
Pre-Processing MRSes

Tore Bruland
Norwegian University of Science and Technology
Department of Computer and Information Science

torebrul@idi.ntnu.no

Abstract

We are in the process of creating a pipeline for our HPSG grammar for Norwegian (NorSource).
NorSource uses the meaning representation Minimal Recursion Semantics (MRS). We present a step
for validating an MRS and a step for pre-processing an MRS. The pre-processing step connects our
MRS elements to a domain ontology and it can create additional states and roles. The pipeline can
be reused by other grammars from the Delph-In network.

1 Introduction

NorSource1 (Beermann and Hellan, 2004; Hellan and Beermann, 2005), a grammar for Norwegian, is
a Head-Driven Phrase Structure Grammar (HPSG) (Sag et al., 2003), developed and maintained with
the Linguistic Knowledge Builder (LKB) tool (Copestake, 2002), and originally based on the HPSG
Grammar Matrix, which is a starter kit for developing HPSG grammars (Bender et al., 2002). An HPSG
grammar can use Minimal Recursion Semantics (MRS) as meaning representation (Copestake et al.,
2005). In order to speed up the parsing process (the unification algorithm), a HPSG grammar can be
compiled and run (parsing) with the PET2 tool (Callmeier, 2001). The Flop program in PET compiles
the LKB grammar and the Cheap program runs it. An alternative to the PET system is the Answer
Constraint Engine (ACE)3 created by Woodley Packard. ACE can parse and generate using the compiled
grammar.

Our goal is to create a pipeline for the NorSource grammar and use it to create small question-answer
systems or dialogue systems. The first step in the pipeline is the parsing process with ACE. The next
step is to select the most suitable MRS. We use Velldal’s ranking model (Velldal, 2008). The model
is based on relevant sentences from our system, treebanked with [tsdb++] (Oepen et al., 2002; Oepen
and Flickinger, 1998). The selected MRS is checked with the Swiss Army Knife of Underspesification
(Utool) (Koller and Thater, 2006b) and our own validating procedure. Only well-formed MRSes are used
in our pipeline. We also use Utool to solve the MRS and to eliminate any logically equivalent readings.
The next step is to pre-process the MRS (calculate event structure and generate roles), and the last step
in our pipeline creates a First-Order Logic formula from the MRS (only the easy cases).

Our contribution is the validating step and the pre-processing step.
In the next section, we give a brief introduction to MRS. Then we present details from our validating

procedure. Next, we solve an MRS and eliminate logically equivalent readings with Utool. We pre-
process the selected MRS in section 6. At last, we look at a way to create a First-Order Logic formula
from a solved MRS and we present a few challenges from our research.

1http://typecraft.org/tc2wiki/Norwegian_HPSG_grammar_NorSource
2http://pet.opendfki.de/
3http://moin.delph-in.net/AceTop

2 Minimal Recursion Semantics

The elements of an MRS can be defined by the structure mrs(T, I, R, C), where T is the top handle, I is
the index, R is a bag of elementary predictions (EP), and C is a bag of constraints.

Every dog chases some white cat (1)

(1) can have the following MRS (created for demonstration purposes):

T h0,

I e1,

R { h1:every(x1,h3,h8), h3:dog(x1), h7:white(x2), h7:cat(x2), h5:some(x2,h10,h9),
h4:chase(e1,x1,x2) }

C h10 =q h7

An MRS can be in two states: unsolved or solved. An algorithm (LKB and Utool) brings an MRS from
the unsolved state into one or more solved states. An unsolved MRS has holes that are not in the set of
labels, and a solved MRS has holes that are from the set of labels. The set of labels in our example: {h1,
h3, h4, h5 and h7}. The set of holes: {h3, h8, h9 and h10}. A hole can be either open or closed. A hole
is open when it isn’t in the set of labels, and a hole is closed when the hole is in the set of labels. Hole
h3 is closed in our example.

