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Abstract

This paper queries which aspects of lexical semantics can reasonably be expected to be modelled
by corpus-based theories such as distributional semantics or techniques such as ontology extraction.
We argue that a full lexical semantics theory must take into account the extensional potential of
words. We investigate to which extent corpora provide the necessary data to model this informa-
tion and suggest that it may be partly learnable from text-based distributions, partly inferred from
annotated data, using the insight that a concept’s features are extensionally interdependent.

1 Introduction

Much work in computational linguistics relies on the use of corpora as evidential data, both for inves-
tigating language and for ‘learning’ about the world. Indeed, it is possible to inspect a great variety
of phenomena, and get access to a lot of world knowledge, simply by having a large amount of text
available. The purpose of this paper is to both acknowledge corpora as an invaluable data source for
computational linguistics and point at their shortcomings. In particular, we want to argue that an appro-
priate representation of lexical meaning requires information beyond what is provided by written text and
that this can be problematic for lexical models which rely entirely on corpora. Specifically, we wish to
highlight how corpora fail to supply the information necessary to represent the extension of a term. In a
nutshell, our argument is that the aspect of meaning represented by model theory is, in the best case, hard
to extract and in the worst case not available at all when looking at corpus data. Building on this first
discussion, we show that a concept’s features are extensionally interdependent and, using this insight,
propose that the part of model theory dealing with set relations (how much of set X is included in set
Y ?) may be learnt by exploiting a mixture of annotated (non-textual) data and standard distributional
semantics. We present preliminary experiments investigating this hypothesis.

2 Text and extension

1. My cat – a mammal – likes sitting on the sofa.

2. There are more than two trees in this forest.

3. Cats have two eyes.

Sentences like 1–3 are not often found in corpora, or any kind of speech, for that matter. This is
fortunate from the point of view of communication. In all three examples, the Gricean maxim of quantity
is violated: 1 repeats information which is already implicitely given by the encyclopedic definition of the
lexical item cat, while the other two express something obvious to anyone who has been in contact with
forests/cats in their life (or indeed, who has read the encyclopedic definitions of forest/cat).

From the point of view of standard computational linguistics, this state of affairs is however unde-
sirable. We will consider here two major approaches to extracting ‘conceptual’ knowledge from text:
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distributional semantics and ontology extraction. Distributional semantics accounts for the lexical mean-
ing of words by modelling, via appropriate weighting, their co-occurrence with other words (or any larger
lexical context). The representation of a target word is thus a vector in a space where each dimension
corresponds to a possible context. (Curran, 2003 and Turney and Pantel, 2010 are good overviews of this
line of work). Ontology extraction, on the other hand, retrieves facts from text by searching for specific
patterns: for instance, it is possible to find out that ‘cat’ is a hyponym of ‘feline’ by examining lexical
patterns of the type ‘X such as Y’ (Hearst, 1992).

It should be clear that neither method can extract information which is simply absent from text. 3, for
instance, may never occur in a corpus. This issue has been noted before, in particular in the psycholin-
guistics literature (Devereux et al., 2009; Andrews et al., 2009). To compensate, the use of manually
obtained ‘feature norms’ is often advocated to complete corpus-based representations of concepts (e.g. a
human might associate bear with the sensory-motor norms claw, big, brown, etc). But missing features
are not the only issue. Let us return to 1. If we mentioned the word mammal everytime we speak of a cat,
distributional semantics systems would be able to appropriately reflect the hyponymic relation between
the two concepts – which in turn translates into an inclusion relation in model theory. But precisely be-
cause of the strong association between them, we (as good Griceans) are careful to leave the mammal out
of the cat. Consequently, it is usual for a distribution to assign fairly low weights to features which we
would argue are essential to the lexical representation of a word (see Geffet and Dagan, 2005 or Baroni
et al., 2012 for attempts to capture the inclusion relation despite the flaws in the data).

