literary, or 'other') were provided by expert hu-
man  judges  (we  used  the  designations  that  were 
prepared for the RTT competition,  Nelson et  al., 
2012). The 'other' category included texts that were 
somewhere in between literary and informational 
(e.g. biographies), as well as speeches, schedules, 
and manuals.

3 Results 

3.1 Lexical Tightness and Grade Level

Correlations of lexical tightness with grade level 
are shown in Table 4, for sets 1 and 2, the com-
bined set and for literary and informational subsets.

Our first finding is that lexical tightness has con-
siderable  and  statistically  significant  correlation 
with grade level, in each dataset, in the combined 
dataset  and  for  the  specific  subsets.  Notably the 
correlation  between  lexical  tightness  and  grade 
level is negative. Texts of higher grade levels are 
lexically less tight, as predicted.  

Although in these datasets grade level is mode-
rately correlated with text length, lexical tightness 
remains  considerably and significantly correlated 
with grade level even after removing the influence 
of correlations with text length.

Our second finding is that lexical tightness has a 
stronger correlation with grade level for the subset 
of literary texts (r=-0.610) than for informational 

texts (r=-0.499) in set #1. A similar pattern exists 
for set #2.

Figure 2 shows the average LT for each grade 
level,  for  texts  of  set  #1.  As the grade level  in-
creases,  average lexical tightness values decrease 
consistently, especially for informational and liter-
ary  texts.  There  are  two  'outliers'.  Informational 
texts for grade 12 show a sudden increase in lexic-
al tightness. Also, for genre 'other', grades 9,10,11 
are underepresented (see Table 2).

Subset N Correlation 
GL&length

Correlation 
GL&LT

Partial 
Correlation 

GL&LT
  Set #1

All 1012 0.362 -0.546 -0.472
Inf 429 0.396 -0.499 -0.404
Lit 488 0.408 -0.610 -0.549

  Set #2 (Common Core)
All 168 0.360 -0.441 -0.373
Inf 54 0.406 -0.313 -0.347
Lit 56 0.251 -0.546 -0.505

  Combined set
All 1180 0.339 -0.528 -0.462
Inf 483 0.386 -0.472 -0.369
Lit 544 0.374 -0.601 -0.545

Table  4.  Correlations  of  grade  level  (GL)  with  text 
length  and  lexical  tightness  (LT).  Partial  correlation 
GL&LT  controls  for  text  length.  All  correlations  are 
significant with p<0.04.

Figure 3 shows the average LT for each grade 
band, for texts of set #2. Here as well, decrease of 
lexical tightness is evident with increase of grade 
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Figure 2. Lexical tighness by grade level and genre, 
for texts of grades 3-12 in dataset #1.
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level. In this small set, informational texts show a 
relatively  smooth  decrease  of  LT,  while  literary 
texts  show a  sharp  decrease  of  LT in  transition 
from grade band 4-5 (4.5) to grade band 6-8 (7). 
Texts labelled as 'other' genre in set #2 are gener-
ally less 'tight' than literary or informational. Also 
for 'other' genre, bands 7-8, 9-10 and 11-12 have 
equal lexical tighness.

3.2 Grade Level and Readability Indexes

We have also calculated readability indexes for 
each passage in sets 1 and 2. We used well known 
readability formulae: Flesch-Kincaid Grade Level 
(FKGL: Kincaid et al., 1975), Flesch Reading Ease 
(FRE:  Flesch,  1948),  Gunning-Fog  Index  (GFI: 
Gunning, 19527), Coleman Liau Index (CLI: Cole-
man and Liau, 1975) and Automated Readability 
Index (ARI: Senter and Smith, 1967). All of them 
are based on measuring the length of words (in let-
ters  or  syllables)  and  length  of  sentences  (mean 
number  of  words).  For  our  collection,  we  also 
computed the average sentence length (avgSL, as 
word count),  average word frequency8 (avgWF – 
over all  words),  and average word frequency for 
only  content  words  (avgWFCW).  Results  are 
shown in Table 5. 

