
WVL ’13

NAACL HLT 2013
Workshop on Vision and Language

Proceedings of the Workshop

14 June 2013
Westin Peachtree Plaza
Atlanta, Georgia, USA



c©2013 The Association for Computational Linguistics

209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-937284-47-3

ii



Introduction

Welcome to the HLT NAACL Workshop on Vision and Language (WVL’13).

There is an increasing amount of research at the interfaces of speech and language processing and
computer vision, computer graphics, robotics and information retrieval which aims to develop systems
that automatically generate descriptions of images or videos, or generate images based on natural
language descriptions, acquire and understand language in a perceptually grounded, visual context,
or perform language-based image search.

Since the main purpose of this workshop is to bring researchers from these communities together, the
workshop will mostly consist of invited talks, both by NLP and computer vision students who are
working in the area, as well as by established researchers from academia and industry.
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Annotation of Online Shopping Images without Labeled Training Examples

Rebecca Mason and Eugene Charniak
Brown Laboratory for Linguistic Information Processing (BLLIP)

Brown University, Providence, RI 02912
{rebecca,ec}@cs.brown.edu

Abstract

We are interested in the task of image an-
notation using noisy natural text as training
data. An image and its caption convey dif-
ferent information, but are generated by the
same underlying concepts. In this paper, we
learn latent mixtures of topics that generate
image and product descriptions on shopping
websites by adapting a topic model for multi-
lingual data (Mimno et al., 2009). We use the
trained model to annotate test images without
corresponding text. We capture visual prop-
erties such as color, texture, shape, and ori-
entation by computing low-level image fea-
tures, and measure the contribution of each
type of visual feature towards the accuracy of
the model. Our model significantly outper-
forms both a competitive baseline and a pre-
vious topic model-based system.

1 Introduction

Image annotation is a classic problem in Computer
Vision. Given a query image, the task is to gen-
erate a set of textual labels that describe the visual
content. The typical approach to these problems is
to use supervised models, which require large num-
bers of hand-annotated examples for each of the la-
bels. However, the amount of information available
on the web continues to grow, the task of organiz-
ing and describing visual data becomes increasingly
complex. For example, a shopping website might ar-
range products into broad categories such as “shoes”
and “handbags” with each category containing tens
of thousands of products that are difficult for users

to search and navigate. It is often infeasible to dis-
cover all of the attributes within those categories that
are relevant to users and create labeled training ex-
amples for each of them.

Instead, we approach this problem by discovering
visual attributes from noisy natural language cap-
tions. That is, given a collection of images and cap-
tions found on the web, we learn a model of visual
and textual features. Then given a query image with
no text, we can generate likely descriptive words.
This is a difficult task because image captions on the
web are often noisy and incomplete: some captions
might not describe a particular visual feature, might
use a synonym for that feature, or might describe in-
formation that is not visual in the image at all.

A secondary motivation for this work is to use the
image annotations as a component in language gen-
eration systems such as for automatic image caption-
ing. We point to examples of previous work such
as Feng and Lapata (2010a) where image annota-
tions generated from a topic model are used to help
generate full sentences to describe images. Much of
the current research in image captioning is limited
by the current technology for object recognition in
Computer Vision. For example, SBU-Flickr dataset
(Ordonez et al., 2011) with 1 million images and
captions, is considered to be general-domain but is
actually built by querying Flickr using a pre-defined
term list related to visual attributes that there are
trained recognition systems for. While these sys-
tems can accurately generate descriptions for com-
mon visual objects and attributes, they are not as
well-suited for describing the “long-tail” of visual
attributes which appear in many domain-specific
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Two adjustable buckle straps top a
classic rubber rain boot grounded by
a thick lug sole for excellent wet-
weather traction.

Size(s) Available: 6, 11.5. Brand &
Style - VANS Kvd Width - Medium
(B, M) Heel Height - Shoe Size is
Womens Size 11.5 = Mens Size 10
1 Inch Heel Material - Canvas Upper
and Man Made Sole

Carlo Fellini - Evening clutch
beaded on a wave pattern

Table 1: Examples of data from the Attribute Discovery Dataset (Berg et al., 2010). The images are fairly clean and
uniform, while captions have more noise and variation.

datasets.
In this paper, we model image and text features

from the training data using a generative model. We
adapt the Polylingual topic model from Mimno et
al. (2009) to train on multi-modal data, and then use
the trained model to generate annotations for test im-
ages. We evaluate our model on two categories of
shopping images using a variety of types of com-
puted image features. For image annotation we out-
perform both a difficult baseline and previous work.

2 Related Work

We use the polylingual topic model from Mimno et
al. (2009), which was developed to model multi-
lingual corpora that are topically comparable be-
tween languages – the documents are not direct
translations, but they cover the same ideas. For ex-
ample, English and Finnish Wikipedia pages about
skiing are roughly similar, but the subject is covered
more thoroughly in Finnish. Therefore, the number
of tokens assigned to the Finnish topic for skiing is
much higher than it is in the English. While Mimno
et al. (2009) show that the model is effective in tasks
such as modeling topically comparable documents
across languages, our work is the first to show that
this model can be used to model data of different
modalities. Another quality of the polylingual topic
model is that words in different languages do not di-
rectly correspond with each other. This is a feature

of other multi-lingual topic models but would not
work for multi-modal data because a textual word
can carry more meaning by itself than an image fea-
ture can.

Countless approaches have been proposed for the
use of topic models in image annotation, but the
vast majority of these approaches consider the text
modality merely as labels for the image modality.
The most highly cited of these is the Correspon-
dence LDA (corr-LDA) model of Blei et al. (2003),
where topics are learned using the image modality
alone, and each textual word must be generated by a
specific region in the image. However, more recent
work has started to recognize the textual modality
as a source of information in its own right. Jia et
al. (2011) present a model that allows different in-
formation to be emphasized in each modality, but it
requires very clean text; they do not use documents
with captions that cannot be easily parsed or pro-
cessed. Then, they stem all words, and disregard
sparse word tokens. This works when working with
sources such as Wikipedia, where text captions are
highly edited and consistently formatted. In compar-
ision, our work can be trained on corpra where the
text has poor or inconsistant quality. Additionally,
their work was for the task of image retrieval from a
text query, while we are generating text annotations
for a query image.

Our work is most similar to the MixLDA model
of Feng and Lapata (2010b), except MixLDA mod-
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els images and their related text as a single bag-
of-features, with visual and textual features coming
from the same vocabulary. This means that some
topics should have a greater proportion of features
from one of modalities, if there is an idea that is bet-
ter expressed in one over the other. Their model was
developed for finding descriptive words given both
an image and a news article, and can also be used
on large and noisy amounts of data, so we compare
MixLDA against our model in the experiments.

Although we use the Attribute Discovery Dataset
of Berg et al. (2010), their work is different from
ours in both problem formulation and the types of
attributes discovered. Their primary interest is to
characterize attributes according to how they are vi-
sually represented: global or local; color, texture, or
shape. Their work does not address the task of pre-
dicting attributes for unseen images. Additionally,
they do not work with individual descriptive words,
but cluster them using mutual information of vi-
sual attributes, creating a smaller number of “visual
synsets”. For example, one of their visual synsets
for images and descriptions of womens handbags is
{mesh, interior, metal} and another is {silver, metal-
lic}. In comparison, in the topic model the same
word can be generated by more than one topic.

Liu et al. (2010) examine the use of a variety of
image features in a Bayesian model in order to mea-
sure which are the best for classifying diverse ma-
terials such as stone, glass, and plastic. They found
that the image features they used for shape and color
were better indicators of the material of an object
than texture features, and their best combined model
did not include texture as a feature at all. We are also
interested in finding out whether our performance on
generating descriptive words is affected by different
types of image features.

3 Dataset

We use the Attribute Discovery Dataset from Berg
et al. (2010).1 The dataset consists of pairs of im-
ages and captions taken from the shopping website
like.com. The data has four categories: women’s
shoes, handbags, earrings, and neckties. We run our
model on two categories, shoes and handbags, due

1http://tamaraberg.com/
attributesDataset/index.html

to their larger sizes – 14764 and 9145 image-caption
pairs respectively – and diversity of features. This is
a reasonable amount of data in the shopping images
domain; more than half of the number of compa-
rable products sold on large retail websites such as
Zappos.com or Amazon.com.

Compared to general datasets such as Pascal
Sentences, the images in the Attribute Discovery
Dataset are more uniform. All image files are
280x280 pixel JPEGs, and images of products are
typically taken from similar angles against a white
or a light-colored solid background. Only rarely do
the images have noisy backgrounds, such as a per-
son wearing the item, or the same item displayed in
multiple colors in one image. However, this does not
necessarily make our task much easier, since the vi-
sual attributes we wish to learn are not pre-defined as
they are in a general-domain dataset. And the lack of
hand-annotated data means no negative examples of
when an attribute is not present, which are typically
used to train visual classifiers.

Furthermore, the captions are extremely noisy in
this dataset. Compared to the 20 object types in the
Pascal Sentences dataset, or about one hundred in
COREL, here there are thousands of words that can
be used to describe features in the images, includ-
ing synonyms, multiple stems of words, and mis-
spellings. In addition to explicit visual descriptions
of the products, the captions describe “less visual”
features such as details about the construction of the
item, during which season or activity it would be ap-
propriate to wear, or feelings that could be evoked
by looking at the item. These features are difficult
to represent as specific visual attributes, but can be
identified visually by domain-experts. Captions can
also include information that is non-visual such as
sizing and shipping information, or whether the item
is on sale.

The captions can be either full English sentences,
a list of features, or sometimes just a few words.
Longer captions in the dataset are truncated to 250
characters in length.

