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Abstract
We present a model for compositional distributional semantics related to the framework of Co-

ecke et al. (2010), and emulating formal semantics by representing functions as tensors and argu-
ments as vectors. We introduce a new learning method for tensors, generalising the approach of Ba-
roni and Zamparelli (2010). We evaluate it on two benchmark data sets, and find it to outperform
existing leading methods. We argue in our analysis that the nature of this learning method also
renders it suitable for solving more subtle problems compositional distributional models might face.

1 Introduction

The staggering amount of machine readable text available on today’s Internet calls for increasingly pow-
erful text and language processing methods. This need has fuelled the search for more subtle and sophisti-
cated representations of language meaning, and methods for learning such models. Two well-researched
but prima-facie orthogonal approaches to this problem are formal semantic models and distributional
semantic models, each complementary to the other in its strengths and weaknesses.

Formal semantic models generally implement the view of Frege (1892)—that the semantic content
of an expression is its logical form—by defining a systematic passage from syntactic rules to the com-
position of parts of logical expressions. This allows us to derive the logical form a of sentence from its
syntactic structure (Montague, 1970). These models are fully compositional, whereby the meaning of a
phrase is a function of the meaning of its parts; however, as they reduce meaning to logical form, they are
not necessarily adapted to all language processing applications such as paraphrase detection, classifica-
tion, or search, where topical and pragmatic relations may be more relevant to the task than equivalence
of logical form or truth value. Furthermore, reducing meaning to logical form presupposes the provision
of a logical model and domain in order for the semantic value of expressions to be determined, rendering
such models essentially a priori.

In contrast, distributional semantic models, suggested by Firth (1957), implement the linguistic phi-
losophy of Wittgenstein (1953) stating that meaning is associated with use, and therefore meaning can be
learned through the observation of linguistic practises. In practical terms, such models learn the meaning
of words by examining the contexts of their occurrences in a corpus, where ‘context’ is generally taken to
mean the tokens with which words co-occur within a sentence or frame of n tokens. Such models have
been successfully applied to various tasks such as thesaurus extraction (Grefenstette, 1994) and essay
grading (Landauer and Dumais, 1997; Dumais, 2003). However, unlike their formal semantics coun-
terparts, distributional models have no explicit canonical composition operation, and provide no way to
integrate syntactic information into word meaning combination to produce sentence meanings.

In this paper, we present a new approach to the development of compositional distributional semantic
models, based on earlier work by Baroni and Zamparelli (2010), Coecke et al. (2010) and Grefenstette
et al. (2011), combining features from the compositional distributional framework of the latter two with
the learning methods of the former. In Section 2 we outline a brief history of approaches to compo-
sitional distributional semantics. In Section 3 we overview a tensor-based compositional distributional
model resembling traditional formal semantic models. In Section 4 we present a new multi-step regres-



sion algorithm for learning the tensors in this model. Sections 5–7 present the experimental setup and
results of two experiments evaluating our model against other known approaches to compositionality in
distributional semantics, followed by an analysis of these results in Section 8. We conclude in Section 9
by suggesting future work building on the success of the model presented in this paper.

2 Related work

Although researchers tried to derive sentence meanings by composing vectors since the very inception
of distributional semantics, this challenge has attracted special attention in recent years. Mitchell and
Lapata (2008, 2010) proposed two broad classes of composition models (additive and multiplicative) that
encompass most earlier and related proposals as special cases. The simple additive method (summing
the vectors of the words in the sentence or phrase) and simple multiplicative method (component-wise
multiplication of the vectors) are straightforward and empirically effective instantiations of the general
models. We re-implemented them here as our Add and Multiply methods (see Section 5.2 below).

In formal semantics, composition has always been modeled in terms of function application, treating
certain words as functions that operate on other words to construct meaning incrementally according to a
calculus of composition that reflects the syntactic structure of sentences (Frege, 1892; Montague, 1970;
Partee, 2004). Coecke et al. (2010) have proposed a general formalism for composition in distributional
semantics that captures the same notion of function application. Empirical implementations of Coecke’s
et al.’s formalism have been developed by Grefenstette et al. (2011) and tested by Grefenstette and
Sadrzadeh (2011a,b). In the methods they derive, a verb with r arguments is a rank r tensor to be
combined via component-wise multiplication with the Kronecker product of the vectors representing its
arguments, to obtain another rank r tensor representing the sentence:

S = V � (a1 ⊗ a2 ⊗ ...⊗ ar)

Grefenstette and Sadrzadeh (2011b) propose various ways to estimate the components of verb tensors in
the two-argument (transitive) case, with the simple method of constructing the rank 2 tensor (matrix) by
the Kronecker product of a corpus-based verb vector with itself giving the best results. The Kronecker
method outperformed the best method of Grefenstette and Sadrzadeh (2011a), referred to as the Categor-
ical model. We re-implement the Kronecker method for our experiments below. It was not possible to
efficiently implement the Categorial method across our large corpus, but we still provide a meaningful
indirect comparison with this method.

