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Abstract

This paper introduces distributional semantic similarity methods for automatically measuring the
coherence of a set of words generated by a topic model. We construct a semantic space to represent
each topic word by making use of Wikipedia as a reference corpus to identify context features and
collect frequencies. Relatedness between topic words and context features is measured using variants
of Pointwise Mutual Information (PMI). Topic coherence is determined by measuring the distance
between these vectors computed using a variety of metrics. Evaluation on three data sets shows that
the distributional-based measures outperform the state-of-the-art approach for this task.

1 Introduction

Topic modelling is a popular statistical method for (soft) clustering documents (Blei et al., 2003; Deer-
wester et al., 1990; Hofmann, 1999). Latent Dirichlet Allocation (LDA) (Blei et al., 2003), one type
of topic model, has been widely used in NLP and applied to a range of tasks including word sense dis-
ambiguation (Boyd-Graber et al., 2007), multi-document summarisation (Haghighi and Vanderwende,
2009) and generation of comparable corpora (Preiss, 2012).

A variety of approaches has been proposed to evaluate the topics generated by these models. The
first to be explored were extrinsic methods, measuring the performance achieved by a model in a specific
task or using statistical methods. For example, topic models have been evaluated by measuring their
accuracy for information retrieval (Wei and Croft, 2006). Statistical methods have also been applied to
measure the predictive likelihood of a topic model in held-out documents by computing their perplexity.
Wallach et al. (2009) gives a detailed description of such statistical metrics.

However, these approaches do not provide any information about how interpretable the topics are to
humans. Figure 1 shows some example topics generated by a topic model. The first three topics appear
quite coherent, all the terms in each topic are associated with a common theme. On the other hand,
it is difficult to identify a coherent theme connecting all of the words in topics 4 and 5. These topics
are difficult to interpret and could be considered as “junk” topics. Interpretable topics are important
in applications such as visualisation of document collections (Chaney and Blei, 2012; Newman et al.,
2010a), where automatically generated topics are used to provide an overview of the collection and the
top-n words in each topic used to represent it.

Chang et al. (2009) showed that humans find topics generated by models with high predictive likeli-
hood to be less coherent than topics generated from others with lower predictive likelihood. Following
Chang’s findings, recent work on evaluation of topic models has been focused on automatically mea-
suring the coherence of generated topics by comparing them against human judgements (Mimno et al.,
2011; Newman et al., 2010b). Newman et al. (2010b) define topic coherence as the average semantic
relatedness between topic words and report the best correlation with humans using the Pointwise Mutual
Information (PMI) between topic words in Wikipedia.



1: oil, louisiana, coast, gulf, orleans, spill, state, fisherman, fishing, seafood
2: north, kim, korea, korean, jong, south, il, official, party, son
3: model, wheel, engine, system, drive, front, vehicle, rear, speed, power
4: drink, alcohol, indonesia, drinking, indonesian, four, nokia, beverage, mc-
donald, caffeine
5: privacy, andrews, elli, alexander, burke, zoo, information, chung, user, regan

Figure 1: A sample of topics generated by a topic model over a corpus of news articles. Topics are
represented by top-n most probable words.

Following this direction, we explore methods for automatically determining the coherence of topics.
We propose a novel approach for measuring topic coherence based on the distributional hypothesis which
states that words with similar meanings tend to occur in similar context (Harris, 1954). Wikipedia is
used as a reference corpus to create a distributional semantic model (Padó and Lapata, 2003; Turney and
Pantel, 2010). Each topic word is represented as a bag of highly co-occurring context words that are
weighted using either PMI or a normalised version of PMI (NPMI). We also explore creating the vector
space using differing numbers of context terms. All methods are evaluated by measuring correlation with
humans on three different sets of topics. Results indicating that measures on the fuller vector space are
comparable to the state-of-the-art proposed by Newman et al. (2010b), while performance consistently
improves using a reduced vector space.