From our own obervations, we estimate about
10% of the captions in the shoes dataset contain
few or no descriptive words. At least 3.7% of the
shoes captions are entirely Javascript code, have sig-
nificant portions of code, or very long URLs. An-
other 5-6% either contain no information besides
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sizing or shipping information, only the brand name
or model number of the shoe, or the caption is so
short that there are only one or two descriptive words
that could be used in our model. In the womens’
shoes category, we take some simple steps to remove
URLs and code to avoid learning accidental correla-
tion with legitimate features.2 However, we still use
all image and caption pairs in the training set, in-
cluding those which end up having empty captions,
since they are still useful for learning topics for vi-
sual features. For the handbags captions, we did not
try to remove code or long URLs since it seemed to
be less of a problem in that category.

4 Feature Representation

4.1 Text Features
The bag-of-words model is used for text. We use
Mxterminator (Reynar and Ratnaparkhi, 1997) to
split sentences in the captions (in many instances,
nothing is done in this step becuase there are no
full sentences in the caption), Stanford POS Tag-
ger(Toutanova et al., 2003) to tag words, then in-
clude adjectives, adverbs, verbs, and nouns in the
topic model (except for proper nouns and common
background English words from a stoplist). How-
ever, these tags are really more a rough estimate of
parts of speech due to the number of incomplete sen-
tences and phrases, and the fact that many of the
words used to describe styles or attributes of cloth-
ing have different meanings in colloqueal English.3

All tokens are converted to lower case, but there is
no stemming or lemmatization. After preprocessing,
the size of the shoes text vocabulary is 9578 words,
with an average of 16.33 descriptive words per im-
age, while the bags have a text vocabulary of 6309
word types with 15.41 descriptive words per image
on average.

4.2 Visual Features
The bag-of-features model is used for visual features
as well. Most of these features are standard in com-
puter vision research, and are also used in work we
cited in Section 2.

2Tokens removed: URLs, all tokens that end in “.sh”, and a
few tokens obviously related to Javascript eg script, src, typeof,
var.

3Some examples of domain-specific words used in shopping
image descriptions: www.zappos.com/glossary

Shape: A SIFT descriptor describes which way
edges are oriented at a certain point in an image
(Lowe, 1999). It was develped to recognize the same
object under different scales and rotations. How-
ever, it is also commonly used for recognizing more
generalized types or features of objects. We use the
VLFeat open source library (Vedaldi and Fulkerson,
2008) to compute SIFT features at points of interest
and to cluster the SIFT features into discrete “visual
terms” using the k-means algorithm. There are 750
visual terms for SIFT features.

Color: We use two representations for color,
RGB (red, green, blue) and HSV (hue, satura-
tion, value). 25 pixels are sampled from the cen-
ter 100x100 pixels of the image (to avoid sampling
from the background of the image). Those pixel val-
ues are also clustered to visual terms using k-means,
with 100 visual terms each.

Texture: Images are convolved with Gabor filters
at multiple orientations and scales, sampled at ran-
dom locations, then clustered to form texton features
for texture (Leung and Malik, 2001). We convert all
images to grayscale, then sample 25 locations from
the center of the image, and cluster to 100 visual
terms. We also have a color texton feature, where
we sample and cluster textons separately for the red,
green, and blue color channels.

Reflectance/Curvature:4 We use three types of
related features for gradients and curvature. The
first is a bag-of-HOG (histogram of gradients) fea-
ture set (Dalal and Triggs, 2005) computed over a
regular grid on the image to measure changes in in-
tensity.5 The most significant of those features (as
determined by L2 norm) are selected for each im-
age, and like previous features are clustered into vi-
sual terms using k-means. The second two types are
derivatives of HOG which include information about
the amount of curvature at each orientation of the
HOG descriptor.6
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Figure 1: Polylingual topic model (Mimno et al., 2009)

5 Model

We model textual and visual features using the
polylingual topic model by Mimno et al. (2009). In
this section, we describe how the generative process
and inference of this model is adapted to topically
comparable multi-modal data.

Figure 1 shows the original polylingual topic
model. We model multi-modal data using two “lan-
guages”: txt for the bag-of-words captions, and img
for the combined visual terms. The generative pro-
cess is defined for an image and caption pair, w =<
wimg, wtxt >:

θ ∼ Dir(θ, αm)

zimg ∼ P (zimg|θ) =
∏
n

θ
zimg
n

ztxt ∼ P (ztxt|θ) =
∏
n

θztxt
n

wimg ∼ P (wimg|zimg,Φimg) = φimg

wimg
n |zimg

n

wtxt ∼ P (wtxt|ztxt,Φtxt) = φtxt
wtxt

n |ztxt
n

First, a topic distribution for w is drawn from an
asymmetric Dirichlet prior with concentration pa-
rameter α and base measure m. Then a latent topic
assignment is drawn for each word token in wtxt,
and each discrete image feature in wimg. Once the
topic assignments are sampled, the observed tokens
are sampled according to their probability in the
modality-specific topics Φimg = {φimg

1 , ..., φimg
T }

and Φtxt = {φtxt
1 , ..., φtxt

T }.
4Note: These features are implemented using code from

(Felzenszwalb et al., ).
5There is significant overlap between these features, al-

though the benefits of overlap are lost due to the bag-of-features
model.

6Personal correspondance, work in progress.

To find the most probable descriptive words for an
unseen image, the first step is to estimate the topic
distribution that generated the image. Gibbs sam-
pling is used to sample topic assignments for visual
terms in the test image dimg:

P (zn = t|dimg, z\n,Φ
img, αm)

∝ φimg

dimg
n |t

(Nt)\n + αmt∑
tNt − 1 + α

Assuming that the descriptive words are indepen-
dent, the probability of text word wi given dimg is:

P (wi|dimg) =
∑

t

P (wi|ztxt
t )P (zt|dimg)

summing over all topics t ∈ T .
For training the model, we used the Polylingual

topic model implementation from the Mallet toolkit
(McCallum, 2002) (with some small modifcations
to use it for generation). We use 1000 iterations for
inference, with hyperparameter optimization every
10 iterations. In both shoes and bags categories, the
number of topics is 200, which was minimally tuned
by hand on the shoes data.

6 Experimental Setup and Evaluation

We first run our model on the larger category, shoes.
For both systems and baselines, we find the 10, 15,
and 20 most likely words for the test images. We
evaluate by computing precision and recall against
descriptive words from the held-out captions for
those images.7 We compute macro-averages of these
scores because there is a lot of variation between the
sizes of the captions in the dataset. The split between
training and test instances is 80/20%.

We also evaluate the contributions of different
types of image features. We evaluate the model for
each image feature individually (along with the text
features), as well as combinations of image features.

We compare against the MixLDA system and a
strong baseline. We choose MixLDA because it
is relatively easy to re-implement and because it

7We find descriptive words for test instances in the exact
same way we did for training instances in Section 4.1. Instances
where we did not find any useable descriptive words did not
count towards the evaluation.
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10 words 15 words 20 words
P R F1 P R F1 P R F1

Baselines
MixLDA 21.02 13.80 16.66 17.41 17.15 17.13 14.88 19.53 16.89
Corpus frequency 21.03 13.73 16.61 17.51 17.14 17.32 15.41 20.12 17.45
Single Attribute
SIFT 27.00 16.30 20.34 22.84 20.65 21.69 20.09 24.22 21.96
Grayscale Texture 21.26 13.88 16.80 18.25 17.87 18.06 15.71 20.52 17.80
RGB Texture 24.77 14.93 18.63 21.01 18.99 19.95 18.49 22.29 20.21
HSV Color 22.17 13.35 16.67 18.59 16.79 17.65 16.48 19.85 18.01
RGB Color 23.21 13.98 17.45 19.78 17.88 18.78 17.53 21.12 19.15
HOG 26.33 15.87 19.80 22.36 20.21 21.23 19.60 23.62 21.42
TriHOG 24.60 14.82 18.50 20.64 18.66 19.60 18.14 21.87 19.83
TriHOG-Polar 26.03 15.69 19.58 22.06 19.94 20.95 19.32 23.29 21.12
Combined Models
All-Color 24.22 14.60 18.22 20.62 18.65 19.59 18.11 21.83 19.80
All-Texture 25.50 15.41 19.24 21.63 19.55 20.53 18.88 22.75 20.64
All-HOG 27.36 16.50 20.58 23.31 21.07 22.14 20.40 24.58 22.30
Combine All 29.31 17.70 22.04 24.88 22.49 23.63 21.71 26.16 23.73
SIFT+RGB Texture+HOG 28.62 17.25 21.52 24.35 22.01 23.12 21.20 25.55 23.17

Table 2: Results of evaluation in the women’s shoes cateogory (top 10-20 words).

has previously outperformed other image annota-
tion systems when trained on natural language cap-
tions. Because the MixLDA model originally only
used SIFT features, we compare it against the SIFT-
only version of our model, with each system using
the same computed image and text features. We
re-implement the MixLDA system mostly as it is
described in Feng and Lapata (2010b), with a few
changes to make it more comparable to our model:
Obviously in our version of MixLDA the test in-
stances are only the unseen image as there is no other
surrounding text. The number of topics is 200 (the
original MixLDA had more but that did not seem to
help here), and the α and β hyperparameters are op-
timized every 10 iterations.8

We also compare our model against corpus fre-
quency of words in the training set. Although this
may seem like a trivial baseline, previous work

8We used the Mallet toolkit’s Parallel LDA sampler for in-
ference, while a variational approach is used in the original.
However, we do not believe this would change the outcome of
this experiment. We also tried MixLDA without hyperparam-
eter optimization but we do not show those results as they are
significantly worse.

