
Proceedings of the Second CIPS-SIGHAN Joint Conference on Chinese Language Processing, pages 168–173,
Tianjin, China, 20-21 DEC. 2012

Multiple TreeBanks Integration for Chinese Phrase Structure Grammar
Parsing Using Bagging

Meishan Zhang Wanxiang Che Ting Liu
School of Computer Science and Technology
Harbin Institute of Technology, Harbin, China

{mszhang, car, tliu}@ir.hit.edu.cn

Abstract

We describe our method of traditional
Phrase Structure Grammar (PSG) parsing
in CIPS-Bakeoff2012 Task3. First, bag-
ging is proposed to enhance the base-
line performance of PSG parsing. Then
we suggest exploiting another TreeBank
(CTB7.0) to improve the performance fur-
ther. Experimental results on the de-
velopment data set demonstrate that bag-
ging can boost the baseline F1 score from
81.33% to 84.41%. After exploiting the
data of CTB7.0, the F1 score reaches
85.03%. Our final results on the official
test data set show that the baseline closed
system using bagging gets the F1 score of
80.17%. It outperforms the best closed
system by nearly 4% which uses a single
model. After exploiting the CTB7.0 data,
the F1 score reaches 81.16%, demonstrat-
ing further increases of about 1%.

1 Introduction

Over the past decade, Phrase Structure Grammar
(PSG) parsing has been investigated by many re-
searchers. Most methods of PSG parsing ex-
ploited some manly annotated corpus and pro-
posed a single statistical model (Petrov and Klein,
2007; Zhang and Clark, 2009) based on the cor-
pus. For Chinese, Tsinghua Chinese Treebank
(TCT) (Qiang, 2004) and Penn Chinese TreeBank
(CTB) (Xue et al., 2005) are two most popular
manly annotated corpus.

In this paper, we are especially interested in
parser combination. Many past works have sug-
gest a number of methods for parser combina-
tion. These methods concern on combing differ-
ent parsers which are trained on the same corpus.
Sagae and Lavie (2006) proposed a constituent
reparsing method for multiple parsers combina-

tion. Zhang et al. (2009) proposed a linear model-
based general framework to combine several lexi-
calized parsers (Collins, 1999; Zhang and Clark,
2009) and un-lexicalized parsers (Petrov et al.,
2006; Petrov and Klein, 2007).

Out method is different from the past works
in that we combine different parsers which ex-
ploit the same method but the models of which
are trained on different corpus. We adopt Berke-
ley parser1 (Petrov et al., 2006; Petrov and
Klein, 2007) to train our sub-models. It is an
un-lexicalized probabilistic context free grammar
(PCFG) parser. At the beginning, we train a num-
ber of submodels by sampling TCT corpus repeat-
edly, and meanwhile train a number of submod-
els by sampling CTB corpus repeatedly. Then we
combine these submodels by reparsing the parsing
results of them using the CKY-parsing algorithm
(Song et al., 2008).

To enable using CKY-parsing algorithm for
combining, we must handle the following two is-
sues:

1. Binarization should be applied to the parsing
results of submodels.

2. The grammars of TCT corpus are very differ-
ent that of CTB corpus. We should transform
CTB grammars into TCT grammars before fi-
nal combination.

If these two issues have been done already, we can
apply CKY reparsing algorithm and get the final
parsing result.

The rest of the paper is organized as follows.
Section 2 introduces the overall system architec-
ture. And then we introduce our method in de-
tail. In section 3 we present the binarization algo-
rithm used in the system. Section 4 describes the
CKY reparsing algorithm. Section 5 describes our
baseline method and multiple TreeBank bagging

1http://code.google.com/p/berkeleyparser

168



method systematically. Section 6 shows the ex-
perimental results and finally in section 7 we con-
clude our method and give our future works.

2 System Architecture

During the training phase, we sample the train-
ing corpus of TCT and CTB repeatedly, exploit-
ing these sampled corpus to train a number of sub-
models. In the test phase, first we parse a sentence
using these submodels, and then binarize the pars-
ing results, extracting the binarized grammars to-
gether with their weights, and finally exploit CKY
reparsing algorithm to get our final parsing results
according to the weighted grammars . For the
CTB results, we should add an extra transforma-
tion process to map the CTB grammars to TCT
grammars. The transformation model are trained
by mapping gold TCT results and Figure 1 shows
the architecture of the training and testing process.

3 Binarization

The binarization process aims at a better combi-
nation using CKY reparsing. We must ensure that
the binarization process is reversible.

For the unary grammar, we simply merge the
label of leaf node into its parent node. We add a
special mark during the merging so that we can
reverse the merging conveniently.