3 Validate MRSes From NorSource

We want to search our MRSes for properties that can lead to problems. The Utool solvable function
checks if an unsolved MRS can be transformed into one or more solved MRSes without violating the
MRS definitions.4 Our validating procedure contains a set of functions. We create variables or list
of variables for each function that is positive. The functions are: empty index, empty feature, empty
reference, key conjunction, and argument EP conjunction. An empty index exist when the index value
refers to a variable that is not an EP’s arg0. An empty feature exist when a feature value refers to a
variable that is not found in the EP’s arguments. An empty reference exist when an argument refers to a
variable that is not an EP’s arg0 and the variable is not in the set of feature values. A key conjunction exist
when more than one EP in an MRS have the same arg0 and they are not quantifiers. An argument EP
conjunction exists when an argument contains a label that is an EP conjunction. In Table 1, the variable

EP Feature
h3:pred1(arg0(e1),arg1(h9)) e1,feature1,value1

h9:pred2(arg0(u1),arg1(x1),arg2(u10)) u12,feature2,value2

h9:pred3(arg0(u1),arg1(x1),arg2(x2),arg3(u15)) u15,feature3,value3

h2:pred4(arg0(x1)) u16,feature4,value4

h4:pred5(arg0(x2))

Table 1: Eps and Features

u12 is an empty feature. The variable u10 is a empty reference. The arg0 of pred2 and pred3 form a key
conjunction. The argument h9 in arg1 of pred1 is an argument EP conjunction.

4Utool is stricter than the LKB software, see Fuchss et al. (2006).

4 Selecting An MRS

Before we create a ranking model, we analyze and compare the MRSes from our domain.5 We use the
variable-free solution Oepen and Lønning introduced (Oepen and Lønning, 2006). We compare parts
from the syntax tree, the EPs, the features, and if the MRS is solvable or not. We also present results
from our validation procedure. If we parse (2) with NorSource, it yields 9 MRSes. Parts of the EP
information is presented in Table 2.

1 2 3 4 5 6 7 8 9
legge v ARG1 addressee-rel x x x x x x x x x
legge v ARG2 bok n x x x x x x x x x
legge v ARGX på p x x
på p ARG1 bok n x x x x x x x
på p ARG1 legge v x x
på p ARG2 bord-1 n x x x x x x x x x

Table 2: Compare MRSes

Legg boken på bordet
Put the book on the table

(2)

We use the LOGON software to treebank ([tsdb++]) and to create our ranking model (we have copied
adjusted the scripts in folder lingo/redwoods). We parse with the ranking model and we select the first
MRS.

5 Solving The MRS

Utool solves an MRS using a dominance graph and a chart (Niehren and Thater, 2003). The redundancy
elimination algorithm (Koller and Thater, 2006a) takes a chart and a redundancy elimination file as input
and returning the chart without the redundancy. We have created a redundancy elimination file according
to (Koller and Thater, 2006b) for our quantifiers.

6 Pre-Processing The Selected MRS

In the pre-processing step we focus on the event structure and roles. By event structure we mean: sub
events, aspectual and causal notions. Vendler grouped verbs into classes based on their temporal prop-
erties (Vendler, 1967). The verbs are classified according to duration and presence of a terminal point.
A verb with a terminal point is called telic (the verb culminates). Vendler’s classes are also known by
other terms such as: eventualities, situations, lexical aspect or Aktionsart. The classes are: state, point,
process, achievement, and accomplishment. The verb’s connection to a class is not static, because a
verb argument can move an event from one class into another. This phenomenon is called aspectual
composition or coercion (Moens and Steedman, 1988).

A predicate string in an EP can contain the prefix “ ”, the suffix “ rel”, a name, a part-of-speech type
and a sense number. The name, the part-of-speech type and the sense number can be connected to a
domain ontology definition. If we don’t have the sense number, we can have a list of domain ontology
definition candidates. A predicate string can also be a unique name like in “first position prominent”.