The remainder of this article is organised as follows. Section 2 presents background work related
to topic coherence evaluation. Section 3 describes the distributional methods for measuring topic co-
herence. Section 4 explains the experimental set-up used for evaluation. Our results are described in
Section 5 and the conclusions in Section 6.

2 Related work

Andrzejewski et al. (2009) proposed a method for generating coherent topics which used a mixture of
Dirichlet distributions to incorporate domain knowledge. Their approach prefers words that have similar
probability (high or low) within all topics and rejects words that have different probabilities across topics.

AlSumait et al. (2009) describe the first attempt to automatically evaluate topics inferred from topic
models. Three criteria are applied to identify junk or insignificant topics. Those criteria are in the
form of probability distributions over the highest probability words. For example, topics in which the
probability mass is distributed approximately equally across all words are considered likely to be difficult
to interpret.

Newman et al. (2010b) also focused on methods for measuring the semantic coherence of topics. The
main contribution of this work is to propose a measure for the automatic evaluation of topic semantic
coherence which has been shown to be highly correlated with human evaluation. It is assumed that a
topic is coherent if all or the most of its words are related. Results showed that word relatedness is
better predicted using the distribution-based Pointwise Mutual Information (PMI) of words rather than
knowledge-based measures.

The method using PMI proposed by Newman et al. (2010b) relies on co-occurrences of words in
an external reference source such as Wikipedia for automatic evaluation of topic quality. Mimno et al.
(2011) showed that available co-document frequency of words in the training corpus can be used to
measure semantic coherence. Topic coherence is defined as the sum of the log ratio between co-document
frequency and the document frequency for the N most probable words in a topic. The intuition behind
this metric is that the co-occurrence of words within documents in the corpus can indicate semantic
relatedness.

Musat et al. (2011) associated words in a topic with WordNet concepts thereby creating topical
subtrees. They rely on WordNet’s hierarchical structure to find a common concept that best describes as
many words as possible. It is assumed that the higher the coverage and specificity of a topical subtree,



the more semantically coherent the topic. Experimental results showed high agreement with humans in
the word intrusion task, in contrast to Newman et al. (2010b) who concluded that WordNet is not useful
for topic evaluation.

Recent work by Ramirez et al. (2012) analyses and evaluates the semantic coherence of the results
obtained by topic models rather than the semantic coherence of the inferred topics. Each topic model
is treated as a partition of document-topic associations. Results are evaluated using metrics for cluster
comparison.

3 Measuring Topic Coherence

Let T = {w1, w2, ..., wn} be a topic generated from a topic model which is represented by its top-nmost
probable words. Newman et al. (2010b) assume that the higher the average pairwise similarity between
words in T , the more coherent the topic. Given a symmetric word similarity measure, Sim(wi, wj), they
define coherence as follows:

CoherenceSim(T ) =

∑
1≤i≤n−1
i+1≤j≤n

Sim(wi, wj)(
n

2

) (1)

where wi, wj ∈ T .

3.1 Distributional Methods

We propose a novel method for determining topic coherence based on using distributional similarity
between the top-n words in the topic. Each topic word is represented as a vector in a semantic space. Let
~w1, ~w2, ..., ~wn be the vectors which represent the top n most probable words in the topic. Also, assume
that each vector consists of N elements and ~wij is the jth element of vector ~wi. Then the similarity
between the words, and therefore cohesion of the topic, can be computed using the following measures
(Curran, 2003; Grefenstette, 1994):

• The cosine of the angles between the vectors:

Simcos( ~wi, ~wj) =
~wi · ~wj
‖ ~wi‖‖ ~wj‖

(2)

• The Dice coefficient:

SimDice(wi, wj) =
2×

∑N
k=1min( ~wik, ~wjk)∑N
k=1( ~wik + ~wjk)

(3)

• The Jaccard coefficient:

SimJaccard(wi, wj) =

∑N
k=1min( ~wik, ~wjk)∑N
k=1max( ~wik, ~wjk)

(4)

Each of these measures estimates the distance between a pair of topic words and can be substituted into
equation 1 to produce a topic cohesion measure based on distributional semantics.