Baroni and Zamparelli (2010) propose a different approach to function application in distributional
space, that they apply to adjective-noun composition (see also Guevara (2010) for similar ideas). Adjec-
tives are functions, encoded as linear maps, that take a noun vector as input and return another nominal
vector representing the composite meaning as output. In linear algebraic terms, adjectives are matrices,
and composition is matrix-by-vector multiplication:

c = A× n

Baroni and Zamparelli (2010) estimate the adjective matrices by linear regressions on corpus-extracted
examples of their input and output vectors. In this paper, we derive their approach as a special case of
a more general framework and extend it, both theoretically and empirically, to two-argument functions
(transitive verbs), as well as testing the original single argument variant in the verbal domain. Our
generalisation of their approach is called Regression in the experiments below.

In the MV-RNN model of Socher et al. (2012), all words and phrases are represented by both a
vector and a matrix, and composition also involves a non-linear transformation. When two expressions
are combined, the resulting composed vector is a non-linear function of the concatenation of two linear
transformations (multiplying the first element matrix by the second element vector, and vice versa). In
parallel, the components of the matrices associated with the resulting phrase are linear combinations of
the components of the input matrices. Socher and colleagues show that MV-RNN reaches state-of-the-art
performance on a variety of empirical tasks.

While the proposal of Socher et al. is similar to our approach in many respects, including syntax-
sensitivity and the use of matrices in the calculus of composition, there are three key differences. The



first is that MV-RNN requires task-specific labeled examples to be trained for each target semantic task,
which our framework does not, attempting to achieve greater generality while relying less on manual
annotation. The second difference, more theoretical in nature, is that all composition in MV-RNN is
pairwise, whereas we will present a model of composition permitting functions of larger arity, allowing
the semantic representation of functions that take two or more arguments simultaneously. Finally, we
follow formal semantics in treating certain words as functions and other as arguments (and can thus
directly import intuitions about the calculus of composition from formal semantics into our framework),
whereas Socher and colleagues treat each word equally (as both a vector and a matrix). However, we
make no claim at this stage as to whether or not these differences can lead to richer semantic models,
leaving a direct comparison to future work.

Several studies tackle word meaning in context, that is, how to adapt the distributional representation
of a word to the specific context in which it appears (e.g., Dinu and Lapata, 2010; Erk and Padó, 2008;
Thater et al., 2011). We see this as complementary rather than alternative to composition: Distributional
representations of single words should first be adapted to context with these methods, and then composed
to represent the meaning of phrases and sentences.

3 A general framework for distributional function application

A popular approach to compositionality in formal semantics is to derive a formal representation of a
phrase from its grammatical structure by representing the semantics of words as functions and arguments,
and using the grammatical structure to dictate the order and scope of function application. For example,
formal semantic models in the style of Montague (1970) will associate a semantic rule to each syntactic
rule in a context-free grammar. A sample formal semantic model is shown here:

Syntax Semantics
S ⇒ NP VP [[S]] ⇒ [[V P ]] ([[NP ]])
NP ⇒ N [[NP ]] ⇒ [[N ]]
N ⇒ ADJ N [[N ]] ⇒ [[ADJ ]] ([[N ]])
VP ⇒ Vt NP [[V P ]] ⇒ [[V t]] ([[NP ]])
VP ⇒ Vi [[V P ]] ⇒ [[V i]]

Syntax (cont’d) Semantics (cont’d)
Vt ⇒ {verbst} [[V t]] ⇒ [[verbt]]
Vi ⇒ {verbsi} [[V i]] ⇒ [[verbi]]
ADJ ⇒ {adjs} [[ADJ ]] ⇒ [[adj]]
N ⇒ {nouns} [[N ]] ⇒ [[noun]]

Following these rules, the parse of a simple sentence like ‘angry dogs chase furry cats’ yields the follow-
ing interpretation: [[chase]]([[furry]]([[cats]]))([[angry]]([[dogs]])). This is a simple model, where typically
lambda abstraction will be liberally used to support quantifiers and argument inversion, but the key point
remains that the grammar dictates the translation from natural language to the functional form, e.g. pred-
icates and logical relations. Whereas in formal semantics these functions have a set theoretic form, we
present here a way of defining them as multilinear maps over geometric objects. This geometric frame-
work is also applicable to other formal semantic models than that presented here. This is particularly
important, as the version of the model presented here is overly simple compared to modern work in for-
mal semantics (which, for example, apply NPs to VPs instead of VPs to NPs, to model quantification),
and only serves as a model frame within which we illustrate how our approach functions.