on image annotation from both computer vision
(Müller et al., 2002; Monay and Gatica-Perez, 2003;
Barnard et al., 2003) and natural language process-
ing (Mason and Charniak, 2012) has shown that a
large portion of the keyword probability mass can
often be accounted for by a very small number of
words, allowing systems to game better-looking re-
sults by simply guessing the frequency distribution
of the text vocabulary. We find this to be espe-
cially true in the domain-specific case, where com-
mon terms (eg shoe, sole, heel, upper) are used in
almost every caption, and in some captions account
for most words used (such as the second example
in Table 1). While domain-frequent words are also
needed for generating new captions, we don’t want
them to account for all of the words our system gen-
erates. Of course, a human evaluation would be
another possible way of addressing this issue, but
it would be difficult and expensive to find enough
people who have sufficient knowledge of womens’
clothing and would be able to accurately say whether
the generated words are appropriate or not (words
such as hobo, PU, stacked, upper, and vamp). Also,
although the gold image captions are noisy, the num-
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sole upper detail heel print fun fab-
ric patent uppers soles high shoe
rounded leather rubber lining elastic
animal toe feet

style upper heel leather strap sandal
lining toe dress satin shoe comfort
ankle sole adjustable outsole plat-
form stiletto rhinestone sandals

bag, leather, zip, pocket, hardware,
features, shoulder, flap, main, cell,
perfect, length, drop, zipper, clo-
sure, bold, phone, evening, holds,
hobo

This high heel platform shoe has a
patent leather upper with an orna-
menting bow at the toe, a leather lin-
ing, a rounded toe, and a rubber bot-
tom.Available Colors: Black Patent,
Cheetah Print PU.

Create a timeless look with these
Andie dress sandals from Col-
oriffics. Dyeable white satin matte
satin or metallic satin upper in a
two-piece dress-sandal style with
an open round toe crossing pleated
vamp straps with a dazzling rhine-
stone clasp and a wraparound heel
strap with an adjustable buckle clo-
sure.

Treesje Dakota Shoulder Bag Black
Shine - Designer Handbags

Table 3: Example results for unseen images. Both the top words generated by our model and the original held-out
captions for the images are shown. (Note: In the third example, “hobo” is actually the term that is used to describe
that shape of handbag.)

ber of test documents is very large so we can find
significance on precision and recall using bootstrap
resampling.

We also ran the baseline system and our system
on the handbags category of the dataset. We did not
modify the system in any way when using the bags
dataset, just gave it different file for input.

7 Results and Discussion

The results of our evaluations are in Table 2. As
we expected, the corpus frequency baseline does
very well. It is comparable to MixLDA for 10
and 15 words, and significantly better than MixLDA
for over 20 words. However, the Polylingual topic
model using only SIFT features and text is much bet-
ter than both. The trained MixLDA model has topics
with both image and text features, so when estimat-
ing topics given only an image, it estimates that it
was generated by topics that have a high proportion
of image features. Though it also estimates some

topics that have a mix of visual and text features,
being able to generate good text descriptions from
those topics, the topics that have less text features
will be mainly determined by the smoothing param-
eter – the uniform distribution, worse than guessing
the corpus distribution.

Out of the single attribute models, all except three
of the single feaure models were significantly higher
than corpus frequency on both precision and recall
at 10, 15, and 20 words. The exceptions are the two
color features and grayscale texture. For grayscale
texture, we had expected it would correlate well with
the material of the shoe; but either the low resolu-
tion of the images makes it difficult to distinguish
materials by their texture, or materials don’t corre-
late with the “less visual” features as much as we
expected. Interestingly, since the material of an item
tends to correlate strongly with other attributes such
as shape and color, so our model still generates cor-
rect descriptive words for material in many cases.

While neither color nor texture were useful fea-
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10 words 15 words 20 words
P R F1 P R F1 P R F1

Corpus frequency 17.58 13.19 11.76 13.19 12.70 12.94 11.76 15.10 13.22
Combined Model 24.41 15.67 19.09 21.01 20.22 20.61 18.76 24.09 21.10

Table 4: Results of evaluation in the handbags cateogory (top 10-20 words).

tures on their own, RGB Texture did very well as a
single attribute, and was within signficance of both
the combined color and combined texture models.
This may be related to the fact that RGB Textons
have a larger number of visual terms than those other
features, 100 for each of the three color channels.
Unlike material, we observed that the color of an
object is often not mentioned in the human-written
caption (as seen in the examples in Table 1), or sev-
eral colors are described in the caption where only
one is seen in the image (seen in some of the exam-
ples in Table 3). We also observed that our system
generates very few color words.

The gradient and shape-based features have the
best single-attribute performance by far. Both SIFT
and HOG capture shape at local points, but while
SIFT features are invariant to differences in position
or scale, HOG features are more sensitive to the way
the item is oriented in the image. Although the cur-
vature features TriHOG and TriHog-Polar are nearly
as good as HOG on their own, combining the three
HOG features does not significantly improve perfor-
mance of the model over HOG alone.

Not all of the single-attribute models performed
as well as others, but there was no case where re-
moving one of the features improved the perfor-
mance of the combined model. The fewest num-
ber of image attributes that our model could use
and still get within significance to the full combined
model is three – SIFT, RGB Texture, and HOG.
However, we found that each image attribute does
slightly improve, the model, even if not by a signifi-
cant amount.

Our results on the handbags category of the
dataset are shown in Table 4. Although our scores
are not as high as they were in the shoes category,
the scores of the corpus frequency baseline are not
as high either, and our model does about as well over
the baseline in each category. But is worth reiterat-
ing that we were able to run our system on both the

bags and shoes shopping categories with absolutely
no modifications or tuning of parameters.

8 Conclusion and Future Work

In conclusion, we have shown that the polylingual
topic model works well for modeling topically com-
parable images and related text, and obtain competi-
tive results for the image annotation task. Our model
is trained on noisy image captions from the web,
rather than hand-labeled data.

For future work, we would like to further adapt
the polylingual topic model for multi-modal data by
allowing some topics to be generated only by one
modality or the other. We are also interested in char-
acterizing the image annotations in order to generate
a single most likely annotation for different types of
features such as texture or color. Finally, we are in-
terested in extending this model to use with other do-
mains of data. For natural images, we could use im-
age segmentation algorithms to separate the object
of interest from the background of the image, or we
could use scene classifcation to cluster the training
images by their background scene and train seprate
models for each.
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Abstract

We present a holistic data-driven technique
that generates natural-language descriptions
for videos. We combine the output of state-of-
the-art object and activity detectors with “real-
world” knowledge to select the most proba-
ble subject-verb-object triplet for describing a
video. We show that this knowledge, automat-
ically mined from web-scale text corpora, en-
hances the triplet selection algorithm by pro-
viding it contextual information and leads to
a four-fold increase in activity identification.
Unlike previous methods, our approach can
annotate arbitrary videos without requiring the
expensive collection and annotation of a sim-
ilar training video corpus. We evaluate our
technique against a baseline that does not use
text-mined knowledge and show that humans
prefer our descriptions 61% of the time.

1 Introduction

Combining natural-language processing (NLP) with
computer vision to to generate English descriptions
of visual data is an important area of active research
(Farhadi et al., 2010; Motwani and Mooney, 2012;
Yang et al., 2011). We present a novel approach to
generating a simple sentence for describing a short
video that:

1. Identifies the most likely subject, verb and
object (SVO) using a combination of visual
object and activity detectors and text-mined
knowledge to judge the likelihood of SVO
triplets. From a natural-language generation

∗Indicates equal contribution

(NLG) perspective, this is the content planning
stage.

2. Given the selected SVO triplet, it uses a simple
template-based approach to generate candidate
sentences which are then ranked using a statis-
tical language model trained on web-scale data
to obtain the best overall description. This is
the surface realization stage.

Figure 1 shows sample system output. Our ap-
proach can be viewed as a holistic data-driven three-
step process where we first detect objects and ac-
tivities using state-of-the-art visual recognition al-
gorithms. Next, we combine these often noisy de-
tections with an estimate of real-world likelihood,
which we obtain by mining SVO triplets from large-
scale web corpora. Finally, these triplets are used to
generate candidate sentences which are then ranked
for plausibility and grammaticality. The resulting
natural-language descriptions can be usefully em-
ployed in applications such as semantic video search
and summarization, and providing video interpreta-
tions for the visually impaired.

Using vision models alone to predict the best sub-
ject and object for a given activity is problematic,
especially while dealing with challenging real-world
YouTube videos as shown in Figures 4 and 5, as
it requires a large annotated video corpus of simi-
lar SVO triplets (Packer et al., 2012). We are in-
terested in annotating arbitrary short videos using
off-the-shelf visual detectors, without the engineer-
ing effort required to build domain-specific activity
models. Our main contribution is incorporating the
pragmatics of various entities’ likelihood of being
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Figure 1: Content planning and surface realization

the subject/object of a given activity, learned from
web-scale text corpora. For example, animate ob-
jects like people and dogs are more likely to be sub-
jects compared to inanimate objects like balls or TV
monitors. Likewise, certain objects are more likely
to function as subjects/objects of certain activities,
e.g., “riding a horse” vs. “riding a house.”

Selecting the best verb may also require recog-
nizing activities for which no explicit training data
has been provided. For example, consider a video
with a man walking his dog. The object detectors
might identify the man and dog; however the action
detectors may only have the more general activity,
“move,” in their training data. In such cases, real-
world pragmatics is very helpful in suggesting that
“walk” is best used to describe a man “moving” with
his dog. We refer to this process as verb expansion.

After describing the details of our approach, we
present experiments evaluating it on a real-world
corpus of YouTube videos. Using a variety of meth-
ods for judging the output of the system, we demon-
strate that it frequently generates useful descriptions
of videos and outperforms a purely vision-based ap-
proach that does not utilize text-mined knowledge.