Alternatively, the cohesion of a set of topic words can be estimated with a single measure by com-
puting the average distance between each topic word and the centroid:

Simcentroid =

∑
t∈T simcos(Tc, t)

n
(5)

where Tc is the centroid of the vectors for topic T . For the experiments reported in this paper the distance
of each vector to the centroid is computed using the cosine measure.



3.2 Constructing the Semantic Space

Vectors representing the topic words are constructed from a semantic space consisting of information
about word co-occurrence. The semantic space was created using Wikipedia1 as a reference corpus and
a window of ± 5 words2.

3.2.1 Weighting Vectors

Using the co-occurrence information to generate vectors directly does not produce good results so the
vectors are weighted using two approaches.

For the first, PMI, the pointwise mutual information for each term in the context is used rather than
the raw co-occurrence count. PMI is computed as follows:

PMI(wi, wj) = log2
p(wi, wj)

p(wi)p(wj)
(6)

Note that this application of PMI for topic cohesion is different from one previously reported by Newman
et al. (2010b) since we use PMI to weight vectors rather than to compute a similarity score between pairs
of words.

In addition, vectors are also weighted using NPMI (Normalised PMI). This is an extension of PMI
that has been used for collocation extraction (Bouma, 2009) and is computed as follows:

NPMI(wi, wj) =
PMI(wi, wj)

−log(p(wi, wj))
(7)

Finally, we introduce γ which is a parameter to assign more emphasis on context features with high
PMI (or NPMI) values with a topic word. Vectors are weighted using PMI(wi, fj)

γ orNPMI(wi, fj)
γ

where wi is a topic word and fj is a context feature. For all of our experiments we set γ = 2 which was
found to produce the best results.

3.2.2 Reducing the Basis

Including all co-occurring terms in the vectors leads to a high dimensional space. We also experimented
with two approaches to reducing the number of terms to form a semantic space with smaller basis.
Firstly, following Islam and Inkpen (2006), a Reduced Semantic Space is created by choosing the βwi

most related context features for each topic word wi:

βwi =
(
log(c(wi))

)2 (log2(m))

δ
(8)

where δ is a parameter for adjusting the number of features for each word andm is the size of the corpus.
Varying the value of δ did not effect performance for values above 1. This parameter was set of 3 for
the results reported here. In addition a frequency cut-off of 20 was also applied. In addition, a smaller
semantic space was created by considering only topic words as context features, leading to n features for
each topic word. This is referred to as the Topic Word Space.

4 Experimental Set-up

4.1 Data

To the best of our knowledge, there are no standard data sets for evaluating topic coherence. Therefore
we have developed one for this study which we have made publicly available3. A total of 300 topics are

1http://dumps.wikimedia.org/enwiki/20120104/
2We also experimented with different lengths of context windows
3The data set can be downloaded from http://staffwww.dcs.shef.ac.uk/people/N.Aletras/

resources/TopicCoherence300.tar.gz



generated by running LDA over three different document collections:

• NYT: 47,229 New York Times news articles published between May and December 2010 from
the GigaWord corpus. We generated 200 topics and randomly selected 100.

• 20NG: The 20 News Group Data Collection4 (20NG), a set of 20,000 newsgroup emails organ-
ised into 20 different subjects (e.g. sports, computers, politics). Each topic has 1,000 documents
associated with it. 100 topics were generated for this data set.

• Genomics: 30,000 scientific articles published in 49 journals from MEDLINE, originally used in
the TREC-Genomics Track5. We generated 200 topics and randomly selected 100.

All document were pre-processed by removing stop words and lemmatising. Topics are generated
using gensim6 with hyperparameters (α, β) set to 1

num of topics . Each topic is represented by its 10 most
probable words.