The bijective correspondence between linear maps and matrices is a well known property in linear
algebra: Every linear map f : A→ B can be encoded as a dim(B) by dim(A) matrixM , and conversely
every such matrix encodes a class of linear maps determined by the dimensionality of the domain and
co-domain. The application of a linear map f to a vector v ∈ A producing a vector w ∈ B is equivalent
to the matrix multiplication:

f(v) = M × v = w

In the case of multilinear maps, this correspondence generalises to a correlation between n-ary maps and
rank n + 1 tensors (Bourbaki, 1989; Lee, 1997). Tensors are generalisations of vectors and matrices;
they have larger degrees of freedom referred to as tensor ranks, which is one for vectors and two for
matrices. To illustrate this generalisation, consider how a row/column vector may be written as the
weighted superposition (summation) of its basis elements: any vector v in a vector space V with a fixed
basis {bi}i, can be written

v =
∑
i

cvi bi =
[
cv1 , . . . , c

v
i , . . . , c

v
dim(V )

]>



Here, the weights cvi are elements of the underlying field (e.g. R), and thus vectors can be fully described
by such a one-index summation. Likewise, matrices, which are rank 2 tensors, can be seen as a collection
of row vectors from some space Vr with basis {ai}i, or of column vectors from some space Vc with basis
{dj}j . Such a matrix M is an element of the space Vr ⊗ Vc, and can be fully described by the two index
summation:

M =
∑
ij

cMij ai ⊗ dj

where, once again, cMij is an element of the underlying field which in this case is simply the element from
the ith row and jth column of the matrix M , and the basis element ai⊗dj of Vr⊗Vc is formed by a pair
of basis elements from Vr and Vc. The number of indices (or degrees of freedom) used to fully describe a
tensor in this superposition notation is its rank, e.g., a rank 3 tensor T ∈ A⊗B ⊗C would be described
by the superposition of weights cTijk associated with basis elements ei ⊗ fj ⊗ gk.

The notion of matrix multiplication and inner product both generalise to tensors as the non-com-
mutative tensor contraction operation (×). For tensors T ∈ A⊗ . . .⊗B⊗C and U ∈ C⊗D⊗ . . .⊗E,
with bases {ai ⊗ . . .⊗ bj ⊗ ck}i...jk and {ck ⊗ dl ⊗ . . .⊗ em}kl...m, the tensor contraction of T ×U is
calculated: ∑

i...jkl...m

cTi...jkc
U
kl...mai ⊗ . . .⊗ bj ⊗ dl ⊗ . . .⊗ em

where the resulting tensor is of rank equal to two less than the sum of the ranks of the input tensors; the
subtraction reflects the elimination of matching basis elements through summation during contraction.

For every curried multilinear map g : A→ . . .→ Y → Z, there is a tensor T g ∈ Z ⊗ Y ⊗ . . .⊗ A
encoding it (Bourbaki, 1989; Lee, 1997). The application of a curried n-ary map h : V1 → . . .→ Vn →
W to input vectors v1 ∈ V1, . . . , vn ∈ Vn to produce output vector w ∈ W corresponds to the tensor
contraction of the tensor T h ∈W ⊗ Vn ⊗ . . .⊗ V1 with the argument vectors:

h(v1) . . . (vn) = T h × v1 × . . .× vn

Using this correspondence between n-ary maps and tensors of rank n+1 we can turn any formal semantic
model into a compositional distributional model. This is done by first running a type inference algorithm
on the generative rules and obtaining types, then assigning to each basic type a vector space and to each
function type a tensor space, and representing arguments by vectors and functions by tensors, finally,
model function application by tensor contraction.