Word frequency has quite low correlation with 
grade  level  in  both  datasets.  Readability  indexes 

7 Using the modern formula, as referenced at http://en.wikipe-
dia.org/wiki/Fog_Index 
8 For word frequency we use the unigrams data from the 
Google Web1T collection (Brants and Franz, 2006).

have a strong and consistent correlation with grade 
level.  For  dataset  #1,  readability  indexes  have 
much stronger correlation with grade level for in-
formational  texts  (|r| between  0.7  and  0.81)  as 
compared  to  literary  texts  (|r| between 0.53  and 
0.68), and a similar pattern is seen for dataset #2, 
with overall lower correlation.

The correlation of Flesch-Kincaid (FKGL) val-
ues with LT are  r=-0.444 for set #1,  r=-0.499 for 
the informational subset and  r=-0.541 for literary 
subset. The correlation is r=-0.182 in set #2. 

All Inf Lit
                  Set #1

N (texts): 1012 429 488
FKGL 0.705 0.807 0.673
FRE -0.658 -0.797 -0.629
GFI 0.701 0.810 0.673
CLI 0.537 0.722 0.537
ARI 0.670 0.784 0.653
avgSL 0.667 0.705 0.630
avgWF 0.205 0.128 0.249
avgWFCW 0.039 -0.039 0.095
                    Set #2 (Common Core)

N (texts): 168 54 56
FKGL 0.487 0.670 0.312
FRE9 -0.503 -0.586 -0.398
GFI 0.493 0.622 0.356
CLI 0.430 0.457 0.440
ARI 0.458 0.658 0.298
avgSL 0.407 0.701 0.203

avgWF 0.100 0.234 -0.109

avgWFCW 0.156 -0.053 -0.038

Table 5. Correlations of grade level with readability 
formulae and word frequency. All correlations apart 
from the italicized ones are significant with p<0.05. 
Abbreviations are explained in the text.

3.3 Lexical Tightness and Readability Indexes

To  evaluate  the  usefulness  of  LT  in  predicting 
grade level of passages, we estimate, using dataset 
#1, a linear regression model where the grade level 
is a dependent variable and Flesch-Kincaid score 
and lexical tightness are the two independent vari-
ables (features). First, we checked whether regres-
sion model improves over FKGL in the training set 
(#1). Then, we tested the regression model estim-
ated on 1012 texts of set #1, on 168 texts of set #2.

The  results  of  the  regression  model  on  1012 
texts  of  set  #1  (R2=0.565,  F(2,1009)=655.85, 
9 Flesch Reading Ease formula is inversely related to grade 
level, hence the negative correlations.
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Figure 3. Lexical tighness by grade band and genre, 
for texts in dataset #2 (CommonCore).
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p<0.0001)  indicate  that  the  amount  of  explained 
variance in the grade levels, as measured by the ad-
justed R2 of the model, improved from 0.497 (with 
FKGL alone,  multiple  r=0.705)  to  0.564 (FKGL 
with LT, r=0.752), that is an absolute improvement 
of 6.7%, and a relative improvement of 13.5%.

A separate regression model  was estimated on 
the  informational  texts  of  dataset  #1.  The  result 
(R2=0.664, F(2,426)=420.3, p<0.0001) reveals that 
adjusted  R2 of  the  model  improved  from  0.651 
(with FKGL alone, r=0.807) to 0.663 (FKGL with 
LT,  r=0.815).  Similarly,  a  regression  model  was 
estimated on the literary texts of set #1. The result 
(R2=0.522, F(2,485)=264.6, p<0.0001) reveals that 
adjusted R2 of the model improved from .453 (with 
FKGL alone,  r=0.673) to 0.520 (FKGL with LT, 
r=0.722). We observe that Flesch-Kincaid formula 
works well on informational texts, better than on 
literary  texts;  while  lexical  tightness  correlates 
with grade level in the literary texts better than it 
does in the informational texts. Thus, for informa-
tional texts, adding LT to FKGL provides a small 
(1.2%) but statistically significant improvement for 
predicting  GL.  For  literary  texts,  LT  provides  a 
considerable  improvement  (explaining  additional 
6.3% in the variance).

We use the regression model (FKGL & LT) es-
timated on the 1012 texts of set #1 and test it on 
168 texts of set #2. In dataset #2, FKGL alone cor-
relates with grade level with  r=0.487, and the es-
timated regression equation achieves correlation of 
r=0.574 (the difference between correlation coeffi-
cients  is  statistically  significant10,  p<0.001).  The 
amount of explained variance rises from 23.7% to 
33%,  an  almost  10%  improvement  in  absolute 
scores, and 39% relative improvement over FKGL 
readability index alone.