Our goal with the pre-processing is:

• to connect the names in the predicate strings to a domain ontology

• to check if the predicate and the predicate arguments are valid according to the domain
5A demo for NorSource: http://regdili.idi.ntnu.no:8080/comparemrs/compare

• to create a common structure for a set of verbs

• implement an algorithm for roles and states

The main elements of our solution are a predicate tree, an algorithm, a domain ontology, and a set of
object-oriented classes. The predicate tree is created from the predicates and their arguments.

 kjøre

 ____|___

 / \

 frank mod

 ___|__

 / \

 vei til

 |

 |

 dragvoll

frank_na1

vei_n1

dragvoll_na11
til_p

subpath

path

movement

Figure 1: The Predicate Tree and the Movement Class

Frank kjører veien til Dragvoll
Frank drives the road to Dragvoll

(3)

The predicate tree on the left in Figure 1 is created from (3). The algorithm searches the predicate tree
and for each node in the tree it finds templates from the domain ontology. A template contains checks
against the domain ontology, a return function and a return class. One of the templates used in our
example is shown in Table 3. The variable X is replaced by vei n1 in our example. The final class for

key nodes check list return class
mod5 node(n,X) isa(X,path n1) new path

node(subpath,til p1)

Table 3: Template Example

(3) is shown on the right in Figure 1. We have defined three return functions: “new”, “call” and “fork”.
“New” creates the return class from its arguments. “Call” is used when one node consumes another.
For example in “VP PP”, the PP can be consumed by the VP. “Fork” is used when different classes are
connected. For example in ”My uncle goes to town” we have a Family class and a Movement class that
are connected through the variable for the uncle. The Movement class for (3) contains the following
information:

movement
event(e1:kjøre v1)
subject(x2:frank na1)
path

object(x9:vei n1)
end-point(x1:dragvoll na1,t2)

checks
has(dragvoll na1,location)
isa(vei n1,path n1)

templates
[tv2, pp2, mod5]

The Movement class is a result from analyzing a number of different sentences about objects changing
location. The Movement class is a process and it can contain a path, a departure, an arrival, a road (named
path), a vehicle etc. A number of these objects are connected. For example the beginning of the process
and the beginning of the path. The beginning of the path and the departure. We have implemented an
algorithm for detecting the roles work and cargo. Work indicates an object that is using energy. Cargo
indicates an object that is being transported.

The classes can be used as they are in a further reasoning process, or they can generate EPs and
features that are inserted into the MRS. For example, the state at location(x4,x1) can be inserted in an
EP conjunction.

7 Logic Form

The solved MRSes are not yet formulas in First-Order Logic. We have to convert arguments that are
in a Higher-Order Logic, insert the not operator, and use the quantifiers from First-Order Logic. An
argument that has an Ep conjunction or has a handle needs to be rewritten. An argument with a handle
is replaced with the arg0 from the EP of the handle. We can give a reference and a predicate to the
conjunction or we can find a candidate in the conjunction. We use the latter method. The predicate
neg adv rel is converted to the operator not. We have connected some of the NorSource quantifiers to

the First-Order Logic quantifiers exist and all. Quantifiers like some, few, etc can be assigned to a group
/ type of their own. We place an operator between the arguments “RSTR” and “BODY” in our quantifiers:

∃(y)[pred1(y) operator1 ∀(x)[pred2(x) operator2 pred3(x, y)]]

We have defined operator1 as ∧ and operator2 as →. The formula from (3) is:

∃(x1)[na(x1, dragvoll)∧∃(x2)[na(x2, frank)∧∃(x9)[vei n(x9)∧kjøre v(e1, x2, x9)∧ til p(u1, x9, x1)]]]

The meaning of the MRS quantifiers are preserved with the extra predicates: q meaning(u100,x1,def),
q meaning(u101,x2,def) and q meaning(u102,x9,def). These predicates need to be inserted into the logic
formula.

8 Challenges

The first challenge is to find a representative selection of sentences from the domain. The sentences are
treebanked and used in our ranking model, and their selected MRSes are also used for creating domain
ontology definitions. We use a virtual profile where we can add new annotated profiles.

We need to find a way to process our quantifiers that are not in First-Order Logic. At this early
stage we can use off-the-shelf theorem provers and model finders as described in Blackburn’s and Bos’
reasoning framework for First-Order logic (Blackburn and Bos, 2005). We must classify different kinds
of questions and commands, and we need to describe how to process them.