To give an example, in the simple formal semantic model given above, a type inference algorithm
would provide us with basic types [[N ]] and [[S]]; we assign vector spaces N and S to these respec-
tively. Nouns and noun phrases are vectors in N , whereas sentences are vectors in S. Verb phrases map
noun phrase interpretations to sentence interpretations, hence they are of type [[V P ]] : type([[NP ]]) →
type([[S]]), in vector space terms we have [[V P ]] : N → S. Intransitive verbs map noun phrases to verb
phrases, therefore have the tensor form T vi ∈ S⊗N . Transitive verbs have type [[V t]] : [[NP ]]→ [[V P ]],
expanded to [[V t]] : N → N → S, giving us the tensor form T vt ∈ S ⊗N ⊗N . Finally, adjectives are
of type [[ADJ ]] : [[N ]] → [[N ]], and hence have the tensor form T adj ∈ N ⊗N . Putting all this together
with tensor contraction (×) as function application, the vector meaning of our sample sentence “angry
dogs chase furry cats” is obtained by calculating the following operations, for lexical semantic vectors
T cats and T dogs, square matrices T furry and T angry , and a rank 3 tensor T chase:(

T chase ×
(
T furry × T cats))× (T angry × T dogs)

An important feature of the proposed approach is that elements with the same syntactic category will
always be represented by tensors of the same rank and dimensionality. For examples, all phrases of type
S (namely sentences) will be represented by vectors with the same number of dimensions, making a
direct comparison of sentences with arbitrary syntactic structures possible.

4 Learning functions by multi-step regression

The framework described above grants us the ability to determine the rank of the tensors needed to
encode functions, as well as their dimensions relative to those of the vectors used to represent arguments.



It leaves open the question of how to learn tensors of specific ranks. This, very much like in the case
of the DisCoCat framework of Coecke et al. (2010) from which it originated, is intentional: There
may be more than one suitable semantic representation for arguments, functions, and sentences, and
it is a desirable feature that we may alternate between such representations or combine them while
leaving the mechanics of function composition intact. Furthermore, there may be more than one way of
learning the tensors and vectors of a particular representation. Previous work on learning tensors has been
described independently by Grefenstette and Sadrzadeh (2011a,b) for transitive verbs, and by Baroni and
Zamparelli (2010) for adjective-noun constructions. In this section, we describe a new way to learn such
tensors, based on ideas from both aforementioned approaches, namely that of multi-step regression.

Multi-step regression learning is a generalisation of linear regression learning for tensors of rank 3 or
higher, as procedures already exist for tensors of rank 1 (lexical semantic vectors) and rank 2 (Baroni and
Zamparelli, 2010). For rank 1 tensors, we suggest learning vectors using any standard lexical semantic
vector learning model, and present sample parameters in Section 5.1 below. Learning rank 2 tensors
(matrices) can be treated as a multivariate multiple regression problem, where the matrix components are
chosen to optimise (in a least square error sense) the mapping from training instances of input (argument)
to output (composed expression) vectors. Consider for example the task of estimating the components of
the matrix representing an intransitive verb, that maps subject vectors to (subject-verb) sentence vectors
(Baroni and Zamparelli discuss the analogous adjective-noun composition case):

s = V × subj

The weights of the matrix are estimated by least-squares regression from example pairs of input subject
and output sentence vectors directly extracted from the corpus. For example, the matrix for sing is
estimated from corpus-extracted vectors representing pairs such as <mom, mom sings>, <child, child
sings>, etc. Note that if the input and output vectors are n dimensional, we must estimate an n × n
matrix, each row corresponding to a separate regression problem (the i-th row vector of the estimated
matrix will provide the weights to linearly combine the input vector components to predict the i-th
output vector component). Regression is a supervised technique requiring training data. However, we
can extract the training data automatically from the corpus and so this approach does not incur an extra
knowledge cost with respect to unsupervised methods.

Learning tensors of higher rank by linear regression involves iterative application of the linear regres-
sion learning method described above. The idea is to progressively learn the functions of arity two or
higher encoded by such tensors by recursively learning the partial application of these functions, thereby
reducing the problem to the same matrix-learning problem as addressed by Baroni and Zamparelli. To
start with an example: the matrix-by-vector operation of Baroni and Zamparelli (2010) is a special case
of the general tensor-based function application model we are proposing, where a ‘mono-argumental’
function (intransitive verbs) corresponds to a rank 2 tensor (a matrix). The approach is naturally ex-
tended to bi-argumental functions, such as transitive verbs, where the verb will be a rank 3 tensor to be
multiplied first by the object vector and then by the subject, to return a sentence-representing vector:

s = V × obj× subj

The first multiplication of a n × n × n tensor by a n-dimensional vector will return a n-by-n matrix
(equivalent to an intransitive verb, as it should be: both sings and eats meat are VPs requiring a subject
to be saturated). Note that given n-dimensional input vectors, the ij-th n-dimensional vector in the
estimated tensor provides the weights to linearly combine the input object vector components to predict
the ij-th output component of the unsaturated verb-object matrix. The matrix is then multiplied by the
subject vector to obtain a n-dimensional vector representing the sentence. Again, we estimate the tensor
components by linear regression on input-output examples. In the first stage, we apply linear regression
to obtain examples of semi-saturated matrices representing verb-object constructions with a specific verb.
These matrices are estimated, like in the intransitive case, from corpus-extracted examples of <subject,
subject-verb-object> pairs. After estimating a suitable number of such matrices for a variety of objects of
the same verb, we use pairs of corpus-derived object vectors and the corresponding estimated verb-object
matrices as input-output pairs for another regression, where we estimate the verb tensor components. The
estimation procedure is schematically illustrated for eat in Fig. 1.
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Figure 1: Estimating a tensor for eat in two steps. We first estimate matrices for the VPs eat-meat, eat-pie
etc. by linear regression on input subject and output sentence vector pairs. We then estimate the tensor
for eat by linear regression with the matrices estimated in the previous step as output examples, and the
vectors for the corresponding objects as input examples.

We can generalise this learning procedure to functions of arbitrary arity. Consider an n-ary function
f : X1 → . . . → Xn → Y . Let Li be the set of i-tuples {wj

1, . . . , w
j
i }i∈[1,k], where k = |Li|,

corresponding to the words which saturate the first i arguments of f in a corpus. For each tuple in some
set Li, let f wj

1 . . . w
j
i = f ji : Xi+1 → . . . → Xn → Y . Trivially, there is only one such f j0—namely

f itself—since L0 = ∅ (as there are no arguments of f to saturate for i = 0). The idea behind multi-step
regression is to learn, at each step, the tensors for functions f ji by linear regression over the set of pairs
(wj′

i+1, f
j′

i+1), where the tensors f j
′

i+1 are the expected outcomes of applying f ji to wj′

i+1 and are learned
during the previous step. We bootstrap this algorithm by learning the vectors in Y of the set {f jn}j by
treating the word which each f jn models combined with the words of its associated tuple in Ln as a
single token. We then learn the vector for this token from the corpus using our preferred distributional
semantics method. By recursively learning the sets of functions from i = n down to 0, we obtain smaller
and smaller sets of increasingly de-saturated versions of f , which finally allow us to learn f0 = f .

To specify how the set of pairs used for recursion is determined, let there exist a function super
which takes the index of a tuple from Li and returns the set of indices from Li+1 which denote tuples
identical to the first tuple, excluding the last element:

super : N× N→ P(N) :: (i, j) 7→ {j′|∀j′ ∈ [1, k′].[wj
1 = wj′

1 ∧ . . . ∧ w
j
i = wj′

i ]} where k′ = |Li+1|
Using this function, the regression set for some f ji can be defined as {(wj′

i+1, f
j′

i+1)|j′ = super(i, j)}.
While we just demonstrated how our model generalises to functions of arbitrary arity, it remains to

be seen if in actual linguistic modeling there is an effective need for anything beyond tri-argumental
functions (ditransitive verbs).

5 Experimental procedure

5.1 Construction of distributional semantic vectors

We extract co-occurrence data from the concatenation of the Web-derived ukWaC corpus (http://
wacky.sslmit.unibo.it/), a mid-2009 dump of the English Wikipedia (http://en.wikipedia.
org) and the British National Corpus (http://www.natcorp.ox.ac.uk/). The corpus has been
tokenised, POS-tagged and lemmatised with TreeTagger (http://www.ims.uni-stuttgart.
de/projekte/corplex/TreeTagger/) and dependency-parsed with MaltParser (http://www.
maltparser.org/). It contains about 2.8 billion tokens.



We collect vector representations for the top 8K most frequent nouns and 4K verbs in the corpus,
as well as for the subject-verb (320K) and subject-verb-object (1.36M) phrases containing one of the
verbs to be used in one of the experiments below and subjects and objects from the list of top 8K nouns.
For all target items, we collect within-sentence co-occurrences with the top 10K most frequent content
words (nouns, verbs, adjectives and adverbs), save for a stop list of the 300 most frequent words. We
extract co-occurrence statistics at the lemma level, ignoring inflectional information. Following standard
practice, raw co-occurrence counts are transformed into statistically weighted scores. We tested various
weighting schemes of the semantic space on a word similarity task, observing that non-negative pointwise
mutual information (PMI) and local mutual information (raw frequency count multiplied by PMI score)
generally outperform other weighting schemes by a large margin, and that PMI in particular works best
when combined with dimensionality reduction by non-negative matrix factorization (described below).
Consequently, we pick PMI weighting for our experiments.