3.4 Analyzing Poetry

Since poetry is often included in school curricula, 
automated estimation of poem complexity can be 
useful. Poetry is notoriously hard to analyze com-
putationally. Many poems do not adhere to stand-
ard  punctuation  conventions,  have  peculiar  sen-
tence structure  (if  sentence boundaries are  indic-
ated at all). However, poems can be tackled with 
bag-of-words approaches. 

We have collected 66 poems from Appendix B 
of  the  Common  Core  State  Standards  (CCSSI, 
10Non-independent correlations test, McNemar (1955), p.148.

2010). Just as other materials from that source, the 
poems  are  classified  into  grade  bands,  as  estab-
lished by expert instructors. Table 6 provides the 
breakdown by grade band. Text length in this set 
ranges between 21 and 1100 words, the average is 
182, total word count is 12,030.

Grade Band GL N (texts)
K-1 1 12
2–3 2.5 15
4–5 4.5 9
6–8 7 11
9–10 9.5 7
11+ ' 11.5 12

Total 66
Table 6. Counts of poems by grade band, 
from Common Core Appendix B. 
GL specifies our grade level designation.

We computed lexical tightness for all 66 poems 
using the same procedure as for the two larger text 
collections. For computing correlations, texts from 
each grade band where assigned grade level as lis-
ted in Table 6. For the poetry dataset, LT has rather 
low  correlation  with  grade  level,  r=-0.271 
(p<0.002).  Text  length  correlation  with  GL  is 
r=0.218  (p<0.04).  Correlation  of  LT  and  text 
length is  r=-0.261 (p<0.02). Partial correlation of 
LT and GL, controlling for text length, is r=-0.227 
and only almost significant (p=0.069). In this data-
set,  the  correlation  of  Flesch-Kincaid  index 
(FKGL) with GL is r=0.291 (p<0.003) and Flesch 
Reading Ease (FRE)  has  a  stronger  correlation,  
r=-0.335 (p<0.003).

On examining some of the poems, we noted that 
the LT measure does not assign enough importance 
to recurrence of words within a text. For example, 
PNPMI(voice,  voice)  is  0.208,  while  the  ceiling 
value is 1.0. We modify the LT measure in the fol-
lowing way. Revised Association Score (RAS) for 
two words a and b:

=1.0   if a=b (token repetition)

RAS(a,b) =0.9  if a and b are inflectional variants 
of same lemma

= PNPMI(a,b)  otherwise

Revised Lexical Tightness (LTR) for  a text  is 
average of RAS scores for all accepted word pairs 
in the text (same filtering as before).

34



For the set of 66 poems, LTR moderately correl-
ates with grade level r=-0.353 (p<0.002). LTR cor-
relates  with  text  length  r=0.28  (p<0.02).  Partial 
correlation  of  LTR and  GL,  controlling  for  text 
length,  is  r=-0.312 (p<0.012).  This  suggests  that 
the revised measure captures some aspect of com-
plexity of the poems. 

We  re-estimated  the  regression  model,  using 
FRE readability and LTR, on all 1012 texts of set 
#1. We then applied this model  for prediction of 
grade levels  in  the  set  of  66  poems.  The model 
achieves  a  solid  correlation  with  grade  level, 
r=0.447 (p<0.0001). 

3.5 Revisiting Prose

We revisit the analysis of our two main datasets, 
set #1 and #2, using the revised lexical tightness 
measure  LTR.  Table  7  presents  correlations  of 
grade level with LT and LTR measures. Evidently, 
in each case LTR achieves better correlations. 

Subset N Correlation 
GL&LT

Correlation 
GL&LTR

  Set #1
All 1012 -0.546 -0.605
Inf 429 -0.499 -0.561
Lit 488 -0.610 -0.659

  Set #2 (Common Core)
All 168 -0.441 -0.492
Inf 54 -0.310 -0.336
Lit 56 -0.546 -0.662

  Combined set
All 1180 -0.528 -0.587
Inf 483 -0.472 -0.531
Lit 544 -0.601 -0.655

Table 7. Pearson correlations of grade level (GL) with 
lexical tightness (LT) and revised lexical tightness 
(LTR). All correlations are significant with p<0.04.