2 Background and Related Work

Although there has been a lot of interesting work
done in natural language generation (Bangalore and
Rambow, 2000; Langkilde and Knight, 1998), we
use a simple template for generating our sentences
as we found it to work well for our task.

Most prior work on natural-language descrip-
tion of visual data has focused on static images
(Felzenszwalb et al., 2008; Kulkarni et al., 2011;
Kuznetsova et al., 2012; Laptev et al., 2008; Li et al.,

2011; Yao et al., 2010). The small amount of exist-
ing work on videos (Ding et al., 2012; Khan and Go-
toh, 2012; Kojima et al., 2002; Lee et al., 2008; Yao
and Fei-Fei, 2010) uses hand-crafted templates or
rule-based systems, works in constrained domains,
and does not exploit text mining. Barbu et al. (2012)
produce sentential descriptions for short video clips
by using an interesting dynamic programming ap-
proach combined with Hidden Markov Models for
obtaining verb labels for each video. However, they
do not use any text mining to improve the quality of
their visual detections.

Our work differs in that we make extensive use of
text-mined knowledge to select the best SVO triple
and generate coherent sentences. We also evaluate
our approach on a generic, large and diverse set of
challenging YouTube videos that cover a wide range
of activities. Motwani and Mooney (2012) explore
how object detection and text mining can aid activity
recognition in videos; however, they do not deter-
mine a complete SVO triple for describing a video
nor generate a full sentential description.

With respect to static image description, Li et al.
(2011) generate sentences given visual detections of
objects, visual attributes and spatial relationships;
however, they do not consider actions. Farhadi et al.
(2010) propose a system that maps images and the
corresponding textual descriptions to a “meaning”
space which consists of an object, action and scene
triplet. However, they assume a single object per
image and do not use text-mining to determine the
likelihood of objects matching different verbs. Yang
et al. (2011) is the most similar to our approach in
that it uses text-mined knowledge to generate sen-
tential descriptions of static images after performing
object and scene detection. However, they do not
perform activity recognition nor use text-mining to
select the best verb.

3 Approach

Our overall approach is illustrated in Figure 2 and
consists of visual object and activity recognition fol-
lowed by content-planning to generate the best SVO
triple and surface realization to generate the final
sentence.
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Figure 2: Summary of our approach

3.1 Dataset

We used the English portion of the YouTube data
collected by Chen et al. (2010), consisting of short
videos each with multiple natural-language descrip-
tions. This data was previously used by Motwani
and Mooney (2012), and like them, we ensured that
the test data only contained videos in which we can
potentially detect objects. We used the object de-
tector by Felzenszwalb et al. (2008) as it achieves
the state-of-the-art performance on the PASCAL Vi-
sual Object Classes (VOC) Challenge. As such, we
selected test videos whose subjects and objects be-
long to the 20 VOC object classes - aeroplane, car,
horse, sheep, bicycle, cat, sofa, bird, chair, motor-
bike, train, boat, cow, person, tv monitor, bottle,
dining table, bus, dog, potted plant. During this
filtering, we also allow synonyms of these object
names by including all words with a Lesk similar-
ity (as implemented by Pedersen et al. (2004)) of at
least 0.5.1 Using this approach, we chose 235 po-
tential test videos; the remaining 1,735 videos were
reserved for training.

All the published activity recognition methods
that work on datasets such as KTH (Schuldt et al.,
2004), Drinking and Smoking (Laptev and Perez,
2007) and UCF50 (Reddy and Shah, 2012) have
a very limited recognition vocabulary of activity
classes. Since we did not have explicit activity la-

1Empirically, this method worked better than using WordNet
synsets.

Figure 3: Activity clusters discovered by HAC

bels for our YouTube videos, we followed Motwani
and Mooney (2012)’s approach to automatically dis-
cover activity clusters. We first parsed the train-
ing descriptions using Stanford’s dependency parser
(De Marneffe et al., 2006) to obtain the set of verbs
describing each video. We then clustered these verbs
using Hierarchical Agglomerative Clustering (HAC)
using the res metric from WordNet::Similarity by
Pedersen et al. (2004) to measure the distance be-
tween verbs. By manually cutting the resulting hi-
erarchy at a desired level (ensuring that each clus-
ter has at least 9 videos), we discovered the 58 ac-
tivity clusters shown in Figure 3. We then filtered
the training and test sets to ensure that all verbs be-
longed to these 58 activity clusters. The final data
contains 185 test and 1,596 training videos.

3.2 Object Detection
We used Felzenszwalb et al. (2008)’s
discriminatively-trained deformable parts mod-
els to detect the most likely objects in each video.
Since these object detectors were designed for
static images, each video was split into frames at
one-second intervals. For each frame, we ran the
object detectors and selected the maximum score
assigned to each object in any of the frames. We
converted the detection scores, f(x), to estimated
probabilities p(x) using a sigmoid p(x) = 1

1+e−f(x) .

3.3 Activity Recognition
In order to get an initial probability distribution for
activities detected in the videos, we used the motion
descriptors developed by Laptev et al. (2008). Their
approach extracts spatio-temporal interest points
(STIPs) from which it computes HoG (Histograms
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Corpora Size of text
British National Corpus (BNC) 1.5GB
WaCkypedia EN 2.6GB
ukWaC 5.5GB
Gigaword 26GB
GoogleNgrams 1012 words

Table 1: Corpora used to Mine SVO Triplets

of Oriented Gradients) and HoF (Histograms of Op-
tical Flow) features over a 3-dimensional space-time
volume. These descriptors are then randomly sam-
pled and clustered to obtain a “bag of visual words,”
and each video is then represented as a histogram
over these clusters. We experimented with different
classifiers such as LIBSVM (Chang and Lin, 2011)
to train a final activity detector using these features.
Since we achieved the best classification accuracy
(still only 8.65%) using an SVM with the intersec-
tion kernel, we used this approach to obtain a prob-
ability distribution over the 58 activity clusters for
each test video. We later experimented with Dense
Trajectories (Wang et al., 2011) for activity recogni-
tion but there was only a minor improvement.

3.4 Text Mining
We improve these initial probability distributions
over objects and activities by incorporating the like-
lihood of different activities occuring with particular
subjects and objects using two different approaches.
In the first approach, using the Stanford dependency
parser, we parsed 4 different text corpora covering a
wide variety of text: English Gigaword, British Na-
tional Corpus (BNC), ukWac and WaCkypedia EN.
In order to obtain useful estimates, it is essential to
collect text that approximates all of the written lan-
guage in scale and distribution. The sizes of these
corpora (after preprocessing) are shown in Table 1.

Using the dependency parses for these corpora,
we mined SVO triplets. Specifically, we looked for
subject-verb relationships using nsubj dependencies
and verb-object relationships using dobj and prep
dependencies. The prep dependency ensures that
we account for intransitive verbs with prepositional
objects. Synonyms of subjects and objects and con-
jugations of verbs were reduced to their base forms
(20 object classes, 58 activity clusters) while form-
ing triplets. If a subject, verb or object not belonging

to these base forms is encountered, it is ignored dur-
ing triplet construction.

These triplets are then used to train a backoff lan-
guage model with Kneser-Ney smoothing (Chen and
Goodman, 1999) for estimating the likelihood of an
SVO triple. In this model, if we have not seen train-
ing data for a particular SVO trigram, we “back-off”
to the Subject-Verb and Verb-Object bigrams to co-
herently estimate its probability. This results in a
sophisticated statistical model for estimating triplet
probabilities using the syntactic context in which
the words have previously occurred. This allows us
to effectively determine the real-world plausibility
of any SVO using knowledge automatically mined
from raw text. We call this the “SVO Language
Model” approach (SVO LM).

In a second approach to estimating SVO prob-
abilities, we used BerkeleyLM (Pauls and Klein,
2011) to train an n-gram language model on the
GoogleNgram corpus (Lin et al., 2012). This sim-
ple model does not consider synonyms, verb con-
jugations, or SVO dependencies but only looks at
word sequences. Given an SVO triplet as an in-
put sequence, it estimates its probability based on
n-grams. We refer to this as the “Language Model”
approach (LM).

3.5 Verb Expansion

As mentioned earlier, the top activity detections are
expanded with their most similar verbs in order to
generate a larger set of potential words for describ-
ing the action. We used the WUP metric from Word-
Net::Similarity to expand each activity cluster to in-
clude all verbs with a similarity of at least 0.5. For
example, we expand the verb “move” with go 1.0,
walk 0.8, pass 0.8, follow 0.8, fly 0.8, fall 0.8, come
0.8, ride 0.8, run 0.67, chase 0.67, approach 0.67,
where the number is the WUP similarity.

3.6 Content Planning

To combine the vision detection and NLP scores and
determine the best overall SVO, we use simple lin-
ear interpolation as shown in Equation 1. When
computing the overall vision score, we make a con-
ditional independence assumption and multiply the
probabilities of the subject, activity and object. To
account for expanded verbs, we additionally mul-
tiply by the WUP similarity between the original
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(Vorig) and expanded (Vsim) verbs. The NLP score
is obtained from either the “SVO Language Model”
or the “Language Model” approach, as previously
described.

score = w1 ∗ vis score + w2 ∗ nlp score (1)

(2)vis score = P (S|vid) ∗ P (Vorig|vid)

∗ Sim(Vsim, Vorig) ∗ P (O|vid)

After determining the top n=5 object detections
and top k=10 verb detections for each video, we
generate all possible SVO triplets from these nouns
and verbs, including all potential verb expansions.
Each resulting SVO is then scored using Equation 1,
and the best is selected. We compare this approach
to a “pure vision” baseline where the subject is the
highest scored object detection (which empirically
is more likely to be the subject than the object), the
object is the second highest scored object detection,
and the verb is the activity cluster with the highest
detection probability.