4.2 Human Evaluation of Topic Coherence

Human judgements of topic coherence were collected through a crowdsourcing platform, CrowdFlower7.
Participants were presented with 10 word sets, each of which represents a topic. They asked to judge
topic coherence on a 3-point Likert scale from 1-3, where 1 denotes a “Useless” topic (i.e. words appear
random and unrelated to each other), 2 denotes “Average” quality (i.e. some of the topic words are
coherent and interpretable but others are not), and 3 denotes a “Useful” topic (i.e. one that is semantically
coherent, meaningful and interpretable). Each participant was asked to judge up to 100 topics from a
single collection. The average response for each topic was calculated as the coherency score for the
gold-standard.

To ensure reliability and avoid random answers in the survey, we used a number of questions with
predefined answer (either totally random words as topics or obvious topics such as week days). Annota-
tions from participants that failed to answer these questions correctly were removed.

We run three surveys, one for each topic collection of 100 topics. The total number of filtered
responses obtained for the NYT dataset was 1, 778 from 26 participants, while for the 20NG dataset
we collected 1, 707 answers from 24 participants. The participants were recruited by a broadcast email
sent to all academic staff and graduate students in our institution. For the Genomics dataset the emails
were sent only to members of the medical school and biomedical engineering departments. We collected
1, 050 judgements from 12 participants for this data set.

Inter-annotator agreement (IAA) is measured as the average of the Spearman correlation between the
set of scores of each survey respondent and the average of the other respondents’ scores. The IAA in the
three surveys is 0.70, 0.64 and 0.54 for NYT, 20NG and Genomics respectively.

5 Results

Table 1 shows the results obtained for all of the methods on the three datasets. Performance of each
method is measured as the average Spearman correlation with human judgements. The top row of each
table shows the result using the average PMI approach (Newman et al., 2010b) while the next two rows
show the results obtained by substituting PMI with NPMI and the method proposed by Mimno et al.
(2011). The main part of each table shows performance using the approaches described in Section 3 using
various combinations of methods for constructing the semantic space and determining the similarity
between vectors.

4http://people.csail.mit.edu/jrennie/20Newsgroups
5http://ir.ohsu.edu/genomics
6http://radimrehurek.com/gensim
7http://crowdflower.com



NYT
Newman et al. (2010b) 0.71

Average NPMI 0.74
Mimno et al. (2011) -0.39
Reduced Semantic Space

PMI NPMI
Cosine 0.69 0.68
Dice 0.63 0.62

Jaccard 0.63 0.61
Centroid 0.67 0.67

Topic Words Space
PMI NPMI

Cosine 0.76 0.75
Dice 0.68 0.71

Jaccard 0.69 0.72
Centroid 0.76 0.75

20NG
Newman et al. (2010b) 0.73

Average NPMI 0.76
Mimno et al. (2011) 0.34
Reduced Semantic Space

PMI NPMI
Cosine 0.78 0.79
Dice 0.77 0.78

Jaccard 0.77 0.78
Centroid 0.77 0.78

Topic Words Space
PMI NPMI

Cosine 0.79 0.8
Dice 0.79 0.8

Jaccard 0.8 0.8
Centroid 0.78 0.79

Genomics
Newman et al. (2010b) 0.73

Average NPMI 0.76
Mimno et al. (2011) -0.4
Reduced Semantic Space

PMI NPMI
Cosine 0.74 0.73
Dice 0.69 0.68

Jaccard 0.69 0.76
Centroid 0.73 0.71

Topic Words Space
PMI NPMI

Cosine 0.8 0.8
Dice 0.79 0.8

Jaccard 0.8 0.8
Centroid 0.8 0.8

Table 1: Performance of methods for measuring topic coherence (Spearman Rank correlation with human
judgements).