We re-estimated a linear regression model using 
the grade level as a dependent variable and Flesch-
Kincaid score (FKGL) and LTR as the two inde-
pendent variables. The results of regression model 
on  1012  texts  of  dataset  #1,  R2=0.583, 
F(2,1009)=706.07,  p<0.0001,  indicate  that  the 
amount of explained variance in the grade levels, 
as measured by the adjusted R2 of the model, im-
proved from 0.497 (with FKGL alone, r=0.705) to 
0.582 (FKGL with LTR, r=0.764), that is absolute 
improvement of 8.5%. For comparison, the regres-
sion model  with LT explained 0.564 of the vari-
ance, with 6.7% improvement over FKGL alone.

We re-estimated separate regression models for 
informational and literary subsets of set #1. For in-
formational  texts,  the  model  has  R2=0.667, 
F(2,426)=426.8,  p<0.0001,  R2 improving  from 
0.651 (with FKGL alone,  r=0.807) to adjusted R2 

0.666  (FKGL  with  LTR,  r=0.817).  Regression 
model with LT brought an improvement of 1.2%, 
the model with LTR provides 1.5%.

A regression model was estimated on the literary 
texts  of  dataset  #1.  The  result  (R2=0.560, 
F(2,485)=308.5, p<0.0001) reveals that adjusted R2 

of the  model  rose from .453 (with FKGL alone, 
r=0.673) to 0.558 (FKGL with LT,  r=0.748), that 
is 10.5% absolute improvement.  For comparison, 
LT brought 6.3% improvement. As with the origin-
al LT measure, LTR provides the bulk of improve-
ment for evaluation of literary texts.

The  regression  model  (FKGL  with  LTR), 
estimated on all 1012 texts of set #1, is tested on 
168  texts  of  set  #2.  In  set  #2,  FKGL  alone 
correlates with grade level with  r=0.487, and the 
prediction formula achieves correlation of r=0.585 
(the difference between correlation coefficients is 
statistically significant,  p<0.001).  The amount  of 
explained variance rises from 23.7% to 34.3%, that 
is 10.6% absolute improvement. Even better result 
of predicting grade level in set #2 is achieved using 
a  regression  model  of  Flesch  Readability  Ease 
(FRE) and LTR, estimated on all 1012 texts of set 
#1.  This  model  achieves  correlation  of r=0.616 
(p<0.0001) on the 168 texts of set #2, explaining 
37.9% of the variance. 

For  complexity  estimation,  in  both  proze  and 
poetry, LTR is more effective than simple LT.

4 Related Work 

Traditional readability formulae use a small num-
ber of surface features,  such as the average sen-
tence length (a proxy for syntactic complexity) and 
the average word length in syllables or characters 
(a  proxy to  vocabulary difficulty).  Such features 
are considered linguistically shallow, but they are 
surprisingly  effective  and  are  still  widely  used 
(DuBay, 2004;  Štajner et al., 2012). The formulae 
or their features are incorporated in modern read-
ability classification systems (Vajjala and Meurers, 
2012;  Sheehan et  al.,  2010;  Petersen  and Osten-
dorf, 2009).

Developments  in  computational  linguistics  en-
abled inclusion of multiple features for capturing 
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various  manifestations  of  text-related  readability. 
Peterson and Ostendorf (2009) compute a variety 
of features: vocabulary/lexical (including the clas-
sic 'syllables per word'), parse features, including 
average parse-tree height, noun-phrase count, verb-
phrase  count  and  average  count  of  subordinated 
clauses. They use machine learning to train classi-
fiers  for  direct  prediction of  grade level.  Vajjala 
and  Meurers  (2012)  also  use  machine  learning, 
with a wide variety of features, including classic 
features,  parse  features,  and  features  motivated 
from studies on second language acquisition, such 
as Lexical  Density and Type-Token Ratio.  Word 
frequency and its derivations, such as proportion of 
rare words, are utilized in many models of com-
plexity (Graesser et al., 2011; Sheehan et al, 2010; 
Stenner et al., 2006; Collins-Thompson and Callan, 
2004).