So far, we have connected types for each Ep together, but sometimes a more detailed structure is
required in order to express meaning. A part of one structure can connect to a part of another. In the
examples: “the cat sits in the car”, “the cat sits on the car”, and “the cat sits under the car”, there are
three different locations related to the car. We have a container in the car, an area on top of the car, and
a space under the car. This extra information needs to be used together with the MRS. Sometimes more
ambiguities are introduced and we need a ranking. For example in “Fred poured coffee on the thermos”,
the most probable is when the coffee ends up inside the thermos and the less probable version where the
coffee is poured on the outside of the thermos. We also want to use previous situations and the discourse
so far in our pre-processing step.

References

Beermann, D. and L. Hellan (2004). A treatment of directionals in two implemented hpsg grammars. In
S. Müller (Ed.), Proceedings of the HPSG04 Conference. CSLI Publications.

Bender, E. M., D. Flickinger, and S. Oepen (2002). The grammar matrix: An open-source starter-
kit for the rapid development of cross-linguistically consistent broad-coverage precision grammars. In

J. Carroll, N. Oostdijk, and R. Sutcliffe (Eds.), Proceedings of the Workshop on Grammar Engineering
and Evaluation at the 19th International Conference on Computational Linguistics, Taipei, Taiwan,
pp. 8–14.

Blackburn, P. and J. Bos (2005). Representation and Inference for Natural Language. CSLI Publications.

Callmeier, U. (2001). Efficient Parsing with Large-Scale Unification Grammars. Master thesis, Univer-
sit¨at des Saarlandes.

Copestake, A. (2002). Implementing Typed Feature Structure Grammars. CSLI.

Copestake, A., D. Flickinger, C. Pollard, and I. A. Sag (2005). Minimal Recursion Semantics. An
introduction. Journal of Research on Language and Computation 3(4), 281 – 332.

Fuchss, R., A. Koller, J. Niehren, and S. Thater (2006). Minimal recursion semantics as dominance
contraints: Translation, evaluation and analysis. In Proceedings of the 42nd ACL. Association for
Computational Linguistics.

Hellan, L. and D. Beermann (2005). Classification of prepositional senses for deep grammar applications.
In V. Kordoni and A. Villavicencio (Eds.), Proceedings of the 2nd ACL-Sigsem Workshop on The
Linguistic Dimensions of Prepositions and their Use in Computational Linguistics Formalisms and
Applications, Colchester, United Kingdom.

Koller, A. and S. Thater (2006a). An improved redundancy elimination algorithm for underspecified rep-
resentations. In Proceedings of the 21st International Conference on Computational Linguistics and
the 44th annual meeting of the Association for Computational Linguistics, pp. 409–416. Association
for Computational Linguistics.

Koller, A. and S. Thater (2006b). Utool: The Swiss Army Knife of Underspesification. Saarland Univer-
sity, Saarbrücken.

Moens, M. and M. Steedman (1988). Temporal ontology and temporal reference. Computational Lin-
guistics 14(2).

Niehren, J. and S. Thater (2003). Bridging the gap between underspesification formalisms: Minimal
recursion semantics as dominance constraints. In 41st Meeting of the Association of Computational
Lingustics, pp. 367–374.

Oepen, S. and D. Flickinger (1998). Towards systematic grammar profiling. test suite technology ten
years after. Journal of Computer Speech and Language 12(4), 411–436.

Oepen, S. and J. Lønning (2006). Discriminant-based mrs banking. In Proceedings of the 5th Interna-
tional Conference on Language Resources and Evaluation (LREC 2006).

Oepen, S., K. Toutanova, S. Shieber, C. Manning, D. Flickinger, and T. Brants (2002). The lingo red-
woods treebank: Motivation and preliminary applications. In Proceedings of the 19th international
conference on Computational linguistics-Volume 2, pp. 1–5. Association for Computational Linguis-
tics.

Sag, I. A., T. Wasow, and E. M. Bender (2003). Syntactic Theory: a formal introduction (2. ed.). CSLI
Publications.

Velldal, E. (2008). Empirical realization ranking. Ph. D. thesis, The University of Oslo.

Vendler, Z. (1967). Linguistics in Philosophy. Cornell Univerity Press.