Using the average PMI between topic words correlates well with human judgements, 0.71 for NYT,
0.73 for 20NG and 0.75 for Genomics confirming results reported by Newman et al. (2010b). How-
ever, NPMI performs better than PMI, with an improvement in correlation of 0.03 for all datasets. The
improvement is down to the fact that NPMI reduces the impact of low frequency counts in word co-
occurrences and therefore uses more reliable estimates (Bouma, 2009).

On the other hand, the method proposed by Mimno et al. (2011) does not correlate well with human
judgements, (-0.39 for NYT, 0.34 for 20NG and -0.4 for Genomics) which is the lowest performance of
all of the methods tested. This demonstrates that while co-document frequency helps to generate more
coherent topics (Mimno et al., 2011), it is sensitive to the size of the collection.

Results obtained using the reduced semantic space and PMI are lower than the average PMI and
NPMI approaches for the NYT and Genomics data sets. For the 20NG dataset the results are higher
then the average PMI and NPMI using these approaches. The difference in relative performance is down
to the nature of these corpora. The words found in topics in the NYT and Genomics datasets are often



Topic Terms Human Rating
Top-3
family wife died son father daughter life became mother born 2.63
election vote voter ballot state candidate voting percent party result 3
show television tv news network medium fox cable channel series 2.82
Bottom-3
lennon circus rum whiskey lombardi spirits ranch idol make vineyard 1.93
privacy andrews elli alexander burke zoo information chung user regan 1.25
twitter board tweet followers conroy halloween kay hands emi post 1.53

Figure 2: Top-3 and bottom-3 ranked topics using Topic Word Space in NYT together with human
ratings.

polysemous or collocate with terms which become context features. For example, one of the top context
features of the word “coast” is “ivory” (from the country). However, that feature does not exist for terms
that are related to “coast”, such as “beach” or “sea”. The majority of topics generated from 20NG contain
meaningless terms due to the noisy nature of the dataset (emails) but these do not suffer from the same
problems with ambiguity and prove to be useful for comparing meaning when formed into the semantic
space.

Similar results are obtained for the reduced semantic space using NPMI as the association measure.
Results in NYT and Genomics are normally 0.01 lower while for 20NG are 0.01 higher for the majority
of the methods. This demonstrates that weighting co-occurrence vectors using NPMI produces little
improvement over using PMI, despite the fact NPMI has better performance when the average similarity
between each pair of topic terms is computed.

When the topic word space is used there is a consistent improvement in performance compared to
the average PMI (Newman et al., 2010b) and NPMI approaches. More specifically, cosine similarity
using PMI is consistently higher (0.05-0.06) than average PMI for all datasets and 0.02 to 0.04 higher
than average NPMI (0.76, 0.79, 0.8 for NYT, 20NG and Genomics respectively). One reason for this
improvement in performance is that the noise caused by polysemy and high dimensionality of the context
features of the topic words is reduced. Moreover, cosine similarity scores in the reduced semantic space
are higher than average PMI and NPMI in all of the datasets, demonstrating that vector-based represen-
tation of the topic words is better than computing their average relatedness. Table 2 shows the top-3 and
bottom-3 ranked topics in NYT together with human ratings.

Another interesting finding is that the cosine metric produces better estimates of topic coherency
compared to Dice and Jaccard in the majority of cases, with the exception of 20NG in reduced seman-
tic space using PMI. Furthermore, similarity to the topic centroid achieves performance comparable to
cosine.

6 Conclusions

This paper explored distributional semantic similarity methods for automatically measuring the coher-
ence of sets of words generated by topic models. Representing topic words as vectors of context features
and then applying similarity metrics on vectors was found to produce reliable estimates of topic coher-
ence. In particular, using a semantic space that consisted of only the topic words as context features
produced the best results and consistently outperforms previously proposed methods for the task.

Semantic space representations have appealing characteristics for future work on tasks related to
topic models. The vectors used to represent topic words contain co-occurring terms that could be used
for topic labelling (Lau et al., 2011). In addition, tasks such as determining topic similarity (e.g. to
identify similar topics) could naturally be explored using these representations for topics.
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