Inspired by psycholinguistic research, two sys-
tems have explicitly set to measure textual cohe-
sion for estimations of readability and complexity: 
Coh-Metrix  (Graesser  et  al.,  2011)  and  Sour-
ceRater (Sheehan et al., 2010). One notion of cohe-
sion involved in those two systems is lexical cohe-
sion – the amount of lexically/semantically related 
words in a text. Some amount of local lexical cohe-
sion can be measured via stem overlap of adjacent 
sentences, with averaging of such metric per text 
(McNamara et al., 2010). However, Sheehan et al. 
(submitted) demonstrated that such measure is not 
well correlated with grade levels.

Perhaps closest to our present study is work re-
ported in Foltz et al. (1998) and McNamara et al. 
(2010). These studies used Latent Semantic Ana-
lysis,  which  reflects  second  order  co-occurrence 
associative relations, to characterize levels of lex-
ical similarity for pairs of adjacent sentences with-
in  paragraphs,  and  for  all  possible  pairs  of  sen-
tences  within  paragraphs.  McNamara  et  al.  have 
shown success in distinguishing lower and higher 
cohesion versions of the same text,  but  have not 
shown  whether  that  approach  systematically  ap-
plies for different texts and across grade levels.

Our study is a first demonstration that a measure 
of  lexical  cohesion  based  on  word-associations, 
and computed globally for the whole text, is an in-
dicative  feature  that  varies  systematically  across 
grade levels.

In the theoretical tradition, our work is closest in 
spirit to Michael Hoey’s theory of lexical priming 
(Hoey, 2005, 1991), positing that users of language 

internalize patterns of word co-occurrence and use 
them in reading, as well as when creating their own 
texts. We suggest that such patterns become richer 
with age and education, beginning with the most 
tight patterns at early age.

5 Conclusions 

In  this  paper  we  defined  a  novel  computational 
measure, lexical tightness. It represents the degree 
to which a text tends to use words that are highly 
inter-associated  in  the  language.  We  interpret 
lexical tightness as a measure of intra-text global 
cohesion.

This  study  presented  the  relationship  between 
lexical  tightness  and  text  complexity,  using  two 
datasets of reading materials (1180 texts in total), 
with  expert-assigned  grade  levels.  Lexical  tight-
ness has a significant correlation with grade levels: 
about  -0.6  overall.  The  correlation  is  negative: 
texts for lower grades are lexically tight, they use a 
higher  proportion  of  mildly  and  strongly  inter-
associated words; texts for higher grades are less 
tight, they use a lesser amount of inter-associated 
words.  The  correlation  of  lexical  tightness  with 
grade level is stronger for texts of the literary genre 
(fiction and stories) than for text belonging to in-
formational genre (expositional).

While lexical tightness is moderately correlated 
with  readability  indexes,  it  also  captures  some 
aspects of prose complexity that are not covered by 
classic  readability  indexes,  especially for  literary 
texts.  Regression analyses  on a  training set  have 
shown  that  lexical  tightness  adds  between  6.7% 
and 8.5% of explained grade level variance on top 
of  the  best  readability  formula.  The  utility  of 
lexical  tightness  was  confirmed  by  testing  the 
regression formula on a held out set of texts. 

Lexical  tightness  is  also moderately correlated 
with grade level (-0.353) in a small set of poems. 
In the same set,  Flesch Reading Ease readability 
formula  correlates  with  grade  level  at  -0.335.  A 
regression  model  using  that  formula  and  lexical 
tightness achieves correlation of  0.447 with grade 
level.  Thus we have shown that  lexical  tightness 
has good potential for analysis of poetry.

In future work, we intend to a) evaluate on lar-
ger datasets, and b) integrate lexical tightness with 
other  features  used  for  estimation  of  readability. 
We also intend to use this or a related measure for 
evaluation of writing quality.
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Appendix A

The list of stopwords utilized in this study:

a, an, the, at, as, by, for, from, in, on, of, off, up,  
to, out, over, if, then, than, with, have, had, has,  
can,  could,  do,  did,  does,  be,  am,  are,  is,  was,  
were, would, will,  it,  this,  that,  no, not,  yes, but,  
all,  and,  or,  any,  so,  every,  we,  us,  you,  also,  s

Note that most of these words would be excluded 
by POS filtering. However, the full  stop list  was 
applied anyway.
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