3.7 Surface Realization
Finally, the subject, verb and object from the top-
scoring SVO are used to produce a set of candi-
date sentences, which are then ranked using a lan-
guage model. The text corpora in Table 1 are mined
again to get the top three prepositions for every verb-
object pair. We use a template-based approach in
which each sentence is of the form:

“Determiner (A,The) - Subject - Verb (Present,
Present Continuous) - Preposition (optional) - De-
terminer (A,The) - Object.”

Using this template, a set of candidate sentences are
generated and ranked using the BerkeleyLM lan-
guage model trained on the GoogleNgram corpus.
The top sentence is then used to describe the video.
This surface realization technique is used for both
the vision baseline triplet and our proposed triplet.

In addition to the one presented here, we tried al-
ternative “pure vision” baselines, but they are not
included since they performed worse. We tried a
non-parametric approach similar to Ordonez et al.
(2011), which computes global similarity of the
query to a large captioned dataset and returns the

nearest neighbor’s description. To compute the sim-
ilarity we used an RBF-Chi2 kernel over bag-of-
words STIP features. However, as noted by Ordonez
et al. (2011), who used 1 million Flickr images, our
dataset is likely not large enough to produce good
matches. In an attempt to combine information from
both object and activity recognition, we also tried
combining object detections from 20 PASCAL ob-
ject detectors (Felzenszwalb et al., 2008) and from
Object Bank (Li et al., 2010) using a multi-channel
approach as proposed in (Zhang et al., 2007), with a
RBF-Chi2 kernel for the STIP features and a RBF-
Correlation Distance kernel for object detections.

4 Experimental Results

4.1 Content Planning

We first evaluated the ability of the system to iden-
tify the best SVO content. From the ∼ 50 human
descriptions available for each video, we identified
the SVO for each description and then determined
the ground-truth SVO for each of the 185 test videos
using majority vote. These verbs were then mapped
back to their 58 activity clusters. For the results pre-
sented in Tables 2 and 3, we assigned the vision
score a weight of 0 (w1 = 0) and the NLP score
a weight of 1 (w2 = 1) since these weights gave us
the best performance for thresholds of 5 and 10 for
the objects and activity detections respectively. Note
that while the vision score is given a weight of zero,
the vision detections still play a vital role in the de-
termination of the final triplet since our model only
considers the objects and activities with the highest
vision detection scores.

To evaluate the accuracy of SVO identification,
we used two metrics. The first is a binary metric that
requires exactly matching the gold-standard subject,
verb and object. We also evaluate the overall triplet
accuracy. Note that the verb accuracy in the vision
baseline is not word-based and is measured on the
58 activity classes. Its results are shown in Table 2,
where VE and NVE stand for “verb expansion”
and “no verb expansion” respectively. However,
the binary evaluation can be unduly harsh. If we
incorrectly choose “bicycle” instead of a “motor-
bike” as the object, it should be considered better
than choosing “dog.” Similarly, predicting “chop”
instead of “slice” is better than choosing “go”.
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Method Subject% Verb% Object% All%

Vision Baseline 71.35 8.65 29.19 1.62

LM(VE) 71.35 8.11 10.81 0.00

SVO LM(NVE) 85.95 16.22 24.32 11.35

SVO LM(VE) 85.95 36.76 33.51 23.78

Table 2: SVO Triplet accuracy: Binary metric

Method Subject% Verb% Object% All%

Vision Baseline 87.76 40.20 61.18 63.05

LM(VE) 85.77 53.32 61.54 66.88

SVO LM(NVE) 94.90 63.54 69.39 75.94

SVO LM(VE) 94.90 66.36 72.74 78.00

Table 3: SVO Triplet accuracy: WUP metric

In order to account for such similarities, we also
measure the WUP similarity between the predicted
and correct items. For the examples above, the rel-
evant scores are: wup(motorbike,bicycle)=0.7826,
wup(motorbike,dog)=0.1, wup(slice,chop)=0.8,
wup(slice,go)=0.2857. The results for the WUP
metric are shown in Table 3.

4.2 Surface Realization
Figures 4 and 5 show examples of good and bad sen-
tences generated by our method compared to the vi-
sion baseline.

4.2.1 Automatic Metrics
To automatically compare the sentences gener-

ated for the test videos to ground-truth human de-
scriptions, we employed the BLEU and METEOR
metrics used to evaluate machine-translation output.
METEOR was designed to fix some of the prob-
lems with the more popular BLEU metric. They
both measure the number of matching n-grams (for
various values of n) between the automatic and hu-
man generated sentences. METEOR takes stem-
ming and synonymy into consideration. We used
the SVO Language Model (with verb expansion) ap-
proach since it gave us the best results for triplets.
The results are given in Table 4.

4.2.2 Human Evaluation using Mechanical
Turk

Given the limitations of metrics like BLEU and
METEOR, we also asked human judges to evalu-
ate the quality of the sentences generated by our ap-

Figure 4: Examples where we outperform the baseline

Figure 5: Examples where we underperform the baseline

proach compared to those generated by the baseline
system. For each of the 185 test videos, we asked 9
unique workers (with >95% HIT approval rate and
who had worked on more than 1000 HITs) on Ama-
zon Mechanical Turk to pick which sentence better
described the video. We also gave them a “none
of the above two sentences” option in case neither
of the sentences were relevant to the video. Qual-
ity was controlled by also including in each HIT a
gold-standard example generated from the human
descriptions, and discarding judgements of workers
who incorrectly answered this gold-standard item.
Overall, when they expressed a preference, hu-
mans picked our descriptions to that of the baseline

Method BLEU score METEOR score
Vision Baseline 0.37±0.05 0.25±0.08
SVO LM(VE) 0.45±0.05 0.36±0.27

Table 4: Automatic evaluation of sentence quality
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61.04% of the time. Out of the 84 videos where the
majority of judges had a clear preference, they chose
our descriptions 65.48% of the time.

5 Discussion

Overall, the results consistently show the advantage
of utilizing text-mined knowledge to improve the se-
lection of an SVO that best describes a video. Below
we discuss various specific aspects of the results.

Vision Baseline: For the vision baseline, the sub-
ject accuracy is quite high compared to the object
and activity accuracies. This is likely because the
person detector has higher recall and confidence
than the other object detectors. Since most test
videos have a person as the subject, this works in
favor of the vision baseline, as typically the top ob-
ject detection is “person”. Activity (verb) accuracy
is quite low (8.65% binary accuracy). This is be-
cause there are 58 activity clusters, some with very
little training data. Object accuracy is not as high
as subject accuracy because the true object, while
usually present in the top object detections, is not
always the second-highest object detection. By al-
lowing “partial credit”, the WUP metric increases
the verb and object accuracies to 40.2% and 61.18%,
respectively.

Language Model(VE): The Language Model ap-
proach performs even worse than the vision baseline
especially for object identification. This is because
we consider the language model score directly for
the SVO triplet without any verb conjugations and
presence of determiners between the verb and ob-
ject. For example, while the GoogleNgram corpus
is likely to contain many instances of a sentence like
“A person is walking with a dog”, it will probably
not contain many instances of “person walk dog”,
resulting in lower scores.

SVO Language Model(NVE): The SVO Lan-
guage Model (without verb expansion) improves
verb accuracy from 8.65% to 16.22%. For the WUP
metric, we see an improvement in accuracy in all
cases. This indicates that we are getting semanti-
cally closer to the right object compared to the ob-
ject predicted by the vision baseline.

SVO Language Model(VE): When used with
verb expansion, the SVO Language Model approach
results in a dramatic improvement in verb accu-

racy, causing it to jump to 36.76%. The WUP
score increase for verbs between SVO Language
Model(VE) and SVO Language Model(NVE) is mi-
nor, probably because even without verb expansion,
semantically similar verbs are selected but not the
one used in most human descriptions. So, the jump
in verb accuracy for the binary metric is much more
than the one for WUP.
Importance of verb expansion: Verb expansion
clearly improves activity accuracy. This idea could
be extended to a scenario where the test set contains
many activities for which we do not have any ex-
plicit training data. As such, we cannot train activ-
ity classifiers for these “missing” classes. However,
we can train a “coarse” activity classifier using the
training data that is available, get the top predictions
from this coarse classifier and then refine them by
using verb expansion. Thus, we can even detect and
describe activities that were unseen at training time
by using text-mined knowledge to determine the de-
scription of an activity that best fits the detected ob-
jects.

Effect of different training corpora: As men-
tioned earlier, we used a variety of textual cor-
pora. Since they cover newswire articles, web pages,
Wikipedia pages and neutral content, we compared
their individual effect on the accuracy of triplet se-
lection. The results of this ablation study are shown
in Tables 5 and 6 for the binary and WUP met-
ric respectively. We also show results for training
the SVO model on the descriptions of the training
videos. The WaCkypedia EN corpus gives us the
best overall results, probably because it covers a
wide variety of topics, unlike Gigaword which is re-
stricted to the news domain. Also, using our SVO
Language Model approach on the triplets from the
descriptions of the training videos is not sufficient.
This is because of the relatively small size and nar-
row domain of the training descriptions in compari-
son to the other textual corpora.