Reducing co-occurrence vectors to lower dimensionality is a common step in the construction of dis-
tributional semantic models. Extensive evidence suggests that dimensionality reduction does not affect,
and might even improve the quality of lexical semantic vectors (Bullinaria and Levy, 2012; Landauer
and Dumais, 1997; Sahlgren, 2006; Schütze, 1997). In our setting, dimensionality reduction is virtually
necessary, since working with 10K-dimensional vectors is problematic for the Regression approach (see
Section 5.2 below), that requires learning matrices and tensors with dimensionalities which are quadratic
and cubic in the dimensionality of the input vectors, respectively. We consider two dimensionality reduc-
tion methods, the Singular Value Decomposition (SVD) and Non-negative Matrix Factorization (NMF).
SVD is the most common technique in distributional semantics, and it was used by Baroni and Zam-
parelli (2010). NMF is a less commonly adopted method, but it has also been shown to be an effective
dimensionality reduction technique for distributional semantics (Dinu and Lapata, 2010). It has a fun-
damental advantage from our point of view: The Multiply and Kronecker composition approaches (see
Section 5.2 below), because of their multiplicative nature, cannot be meaningfully applied to vectors
containing negative values. NMF, unlike SVD, produces non-negative vectors, and thus allows a fair
comparison of all composition methods in the same reduced space.1

We perform the Singular Value Decomposition of the input matrix X: X = UΣV T and, like Baroni
and Zamparelli and many others, pick the first k = 300 columns ofUΣ to obtain reduced representations.
Non-negative Matrix Factorization factorizes a (m × n) non-negative matrix X into two (m × k) and
(k × n) non-negative matrices: X ≈ WH (we normalize the input matrix to

∑
i,j Xij = 1 before

applying NMF). We use the Matlab implementation2 of the projected gradient algorithm proposed in
Lin (2007), which minimizes the squared error of Frobenius norm F (W,H) = ‖X −WH‖2F . We set
k = 300 and we use W as reduced representation of input matrix X .3

5.2 Composition methods

Verb is a baseline measuring the cosine between the verbs in two sentences as a proxy for sentence
similarity (e.g., similarity of mom sings and boy dances is approximated by the cosine of sing and dance).

We adopt the widely used and generally successful multiplicative and additive models of Mitchell
and Lapata (2010) and others. Composition with the Multiply and Add methods is achieved by, re-
spectively, component-wise multiplying and adding the vectors of the constituents of the sentence we
want to represent. Vectors are normalised before addition, as this has consistently shown to improve Add
performance in our earlier experiments.

Grefenstette and Sadrzadeh (2011b) proposed a specific implementation of the general DisCoCat
approach to compositional distributional semantics (Coecke et al., 2010) that we call Kronecker here.

1We ran the experiments reported below in full space for those models for which it was possible, finding that Multiply
obtained better results there (approaching those of reduced-spaced Regression). This suggests that, although in our preliminary
word similarity tests the original 10K-dimensional space and the two reduced spaces produced very similar results, it is still
necessary to look for better low-dimensionality approximations of the full space.

2Available at http://www.csie.ntu.edu.tw/˜cjlin/nmf/.
3For both SVD and NMF, the latent dimensions are computed using a “core” matrix containing nouns and verbs only,

subsequently projecting phrase vectors onto the same space. In this way, the dimensions of the reduced space do not depend on
the ad-hoc choice of phrases required by our experiments.



Under this approach, a transitive sentence is a matrix S derived from:

S = (v ⊗ v)� (subj⊗ obj)

That is, if nouns and verbs live in a n-dimensional space, a transitive sentence is a n × n matrix given
by the component-wise multiplication of two Kronecker products: that of the verb vector with itself and
that of the subject and object vectors. Grefenstette and Sadrzadeh show that this method outperforms
other implementations of the same formalism and is the current state of the art on the transitive sentence
task of Grefenstette and Sadrzadeh (2011a) we also tackle below. For intransitive sentences, the same
approach reduces to component-wise multiplication of verb and subject vectors, that is, to the Multiply
method.