Pattern-based methods obviously fare better when attempting to extract standard lexical relations.
They do not, however, provide a true extensional analysis of the information they retrieve. For instance,
from the snippet four-legged animals such as cats and dogs, we should not conclude that the set of dogs
is included in the set of four-legged animals – a fair amount of dogs only have three legs. Our point
is that relations obtained from corpora (or by coding feature norms) are essentially intensional: they do
not model the part of semantics dealing with set relations and thus do not reflect our expectations with
regard to a particular concept (i.e. how likely is it that a given bear is big, brown, etc?) We argue that such
expectations are part of lexical semantics, as they mediate our use of words.1 For instance, we strongly
expect a dog to have four legs, but are not overly surprised when seeing a three-legged dog (the set of
dogs is mostly, but not entirely, included in the set of four-legged things) and so would still call it a dog.
Conversely, a forest with one tree is not intuitively a forest (the sets of trees making up each instance in
the set of forests all have a ‘large’ cardinality).

In what follows we investigate how such set relations can be inferred from prior knowledge: we recall
that features (whether of the distributional type or the sensory-motor type) are dependent on each other
and that this dependency can be exploited to learn human-like expectations with regard to extension.

3 The extensional dependency hypothesis

Let us assume a particular kind of conceptual representation which consists of a vector of weighted fea-
tures, as in distributional semantics, but where the weights are the expected probabilities of an instance
of the concept to be associated with a particular distributional feature in the real world. So for instance,
the feature mammal has a weight of 1 for the concept cat because all cats are mammals. In the same
concept, black has perhaps a weight of 0.1 (assuming that one cat in ten is black). We call such represen-
tations extensional distributions, because each probability reflects some expectation about the inclusion
relation between two sets.

Let us further assume a distributional space with n dimensions and let us refer to the extensional
distribution of A as A ◦. We hypothesise that the value of A ◦ along a dimension dk is dependent on the
value of A ◦ along all other dimensions d1...n in that space. Intuitively, this means that the probability that
a cat (habitually) eats is dependent on the probability of that cat to (habitually) sleep, run, communicate,
to be made of stone or to write books. In other words, the extensional distribution of a typical cat x

1Of course, expectations reflect certain common beliefs and no extensionally true facts about the world. But those beliefs
can be modelled using the set-theory machinery, i.e. they can be regarded as a possible world.
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reflects its status as a living (non-human) being, which in turn implies a high probability of cat ◦ along
the dimension eat. We call this the extensional dependency hypothesis (see Devereux et al., 2009 for
related comments on this effect).

Such dependencies mean that learning the probabilities of certain features in relation to instances of
a given target word can be greatly facilitated by learning another, information-rich feature. For instance,
knowing that a is a bird allows us to infer many properties about a, e.g. that it lays eggs if it is female,
that it probably flies, or that it perhaps builds nests.

In the absence of any supervision, it is hard to find out which features are most inference-producing.
However, we can adopt a different strategy to learn inference rules. Let us assume that there is a cor-
respondence between distributional data and the real world for at least some features. For example, we
might find that as long as the predicate be v+fish n has been seen next to pike – be it only once –, we
can infer that all pikes are fish. It is a property of the feature that if it applies to one individual of a kind,
it will apply to all of them (contrast this with, e.g. black a). If we can be reasonably certain that, given
enough data, be v+fish n will be seen next to pike, we have a way to learn a real world probability from
corpus data which we are confident in and which may be used for producing inferences. The rest of this
paper investigates this hypothesis.

4 Experiments

4.1 A distributional system

Talking of ‘(expected) probabilities in the real world’ has consequences in terms of choosing a particular
notion of context for building our corpus-based distributions. Consider a system where context is defined
by a word window around the target. mouse may be one of the terms sometimes appearing in the context
of cat, but having a feature mouse does not tell us anything about how mice and cats are related in the real
world (do mice eat cats? are made of cats? sell cats?) and so, the ‘association’ mouse-cat cannot be as-
signed a probability. In contrast, if we choose as context semantic dependencies of the type +eat+mouse
or +be+kept+as+pet, where indicate the position of the target word, there is a clear interpretation of
the context as being related to the target in the real world (what is the probability of a cat to eat mice? to
be kept as a pet?) Consequently, we build a distributional system using dependency relations. Our data is
the Wikiwoods corpus (Flickinger et al., 2010), a Wikipedia snapshot parsed with the English Resource
Grammar (ERG), which we convert into a Dependency Minimal Recursion Semantics (DMRS, Copes-
take, 2009) format for our experiments. We only consider a number of dependency structures as context
for a target word: adjectives, adverbs, prepositions and verbs, with their direct arguments, possessive
constructs and coordination. The weight of a target word along a particular dimension of the semantic
space is given by the normalised PMI measure proposed by Bouma (2007).