Effect of changing the weight of the NLP score
We experimented with different weights for the Vi-
sion and NLP scores (in Equation 1). These results
can be seen in Figure 6 for the binary-metric evalu-
ation. The WUP-metric evaluation graph is qualita-
tively similar. A general trend seems to be that the
subject and activity accuracies increase with increas-
ing weights of the NLP score. There is a significant
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Method Subject% Verb% Object% All%

Vision Baseline 71.35 8.65 29.19 1.62

Train Desc. 85.95 16.22 16.22 8.65

Gigaword 85.95 32.43 20.00 14.05

BNC 85.95 17.30 29.73 14.59

ukWaC 85.95 34.05 32.97 22.16

WaCkypedia EN 85.95 35.14 40.00 28.11
All 85.95 36.76 33.51 23.78

Table 5: Effect of training corpus on SVO binary accu-
racy

Method Subject% Verb% Object% All%

Vision Baseline 87.76 40.20 61.18 63.05

Train Desc. 94.95 45.12 61.43 67.17

Gigaword 94.90 63.99 65.71 74.87

BNC 94.88 51.48 73.93 73.43

ukWaC 94.86 60.59 72.83 76.09

WaCkypedia EN 94.90 62.52 76.48 77.97

All 94.90 66.36 72.74 78.00

Table 6: Effect of training corpus on SVO WUP accuracy

improvement in verb accuracy as the NLP weight is
increased towards 1. However, for objects we notice
a slight increase in accuracy until the weight for the
NLP component is 0.9 after which there is a slight
dip. We hypothesize that this dip is caused by the
loss of vision-based information about the objects
which provide some guidance for the NLP system.

BLEU and METEOR results: From the results
in Table 4, it is clear that the sentences generated
by our approach outperform those generated by the
vision baseline, using both the BLEU and METEOR
evaluation metrics.

MTurk results: The Mechanical Turk results
show that human judges generally prefer our sys-
tem’s sentences to those of the vision baseline. As
previously seen, our method improves verbs far
more than it improves subjects or objects. We hy-
pothesize that the reason we do not achieve a simi-
larly large jump in performance in the MTurk evalu-
ation is because people seem to be more influenced
by the object than the verb when both options are
partially irrelevant. For example, in a video of a per-
son riding his bike onto the top of a car, our pro-
posed sentence was “A person is a riding a motor-
bike” while the vision sentence was “A person plays

Figure 6: Effect of increasing NLP weights (Binary met-
ric)

a car”, and most workers selected the vision sen-
tence.

Drawback of Using YouTube Videos: YouTube
videos often depict unusual and “interesting” events,
and these might not agree with the statistics on typ-
ical SVOs mined from text corpora. For instance,
the last video in Figure 5 shows a person dragging a
cat on the floor. Since sentences describing people
moving or dragging cats around are not common in
text corpora, our system actually down-weights the
correct interpretation.

6 Conclusion

This paper has introduced a holistic data-driven
approach for generating natural-language descrip-
tions of short videos by identifying the best subject-
verb-object triplet for describing realistic YouTube
videos. By exploiting knowledge mined from large
corpora to determine the likelihood of various SVO
combinations, we improve the ability to select the
best triplet for describing a video and generate de-
scriptive sentences that are prefered by both au-
tomatic and human evaluation. From our experi-
ments, we see that linguistic knowledge significantly
improves activity detection, especially when train-
ing and test distributions are very different, one of
the advantages of our approach. Generating more
complex sentences with adjectives, adverbs, and
multiple objects and multi-sentential descriptions of
longer videos with multiple activities are areas for
future research.
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Abstract

We propose a method to learn succinct hi-
erarchical linguistic descriptions of visual
datasets, which allow for improved navigation
efficiency in image collections. Classic ex-
ploratory data analysis methods, such as ag-
glomerative hierarchical clustering, only pro-
vide a means of obtaining a tree-structured
partitioning of the data. This requires the user
to go through the images first, in order to re-
veal the semantic relationship between the dif-
ferent nodes. On the other hand, in this work
we propose to learn a hierarchy of linguistic
descriptions, referred to as attributes, which
allows for a textual description of the seman-
tic content that is captured by the hierarchy.
Our approach is based on a generative model,
which relates the attribute descriptions asso-
ciated with each node, and the node assign-
ments of the data instances, in a probabilistic
fashion. We furthermore use a nonparametric
Bayesian prior, known as the tree-structured
stick breaking process, which allows for the
structure of the tree to be learned in an unsu-
pervised fashion. We also propose appropriate
performance measures, and demonstrate supe-
rior performance compared to other hierarchi-
cal clustering algorithms.

1 Introduction

With the abundance of images available both for per-
sonal use and in large internet based datasets, such
as Flickr and Google Image Search, hierarchies of
images are an important tool that allows for conve-
nient browsing and efficient search and retrieval. In-
tuitively, desirable hierarchies should capture simi-

larity in a semantic space, i.e. nearby nodes should
include categories which are semantically more sim-
ilar, as compared to nodes which are more distant.
Recent works that are concerned with learning im-
age hierarchies (Bart et al., 2011; Sivic et al., 2008),
have relied on a bag of visual-words feature space,
and therefore have been shown to provide unsatis-
factory results with respect to the latter requirement
(Li et al., 2010).

A recent trend in visual recognition systems, has
been to shift from using a low-level feature based
representation to an attribute based feature space,
which can capture higher level semantics (Farhadi
et al., 2009; Lampert et al., 2009; Parikh & Grau-
man, 2011; Berg et al., 2011; Ferrari & Zisserman,
2007). Attributes are detectors that are trained using
annotation data, to identify particular properties in
an instance image. By evaluating these detectors on
a query image, one can obtain a linguistic descrip-
tion of the image. Therefore, learning a visual hier-
archy based on an attribute representation can allow
for an improved semantic grouping, as compared to
the previous use of low-level image features.

In this work we wish to utilize an attribute based
representation to learn a hierarchical linguistic de-
scription of a visual dataset, in which few attributes
are associated with each node of the tree. As is il-
lustrated in Figure 1, such an attribute hierarchy is
tightly related to a category hierarchy, in which the
instances associated with every node are described
using all the attributes associated with all the nodes
along the path leading up to the root node (the in-
stances in Figure 1 are described by the correspond-
ing photographs). This “duality” between the at-
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Figure 1: Attribute and category hierarchies.

tribute and category hierarchies, offers an impor-
tant advantage when characterizing the dataset to the
end-user, since it eliminates the need to visually in-
spect the images assigned to each node, in order to
reveal the semantic relationship between the cate-
gories that are associated with the different nodes.
Exploratory data analysis methods for learning hier-
archies, such as agglomerative hierarchical cluster-
ing (AHC) (Jain & Dubes, 1988 p. 59), only assign
instances to different nodes in the tree, whereas our
approach learns an attribute hierarchy which is used
to assign the instances to the nodes of the tree. The
attribute hierarchy provides a linguistic description
of a category hierarchy.

We develop a generative model, which we refer
to as the attribute tree process (ATP), and which ties
together the attribute and category hierarchies in a
probabilistic fashion. The tree structure is learned
by incorporating a nonparametric Bayesian prior,
known as the tree-structured stick breaking process
(TSSBP) (Adams et al., 2010), in the probabilis-
tic formulation. An important observation which
we make about the attribute hierarchies which are
learned using the ATP, is that attributes which are
related to more image instances tend to be associ-
ated with nodes which are closer to the root, and vice
versa, attributes which are associated with fewer in-
stances tend to be associated with leaf nodes. A hi-
erarchical clustering algorithm that is based on the
TSSBP for binary feature vectors was developed in
(Adams et al., 2010), and is known as the factored
Bernoulli likelihood model (FBLM). However, sim-
ilarly to AHC, it does not produce the attribute hier-
archy in which we are interested.

In order to evaluate the ATP quantitatively, we
compare its performance to other hierarchical clus-
tering algorithms. If the ground truth of the category
hierarchy is available, we propose to use the seman-

tic distance between the categories, that is given by
the ground truth hierarchy, to evaluate the degree to
which the semantic distance between the categories
is preserved by the hierarchical clustering algorithm.
If the ground truth is not available, we use two cri-
teria, which as we argue, capture the properties that
should be demonstrated by desirable semantic hier-
archies. The first is the “purity criterion” (Manning
et al., 2009 p. 357) which measures the degree to
which each node is occupied by instances from a
single class, and the second is the “locality criterion”
which we propose, and which measures the degree
to which instances from the same class are assigned
to nearby nodes in the hierarchy. Our experimen-
tal results show that when compared to AHC and
FBLM, our approach captures the ground truth se-
mantic distance between the categories more accu-
rately, and without significant dependence on hyper-
parameters.

The remaining of this paper is organized as fol-
lows. In Sec. 2 we provide background on agglom-
erative hierarchical clustering, and on the TSSBP,
and in Sec. 3 we develop the generative model for
the ATP. In Sec. 4 we propose evaluation metrics for
the attribute hierarchy, and in Sec. 5 we present the
experimental results. Sec. 6 concludes this paper.

2 Background

2.1 Agglomerative hierarchical clustering

AHC uses a bottom up approach to clustering. In
the first iteration, each cluster includes a single in-
stance of the dataset, and at each following iteration,
the two clusters which are closest to each other are
joined into a single cluster. This requires a distance
metric, which measures the distance between clus-
ters, to be defined. The algorithm concludes when
the distance between the farthest clusters is smaller
than some threshold.