Composition of nouns and verbs under the proposed (multi-step) Regression model is implemented
using Ridge Regression (RR) (Hastie et al., 2009). RR, also known as L2 regularized regression, is a
different approach from the Partial Least Square Regression (PLSR) method that was used in previous
related work (Baroni and Zamparelli, 2010; Guevara, 2010) to deal with the multicollinearity problem.
When multicollinearity exists, the matrix XTX (X here is the input matrix after dimensionality reduc-
tion) becomes nearly singular and the diagonal elements of (XTX)−1 become quite large, which makes
the variance of weights too large. In RR, a positive constant λ is added to the diagonal elements ofXTX
to strengthen its non-singularity. Compared with PLSR, RR has a simpler solution for the learned weight
matrix B = (XTX + λI)−1XTY and produces competitive results at a faster speed. For each verb
matrix or tensor to be learned, we tuned the parameter λ by generalized cross-validation (Golub et al.,
1979). The objective function used for tuning minimizes least square error when predicting corpus-
observed sentence vectors or intermediate VP matrices (the data sets we evaluate the models on are not
touched during tuning!). Training examples are found by combining the 8K nouns we have vectors for
(see Section 5.1 above) with any verb in the evaluation sets (see Sections 6 and 7 below) into subject-
verb-(object) constructions, and extracting the corresponding vectors from the corpus, where attested
(vectors are normalised before feeding them to the regression routine). We use only example vectors
with at least 10 non-0 dimensions before dimensionality reduction, and we require at least 3 training
examples per regression. For the first experiment (intransitives), these (untuned) constraints result in
an average of 281 training examples per verb. In the second experiment, in the verb-object matrix es-
timation phase, we estimate on average 324 distinct matrices per verb, with an average of 15 training
examples per matrix. In the verb tensor estimation phase we use all relevant verb-object matrices as
training examples.4

6 Experiment 1: Predicting similarity judgments on intransitive sentences

We use the test set of Mitchell and Lapata (2008), consisting of 180 pairs of simple sentences made
of a subject and an intransitive verb. The stimuli were constructed so as to ensure that there would be
pairs where the sentences have high similarity (the fire glowed vs. the fire burned) and cases where the
sentences are dissimilar while having a comparable degree of lexical overlap (the face glowed vs. the
face burned). The sentence pairs were rated for similarity by 49 subjects on a 1-7 scale. Following
Mitchell and Lapata, we evaluate each composition method by the Spearman correlation of the cosines
of the sentence pair vectors, as predicted by the method, with the individual ratings produced by the
subjects for the corresponding sentence pairs.

The results in table 1(a) show that the Regression-based model achieves the best correlation when
applied to SVD space, confirming that the approach proposed by Baroni and Zamparelli for adjective-
noun constructions can be successfully extended to subject-verb composition. The Regression model
also achieves good performance in NMF space, where it is comparable to Multiply. Multiply was found
to be the best model by Mitchell and Lapata, and we confirm their results here (recall that Multiply can
also be seen as the natural extension of Kronecker to the intransitive setting). The correlations attained
by Add and Verb are considerably lower than those of the other methods.

4All materials and code used in these experiments that are not already publicly available can be requested to the first author.



(a) Intransitive Sentences

method ρ
Humans 0.40
Multiply.nmf 0.19
Regression.nmf 0.18
Add.nmf 0.13
Verb.nmf 0.08
Regression.svd 0.23
Add.svd 0.11
Verb.svd 0.06

(b) Transitive Sentences

method ρ
Humans 0.62
Regression.nmf 0.29
Kronecker.nmf 0.25
Multiply.nmf 0.23
Add.nmf 0.07
Verb.nmf 0.04
Regression.svd 0.32
Add.svd 0.12
Verb.svd 0.08

Table 1: Spearman correlation of composition methods with human similarity intuitions on two sentence
similarity data sets (all correlations significantly above chance). Humans is inter-annotator correlation.
The multiplication-based Multiply and Kronecker methods are not well-suited for the SVD space (see
Section 5.1) and their performance is reported in NMF space only. Kronecker is only defined for the
transitive case, Multiply functioning also as its intransitive-case equivalent (see Section 5.2).

7 Experiment 2: Predicting similarity judgments on transitive sentences

We use the test set of Grefenstette and Sadrzadeh (2011a), which was constructed with the same criteria
that Mitchell and Lapata applied, but here the sentences have a simple transitive structure. An example
of a high-similarity pair is table shows result vs. table expresses result; whereas map shows location
vs. map expresses location is a low-similarity pair. Grefenstette and Sadrzadeh had 25 subjects rating
each sentence. Model evaluation proceeds like in the intransitive case.5

As the results in table 1(b) show, the Regression model performs very well again, better than any other
methods in NMF space, and with a further improvement when SVD is used, similarly to the first experi-
ment. The Kronecker model is also competitive, confirming the results of Grefenstette and Sadrzadeh’s
experiments. Neither Add nor Verb achieve very good results, although even for them the correlation
with human ratings is significant.