To speed up processing, we only retain dimensions which do occur with the lexical items in our
experimental set (see 4.3 for a description). This results in our semantic space having 15799 dimensions.

4.2 The learning system

We design a system based on bootstrapping, which learns extensional distributions. The idea is to learn
from our corpus the features which we are most confident in and use those to further the learning process.

Let us assume we wish to learn real-world probabilities for some features F1...Fn, as applied to
instances of various target words wk...wm (F1 might be lay v+egg n while wk might be aardvark). Let
us also assume that we have some annotated data which provides us with ‘rough’ probabilities for a
number of feature-instance pairs. For convenience of annotation – and because we do not expect humans
to have an accurate probabilistic model of the world –, we express those probabilities using the natural
language quantifiers no, few, some, most, all (see Herbelot and Copestake, 2011 for related work on
resolving underspecified quantification). So we might already know that most swallows migrate.

The first iteration of our bootstrapping process runs over each feature F in {F1...Fn}. A ma-
chine learning algorithm is fed the corpus-based distributions of the training instances (let us call them
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w1...wj), together with the probabilities pm(F |w1...j) from the annotated data. A classifier is learnt for
F and its precision estimated by performing leave-one-out cross-validation on the training data. The
classifier with the best precision, say C(Fi) is recorded, together with its decisions, p(Fi|w1...j). The
feature Fi is considered ‘learnt’.

From the second iterations on, the following process takes place. For each feature F which has
not yet been learnt, the machine learning algorithm is fed the corpus-based distributions of w1...wj ,
together with the values of the learnt features p(Flearnt|w1...j) and the manually annotated probabilities
pm(F |w1...j). As before, a classifier is learnt and its precision calculated by performing leave-one-out
cross-validation on the training data and the classifier with the best precision, as well as its decisions on
the training data, are recorded for use in the next iteration.

When classifying new, unseen instances, the classifiers are applied to the data in the order they were
learnt during the training process. As an example, let us assume that we have learnt the probabilities of
the features be v+fish n and aquatic a for the animals aardvark, cod and dolphin. Let us also assume
that be v+fish n was learnt first (it was classified with higher precision than aquatic a in the first iteration
of the algorithm). Let us further suppose that in the second iteration, the initial classifier for aquatic a
was modified to take into account the learnt feature be v+fish n (i.e. the precision of the classifier was
increased by using the new information). Presented with a new classification problem, say salmon,
the system would first try to find out the probability p(be v+fish n|salmon) and then use that figure to
estimate p(aquatic a|salmon).

4.3 The dataset

We attempt to learn the quantification of a number of animal-feature pairs. The animals and features
used in our experiment are chosen as follows.

The animals are picked by selecting the entries in the Wikipedia ‘List of animals’2 which have an
occurrence count over 2000 in our corpus. This results in a set of 72 animals.

The features are chosen manually amongst the 50 most highly weighted vector components of ten
different animal distributions. The animals considered are selected semi-randomly: we make sure that
the most common types are included (mammals, fish, insects, birds, invertebrates). Features which
satisfy the following conditions are included in the experiment: a) the feature must be applicable to the
animal at the ‘individual’ level, i.e. it cannot be a temporary state of the animal, or apply to the species
collectively (black a is appropriate while wounded a or endangered a are not) b) the feature must be
semantically ‘complete’, i.e. make sense when applied to the animal in isolation (be v+mammal n is
appropriate while behaviour n+of p is not).