2.2 Tree structured stick breaking process

The TSSBP is an infinite mixture model, where each
mixture component has one-to-one correspondence
with one of the nodes of an infinitely branching and
infinitely deep tree. The weights of the infinite mix-
ture model are generated by interleaving two stick-
breaking processes (Teh et al., 2006), which allows
the number of mixture components to be inferred
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Figure 2: The graphical model representations of the probability distribution functions for the (a) TSSBP, and (b) ATP
(ours). The parameter θε is associated with node ε in the tree, and T denotes the parameters {πε}ε∈T from the TSSBP
construction, where T is the set of all the nodes in the tree.

from the data in a Bayesian fashion. Since each mix-
ture component is associated with a unique node in
the infinite tree, this is equivalent to inferring the
structure of the tree from the data. Let T denote
the infinite set of node indices, and let πε denote the
corresponding weight of the mixture component as-
sociated with node ε ∈ T , then one can sample a
node z in the tree using

z ∼
∑
ε∈T

πεδε(z), (1)

where δε() denotes a Dirac delta function at ε.
Since the cardinality of the set T is unbounded,

sampling from (1) is not trivial, however, an effi-
cient sampling scheme was presented in (Adams et
al., 2010). Similarly, an efficient scheme for sam-
pling from the posterior of {πε}ε∈T given the node
assignments of all the data instances, was also de-
veloped in (Adams et al., 2010).

2.2.1 Factored Bernoulli likelihood model
The FBLM was used in (Adams et al., 2010)

to perform hierarchical clustering of color images
using binary feature vectors. Let xi ∈ {0, 1}D,
i = 1, . . . , N , denote a set of binary training vec-
tors that are available for learning the hierarchy.
The graphical model representation of the proba-
bility distribution function is shown in Figure 2a,
where for the sake of clarity of the exposition, the
tree that is shown here is finite. The parameters
θε = [θ

(1)
ε , . . . , θ

(D)
ε ]T satisfy

θ(d)
ε = θ

(d)
Pa(ε) + n(d)

ε , d = 1, . . . , D, (2)

where n(d)
ε ∼ N (0, σ2), and Pa(ε) denotes the par-

ent of node ε. The indicator variable z is sampled
using (1), and the likelihood of a binary observation

vector x = [x(1), . . . , x(D)]T follows a Bernoulli
distribution whose parameter is a logistic function

f(x|θz) =
D∏
d=1

(1+ exp {−θ(d)
z })−x

(d)

× (1 + exp {θ(d)
z })−(1−x(d)).

(3)

3 The attribute tree process

In this section, we develop a new generative model
that is based on the TSSBP, however unlike the
FBLM it also reveals a hierarchy of attributes, which
allows for a linguistic description of the image
dataset. This is achieved by relating the attribute hi-
erarchy, and the assignment of image instances to
nodes, in a probabilistic manner.

3.1 The attribute hierarchy
In order to allow for a probabilistic description of the
attribute hierarchy, we associate a parameter vector
θ = [θ

(1)
ε , . . . , θ

(D)
ε ]T with each node ε ∈ T , where

D denotes the number of attributes. The attributes
y

(d)
i , d = 1, . . . , D that are associated with a data

instance i that is assigned to node ε, are generated
using the following scheme:

1. For each ε′ ∈ A(ε), draw ξ
(d)
ε′,i ∼

Bernoulli(θ(d)
ε′ ), d = 1, . . . , D,

2. Set y(d)
i =

⊕
ε′∈A(ε) ξ

(d)
ε′,i, d = 1, . . . , D,

where ξ
(d)
ε′,i is an auxiliary random variable,

⊕
denotes the logical or operation, and A(ε) de-
notes the set composed of all the ancestors of
node ε. By marginalizing with respect to ξ

(d)
ε′,i,

we obtain a simplified representation: first set
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h
(d)
ε = 1−

∏
ε′∈A(ε)(1− θ

(d)
ε′ ), and then sample

y
(d)
i ∼ Bernoulli(h

(d)
ε ) for every d = 1, . . . , D.

We use the parameters h(d)
ε to define the attribute

hierarchy, since they represent the probability of an
attribute being associated with an instance assigned
to node ε. Furthermore, they satisfy the property
that the likelihood of any attribute can only increase
when moving deeper into the tree. We can obtain
an attribute hierarchy, similar to that in Figure 1, by
thresholding h(d)

ε , and only displaying attributes that
have not been detected at any ancestor node.

In order to complete our probabilistic formulation
for the attribute hierarchy, we need to specify the
prior for the node parameters θε. We use a finite ap-
proximation to a hierarchical Beta process (Thibaux
& Jordan, 2007; Paisley & Carin, 2009). This choice
promotes sparsity, and therefore only few attributes
will be associated with each node. Specifically, the
parameters at the root node follow

θ
(d)
0 ∼ Beta(a/D, b(D − 1)/D), d = 1, . . . , D,

(4)
and the parameters in the other nodes follow

θ(d)
ε ∼ Beta(c(d)θ(d)

Pa(ε), c
(d)(1−θ(d)

Pa(ε))), d = 1, . . . , D,
(5)

where Pa(ε) denotes the parent of node ε, and where
a, b, and c(d), d = 1, . . . , D are positive scalar pa-
rameters.

In this work we used a uniform prior for the pre-
cision hyper-parameter c(d) ∼ U [l, u] with ` = 20,
and u = 100. We also used the hyper-parameter val-
ues a = 10, and b = 5 (unless otherwise stated). In
Section 5.1.1 we demonstrate that the performance
of our algorithm depends only weakly on the choice
of these parameters.

3.2 Assigning images to nodes
In order to assign every image instance to one of the
nodes, we combine the attribute hierarchy with the
TSSBP. The resulting graphical model representa-
tion of the probability distribution function is shown
in Figure 2b. For every data instance i, a node zi
in the tree is sampled from the TSSBP. The ob-
served attribute vector xi is obtained by sampling
y

(d)
i ∼ Bernoulli(h

(d)
zi ), and flipping y(d)

i with prob-
ability ω, which models the effect of the noisy at-
tribute detectors. By marginalizing over y(d)

i , we

have that

p(x
(d)
i = 1|−) = 1− ((1− h(d)

zi )(1− ω(d)).

+ h(d)
zi ω

(d)). (6)

The prior for ω is ω ∼ Beta(ρ0, ρ1), where in this
work we used ρ0 = 5, and ρ1 = 20, which pro-
motes smaller values for ω. Our algorithm is highly
insensitive to the choice of ρ0, ρ1, as long as they are
chosen to promote small values of ω.

3.3 Inference
Inference in the ATP is based on Gibbs sampling
scheme. In order to sample from the posterior of
the node parameter θ(d)

ε , we note that

p(θ(d)
ε |−) ∝∏

ε′∈ε∪D(ε)

(1− ((1− h(d)
ε′ )(1− ω(d)) + h

(d)
ε′ ω

(d)))n
(1,d)

ε′

× ((1− h(d)
ε′ )(1− ω(d)) + h

(d)
ε′ ω

(d))n
(0,d)

ε′

×
∏

ε′′∈Ch(ε)

Beta(θ
(d)

ε′′
; c(d)θ(d)

ε , c(d)(1− θ(d)
ε ))

× Beta(θ(d)
ε ; a(d)

ε , b(d)ε ), (7)

where n(j,d)
ε =

∑
i|zi=ε δj(x

(d)
i ) for j = 0, 1, D(ε)

denotes the set composed of all the descendants of
node ε, Ch(ε) denotes the child nodes of node ε, and
a

(d)
ε = a/D, b(d)ε = b(D − 1)/D, for ε = 0 (the

root node), and for any other node: a(d)
ε = c(d)θ

(d)
ε ,

b
(d)
ε = c(d)(1 − θ

(d)
ε ). The expression in (7) is a

highly complicated function of θ(d)
ε , and therefore

we use slice-sampling (Neal, 2000) in order to sam-
ple from the posterior. The slice-sampler is very
much a “black-box” algorithm, which only requires
the log likelihood of (7) and very few parameters,
and returns a sample from the posterior. We sam-
ple the node parameters using a two-pass approach,
starting from the leaf nodes and moving up to the
root, and subsequently moving down the tree from
the root to the leaves.

In order to sample from ω, we first sample the
binary random variables y(d)

i using

p(y
(d)
i = j|−) ∝ p(y(d)

i = j|−)(δj(x
(d)
i )(1− ω(d))

+ δ1−j(x
(d)
i )ω(d)), j = 0, 1, (8)
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and then sample ω using

ω(d)|− ∼Beta
(
ρ0 +

N∑
i=1

δ1(y
(d)
i xor x(d)

i ),

ρ1 +
N∑
i=1

δ0(y
(d)
i xor x(d)

i )
)
. (9)

Sampling from the posterior of the hyper-parameter
c(d) was also performed using slice sampling. We
note that slice sampling each of the parameters θ(d)

ε

for d = 1, . . . , D, and each of c(d) for d = 1, . . . , D,
can be implemented in a parallel fashion. There-
fore, the computational bottleneck in the ATP is the
number of nodes in the tree, rather than the num-
ber of attributes. Sampling from the posterior of
the TSSBP parameters is performed using the algo-
rithms developed in (Adams et al., 2010). The pa-
rameters of the stick-breaking processes involved in
the TSSBP construction are also learned from the
data using slice-sampling, by assuming a uniform
prior on some interval (as was also performed in
(Adams et al., 2010)).

4 Evaluating the attribute hierarchy

In order to quantify the performance of the attribute
hierarchies, we evaluate the performance of the ATP
as a hierarchical clustering algorithm. We consider
two cases, in the first, the ground truth category hi-
erarchy is available and can be used to compare dif-
ferent hierarchies quantitatively. In the second case,
the ground truth is unavailable.

4.1 Using the ground truth category hierarchy
The category hierarchy should capture the distance
between the categories in a semantic space. For
instance, since car and bus are both vehicles, they
should be assigned to nodes which are closer, com-
pared to the categories car and sheep, which are se-
mantically less similar. Given the ground truth cate-
gory hierarchy, we can “measure” the semantic dis-
tance between different categories by counting the
number of edges that separate any two categories in
the graph.