8 General discussion of the results

The results presented here show that our iterative linear regression algorithm outperforms the leading
multiplicative method on intransitive sentence similarity when using SVD (and it is on par with it when
using NMF), and outperforms both the multiplicative method and the leading Kronecker model in pre-
dicting transitive sentence similarity. Additionally, the multiplicative model, while commendable for its
extreme simplicity, is of limited general interest, since it cannot take word order into account. We can
trivially make this model fail by testing it on transitive sentences with subject and object inverted: For
Multiply, pandas eat bamboo and bamboo eats pandas are identical statements, whereas for humans they
are obviously very different.

Confirming what Grefenstette and Sadrzadeh found, we saw that Kronecker performs very well also
in our experimental setup (although not as well as Regression). The main advantage of Kronecker over
Regression lies in its simplicity: there is no training involved, all it takes is two outer vector products and
a component-wise multiplication. However, as pointed out by Grefenstette and Sadrzadeh (2011b), this
method is ad hoc compared to the linguistically motivated Categorical method they initially presented
in Grefenstette and Sadrzadeh (2011a). It is conceivable that the Kronecker model’s good performance is
primarily tied to the nature of the evaluation data-set, where only verbs change while subject and object
stay the same in sentence pairs.

While our regression-based model’s estimation procedure is considerably more involved than for
Kronecker, the model has much to recommend it, both from a statistical and from a linguistic point of
view. On the statistical side, there are many aspects of the estimation routine that could be tuned on
automatically collected training data, thus bringing up the Regression model performance. We could for

5Kronecker produces matrix representations of transitive sentences, so technically the similarity measure used for this
method is the Frobenius inner product of the normalised matrices, equivalent to unfolding the matrices into vectors and com-
puting cosine similarity.



example harvest a larger number of training phrases (not limiting them to those that contain nouns from
the 8K most frequent in the corpus, as we did), or vice versa limit training to more frequent phrases,
whose vectors are presumably of better quality. Moreover, Ridge Regression is only one of of many
estimation techniques that could be tried to come up with better matrix and tensor weights. On the
linguistic side, the model is clearly motivated as an instantiation of the vector-space “dual” of classic
composition by function application via the tensor contraction operation, as discussed in Section 3 above.
Moreover, Regression produces vectors of the same dimensionality for sentences formed with intransitive
and transitive verbs, whereas for Kronecker, if the former are n-dimensional vectors, the second are n×n
matrices. Thus, under Kronecker composition, sentences with intransitive and transitive verbs are not
directly comparable, which is counter-intuitive (being able to measure the similarity of, say, kids sing
and kids sing songs is both natural and practically useful).

Finally, we remark that in both experiments SVD-reduced vectors lead to Regression models out-
performing their NMF counterparts. Regression, unlike the multiplication-based models, is not limited
to non-negative vectors, and it can thus harness the benefits of SVD reduction (although of course it is
precisely because of the large regression problems we must solve that we need to perform dimensionality
reduction at all!).

9 Conclusion

The main advances introduced in this paper are as follows. First, we discussed a tensor-based com-
positional distributional semantic framework in the vein of that of Coecke et al. (2010) which has the
compositional mechanism of Baroni and Zamparelli (2010) as a specific case, thereby uniting both lines
of research in a common framework. Second, we presented a generalisation of Baroni and Zamparelli’s
matrix learning method to higher rank tensors, allowing us to induce the semantic representation of func-
tions modelled in this framework. Finally, we evaluated this new semantic tensor learning model against
existing benchmark data-sets provided by Mitchell and Lapata (2008) and Grefenstette and Sadrzadeh
(2011a), and showed it to outperform other models. We furthermore claim that the generality of our
extended regression method allows it to capture more information than the multiplicative and Kronecker
models, and will allow us to canonically model more complex and subtle relations where argument order
and semantic roles matter more, such as quantification, logical operations, and ditransitive verbs.

Among the plans for future work, we intend to improve regression-based tensor estimation, focus-
ing in particular on automated ways to choose informative training examples. On the evaluation side, we
want to construct a larger test set to directly compare sentences with different argument counts (e.g., tran-
sitive vs. intransitive constructions) and word orders (e.g., sentences with subject and object inverted), as
well as extending modeling and evaluation to other syntactic structures and types of function application
(including the challenging cases we listed in the previous paragraph). We want moreover to test the
Regression model against the Categorical model of Grefenstette and Sadrzadeh (2011a) and to design
evaluation scenarios allowing a direct comparison with the MV-RNN model of Socher et al. (2012).
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