The feature selection exercise results in 54 vector components being selected.
Given our 72 animals and 54 features, we ask a human annotator to mark each animal-feature pair

with a ‘probability’, expressed as a quantifier. Possible values are no, few, some, most, all. The guide-
lines for the annotation task can be seen at http://www.cl.cam.ac.uk/˜ah433/material/
iwcs13-annot.pdf.

5 Results

The following is based on an implementation of our system using Weka’s3 C4.5 (also referred to as J48)
classifier (Quinlan, 1993). The C4.5 classifier produces a decision tree which can be inspected and is
therefore particularly appropriate to ‘check’ learnt rules against human intuition. We perform leave-one-
out validation on the first 10 animals in our dataset (for instance, we predict the values of our 54 features
for ant using a training set consisting of all other animals). For each animal, the system therefore runs
1485 iterations of the classifier.

2http://en.wikipedia.org/wiki/List_of_animals#Animals_.28by_common_name.29
3http://http://www.cs.waikato.ac.nz/˜ml/weka/

4



5.1 Finding relationships between corpora and the real world

In order to investigate whether real-world probabilities can be derived from corpus data, we first run a
baseline system which classifies animal-feature pairs into our five quantifier classes, no, few, some, most,
all, using only the corpus-based distributions of the animals in our training set.

The overall precision of the baseline system over our 540 predicted values is 0.51. As hypothesised,
some features are learnt with high precision using word distributions only: be v+bird n is one such
example, classifying all but one instances correctly (its estimated performance on the training data, as per
cross-validation, is 0.95). Others, such as carnivorous a consistently receive an incorrect classification
(precision of 0 on the test data and 0.24 on the training data).

5.2 Learning inferences

We now turn to the question of learning rules which reflect real-world relationships. Because of space
constraints, we are unable to reproduce actual output from the system, but examples can be seen at
http://www.cl.cam.ac.uk/˜ah433/material/iwcs13-examples.pdf. As illustration,
we consider here the classifiers produced for the feature aquatic a.

The baseline classifier (the one learnt from distributional data only) does use distributional features
that are associated with water (mediterranean a, in p()+water n), but overall, the decision tree is rather
far from the way we might expect a human to attribute the feature aquatic a to an animal species, and
mostly includes seemingly irrelevant features such as variant of or again fascinating.

The final classifier produced by our learning system, in contrast, involves the learnt probability for
the feature terrestrial a. It captures the facts that a) non-terrestrial species are aquatic and b) terrestrial
species which live near water can also be said to be aquatic (cf. otters or beavers).

Other examples of real world dependencies learnt in the iterative process include lay v+egg n and
woolly a being dependent on be v+mammal n, have v+hair n depending on woolly a and be v+insect n,
or again walk v depending on be v+mammal n and fly v.

5.3 Overall performance

The overall precision of the iterative system is 0.48, which makes it lag behind the baseline by 3%.
The result is disappointing but can be explained when inspecting the output. The strength of the system
in catching meaningful dependencies between features, which we illustrated in the previous section, is
also what makes it lose accuracy on our small dataset. Indeed, the dependencies integrated in the final
classifiers assume that the learnt features were correctly predicted for the animal under consideration.
This is unfortunately not the case, and errors accumulate during bootstrapping. For instance, when
running on the test instance ape, the system classifies the features woolly a and lay v+egg n by relying
on the prediction for be v+mammal n. The precision of the system on that feature, however, is only 0.5.
In order to truly evaluate the performance of the system, we suggest experimenting with a larger dataset.

6 Conclusion

This paper argued that there is a part of lexical semantics which is not dealt with by modelling techniques
relying entirely on corpora. Indeed, standard speech tends to omit information which is true from an ex-
tensional point of view but irrelevant for successful communication. In order to retrieve the extensional
potential of lexical terms, we proposed a separate, distribution-like representation which provides the
expected real-world probabilities of instance-feature pairs and which we refer to as extensional distribu-
tion. We argued that a) for some features, there is a correspondence between corpus data and real world
which can be learnt b) probabilities in the extensional distribution are dependent on each other and it is
possible to infer unknown values from already learnt ones (including those learnt from corpus data).
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