In order to compare the hierarchies learned using
different hierarchical clustering algorithms, we pro-
pose a criterion which measures the degree to which
the semantic distance which a hierarchy assigns to

different image instances, diverges from the seman-
tic distance that is given by the ground truth cate-
gory hierarchy. Let dGT (c1, c2) denote the num-
ber of edges separating categories c1 and c2 in the
ground truth category hierarchy, and let dH(i, j) de-
note the number of edges separating instances i and
j in a hierarchy that is learned using a hierarchical
clustering algorithm. Our proposed criterion, which
we refer to as the average edge error (AEE), takes
the form

2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

|dH(i, j)− dGT (c(i), c(j))|,

(10)
where c(i) denotes the category of instance i, andN
denotes the number of image instances.

4.2 Without ground truth hierarchy

When the ground truth of the category is unavail-
able, we propose to use the following two criteria in
order to evaluate the hierarchies. The first is known
as the purity criterion (Manning et al., 2009 p. 357),
and the second is the locality criterion which we pro-
pose. The purity criterion measures the degree to
which each node is occupied by instances from a
single class, and takes the form

Purity =
1

N

∑
ε∈T

Nε∑
i=1

δc∗ε (c(i)), (11)

whereNε denotes the number of instances in node ε,
and c∗ε is the class which is most frequent in node ε.

The locality criterion measures the degree to
which each class is concentrated in few adjacent
nodes. Quantitatively we define the category local-
ity for class c as

CLc = − 2

(|C| − 1)|C|
∑

i, j ∈ C,
i 6= j

dist(εi, εj),

(12)
where | · | denotes the cardinality of a set, C =
{i|ci = c} where ci is the class associated with in-
stance i, and dist(εi, εj) denotes the number of edges
along the path separating nodes εi and εj . The cate-
gory locality is negative or equal to zero. Values that
are closer to 0 indicate that the instances of category
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c are concentrated in a few adjacent nodes, and neg-
ative values indicate that the category instances are
more dispersed in the tree. We define the locality as
the weighted average of the category locality, where
the weights are the category instance frequencies.

We note that each of these objectives can gener-
ally be improved on the account of the other: locality
can usually be improved by joining nodes (which in
general makes purity worse), and purity can usually
be improved by splitting nodes (which in general
makes locality worse). Therefore, we argue that a
desirable hierarchy should offer an acceptable com-
promise between these two performance measures.

5 Experimental results

In this section we learn the attribute hierarchy using
our proposed ATP algorithm. In order to evaluate
the performance we evaluate the ATP as a hierar-
chical clustering algorithm, and compare it to the
FBLM and AHC. We use subsets of the PASCAL
VOC2008, and SUN09 datasets, for which attribute
annotations are available. We learn hierarchies us-
ing the ground truth attribute annotation of the train-
ing set, and using the attribute scores obtained for
the image instances in the testing set, where the at-
tribute detectors are trained using the training set.
We used the FBLM implementation which is avail-
able online. Our implementation of the ATP is based
the TSSBP implementation which is available on-
line, where we extended it to implement our ATP
generative model. We used the AHC implementa-
tion available at (Mullner, ), where we used the aver-
age distance metric, which is also known as the Un-
weighted Pair Group Method with Arithmetic Mean
(UMPGA) (Murtagh, 1984).

5.1 Object category hierarchy

Here we consider the PASCAL VOC 2008 dataset.
We use the bounding boxes and attribute annotation
data that were collected in (Farhadi et al., 2009), and
are available online, along with the low-level image
features. Each of the training and testing sets con-
tains over 6000 instances of the object classes: per-
son, bird, cat, cow, dog, horse, sheep, airplane, bi-
cycle, boat, bus, car, motorcycle, train, bottle, chair,
dining-table, potted-plant, sofa, and tv/monitor. We
used the annotation and features available for the

training set, to train the attribute detectors using a
linear SVM classifier (Fan et al., 2008). We used
88 attributes, which included 24 attributes in addi-
tion to those used in (Farhadi et al., 2009): “pet”,
“vehicle”, “alive”, “animal”, and the remaining 20
attributes were identical to the object classes. The
annotation for the first 4 additional attributes was in-
ferred from the object classes. In all the experiments
presented here, we ran the Markov chain for 10,000
iterations and used the tree and model parameters
from the final iteration.

The attribute hierarchies for the PASCAL dataset
are shown in Figure 3, when using the annotation for
the training set, and when using the attribute scores
obtained for the testing set. The hierarchies were
obtained by thresholding h(d)

ε with the threshold pa-
rameter 0.7 (this parameter is only used to create the
visualization, and it is not used when learning the
hierarchies), and only displaying the attributes that
are not already associated with an ancestor node. It
can be seen that the attribute hierarchies can accu-
rately capture the semantic space that is represented
by the 20 categories in the PASCAL dataset. An im-
portant observation is that attributes which are asso-
ciated with more categories, such as alive or vehicle,
are assigned to nodes that are closer to the root node,
as compared to more specialized attributes such as
eye or window.

In order to evaluate the performance of the at-
tribute hierarchies quantitatively, we use the ground
truth category hierarchy for the 20 categories in the
PASCAL dataset, which is available at (Binder et al.,
2012), and is shown in Figure 4. In Figure 5 we
show the AEE performance measure, which we dis-
cussed in the previous section, for the different hi-
erarchical clustering algorithms which we consider
here. It can be seen that for the AHC, the AEE is
very sensitive to the threshold parameter, which ef-
fectively determines the number of clusters. A poor
choice of the parameter can adversely affect the per-
formance significantly. On the other hand, the per-
formance of the ATP and FBLM is significantly less
sensitive to the choice of the hyper-parameters, since
all the parameters are learned in a Bayesian fash-
ion with weak dependence on the hyper-parameters.
This is demonstrated for the ATP in Section 5.1.1.
The ATP significantly improves the AEE as com-
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(b) Using the attribute scores of the testing set.

Figure 3: Attribute hierarchy learned for the PASCAL dataset, using the (a) attribute annotation available for the
training set, and (b) attribute scores obtained by applying the attribute detectors to the image instances of the testing
set. The largest circle denotes the root node.

pared to the FBLM, both for the training and testing
sets. We also note, that for the ATP, the AEE ob-
tained for the training set is better than that obtained
using the testing set’s attribute scores (training: 1.76,
testing: 2.82), which is consistent with our expecta-
tion. This is not the case for the FBLM (training:
6.55, testing: 5.63).

5.1.1 Sensitivity to hyper-parameters

In order to validate our claim that the ATP is
highly insensitive to the choice of hyper-parameters,
we performed experiments with different hyper-
parameter values. In Table 1 we compare the per-
formance when using different values for the hyper-
parameters a, and b in (4). It can be seen that
when comparing to AHC in Figure 5, the ATP is
significantly less sensitive to the choice of hyper-
parameters. When comparing to the FBLM, even

Figure 4: The ground truth category hierarchy, for the 20
categories in the PASCAL dataset.

for the the worst choice of a, b the AEE is still sig-
nificantly better.

5.2 Scene category hierarchy
Here we used the SUN09 dataset which is comprised
of indoor and outdoor scenes. We use the training
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Figure 5: The average edge error (AEE) (10) vs. the
AHC threshold parameter, for the hierarchies learned us-
ing the (a) training set’s attribute annotations, and (b)
attribute detectors applied to the testing set image in-
stances. Smaller values indicate better performance. It
can be seen that our ATP algorithm outperforms the
FBLM, and unlike the AHC, it is not as sensitive to the
choice of the hyper-parameters.

Table 1: Average edge error using the attribute annotation
of the training set, for different hyper-parameters.

a b AEE
1 10 1.97
5 5 1.93

10 5 1.76
10 10 1.585
10 20 1.569

and testing sets which were used in (Myung et al.,
2012), each containing over 4000 images. The an-
notation of 111 objects in the training set, and object
detector scores for the testing set, are available on-
line. Objects in the scene have the role of attributes
in describing the scene. The object classifiers were
trained using logistic regression classifiers based on
Gist features that were extracted from the training
set.

Since the ground truth category hierarchy is un-
available for this dataset, we use the locality and
purity criteria, which we described in the previous
section. We computed both of these measures with
respect to the indoor and outdoor categories. Fig-
ure 6 shows the locality and purity measures for the
training and testing sets. It can be seen that the AHC
is very sensitive to the threshold parameter, and can
produce unsatisfactory performance for a wide range
of parameter values. The FBLM slightly outper-
forms the ATP with respect to the purity measure,
however, its locality is very poor. Therefore, we con-
clude that the ATP provides an improved compro-
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Figure 6: The locality and purity measures vs. the AHC
threshold parameter, using the training set’s attribute an-
notation, and for the testing set’s attribute scores. Larger
values indicate better performance. It can be seen that
our ATP has significantly better locality, and only slightly
worse purity, compared to the FBLM. Furthermore, the
performance of the AHC depends significantly on the
choice of threshold parameter.

mise with respect to the two criteria, which shows
that the ATP captures the properties of a desirable
hierarchy better than the FBLM.

6 Conclusions
We developed an algorithm, which we refer to as
the attribute tree process (ATP), that uses an attribute
based representation to learn a hierarchy of linguis-
tic descriptions, and can be used to describe a visual
dataset verbally. In order to quantitatively evaluate
the performance of our algorithm, we proposed ap-
propriate performance metrics for the cases where
the ground truth category hierarchy is known, and
when it is unknown. We compared the ATP’s per-
formance as a hierarchical clustering algorithm to
other competing methods, and demonstrated that our
method can more accurately capture the ground truth
semantic distance between the different categories.
Furthermore, we demonstrated that our method has
weak sensitivity to the choice of hyper-parameters.
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