For the grammars whose arity are more than
two, we don’t use a simple left most binarization
or right most binarization algorithm. As these sim-
ple binarization can make the mapping between
different TreeBanks very complex. Our goal is
to get a better understanding binarization results
which the grammars extracted from the different
TreeBanks can be more easily forming one-to-one
mapping. The most popular binary grammars ex-
tracted from the TreeBank are exploited for bina-
rization. By this method, the grammars of bina-
rization can be mostly understood.

We describe our binarization algorithm to han-
dle the high-arity grammars. To prepare for bi-
narization, we need collect binarization grammar
and their weights. We denote the collection re-
sults by Gbin = {(A → BC, freq)}. This process
is done simply extracting all the binary grammars
from the original TreeBank and assigning the cor-
responding weight by their appearance frequency.
The pseudo-code of the binarization is shown in
Algorithm 1. We can get the binarization tree of
a PS structure by applying Algorithm 1 on each

non-terminal node from up to bottom.
The TCT training corpus has been already bina-

rized that it contains unary and binary grammars,
thus we can get the binarization results for the out-
put of TCT submodels by simply merging unary
grammars. The CTB corpus contains grammars of
variety number of arity. We need first merge the
unary grammars and then apply algorithm 1 to get
the binarization results.

4 CKY Parsing

In this section, we describe the CKY parsing algo-
rithm which aims for bagging system. The form
of rules used CKY parsing are defined by a tuple
(A → BC, s,m, e). It denotes a binary tree struc-
ture, A→ BC, the start position is s, middle posi-
tion is m which is also the end of tree labeled byB,
and the end position e. The rules and their weights
are basic input grammar for CKY parsing, and we
denote it by Gcky = {((A → BC, s,m, e),w)}.
The pseudo-code of the CKY parsing is shown in
Algorithm 2. The algorithm is very similar to the
binarization algorithm.

5 Methods

5.1 Baseline Bagging System

The training process of the baseline bagging sys-
tem:

1. Sample k new training corpus from the over-
all TCT corpus. Assuming the size of overall
TCT corpus is n, we repeatedly sample the
overall TCT corpus for k times. Each time
we get a new training corpus whose size is
64.3%× n.

2. Train k submodels using the sampled k new
train corpus.

The decoding process of the baseline bagging
system:

1. Parse the input sentence by the k submodels
and get k PS results of the sentence.

2. Binarize the k PS results.

3. Generate the grammar Gcky. We extract all
rules (A → BC, s,m, e) from the k PS re-
sults. The weight of each rule equals their
frequency.

169



TCT 
Training Corpus

Sampling

Berkeley Parser
TCT

Models

Berkeley Parser
CTB

Models

CTB 
Training Corpus

CTB 
Training Corpus

Berkeley 
Parser

CTB
Model

TCT 
Training Corpus

Tranformation
Model

Grammar 
Mapping

Berkeley 
Parser

TCT 
Training Corpus

Binarize

(a) Train

Test Sentence

Berkeley 
Parser

TCT
Results

Berkeley 
Parser

CTB
Results

TCT Models

CTB Models

CKY-Reparsing Final Results

Binarize

Binarize

Transformation

(b) Test

Figure 1: System architecture.

Algorithm 1 Binarization Algorithm. L denotes the set of non-terminal labels, and label(tr) denote the
root label of tree tr.

Input: Gbin, Tree : tr0 → tr1 · · · trn
Initialization:

for all i ∈ {1 · · ·n}, for all A ∈ L
if label(tri) = A, π(i, i, A) = 1
else π(i, i, A) = 0

Compute:
for all d ∈ {1 · · ·n− 1}

for all i ∈ {1 · · ·n− j}
set j = i+ l
for all A ∈ L
π(i, j, A) = maxA→BC∈Gbin,i<s<jπ(i, s, B) + π(s+ 1, j, C) + Gbin(A→ BC)
δ(i, j, A) = arg maxA→BC∈Gbin,i<s<j π(i, s, B) + π(s+ 1, j, C) + Gbin(A→ BC)

Create a new tree tr:
From δ(1, n, label(tr0)), generate middle nodes recursively.
Add a special mark to the label of all middle nodes, which are used to restore.

Return: Binarized tree tr

170



Algorithm 2 CKY Parsing Algorithm. T denote the set of POS tags.
Input: Gcky, leaves : tr1 · · · trn
Initialization:

for all i ∈ {1 · · ·n}, for all t ∈ T
if label(tri) = t, π(i, i, A) = 1
else π(i, i, A) = 0

Compute:
for all d ∈ {1 · · ·n− 1}

for all i ∈ {1 · · ·n− j}
set j = i+ l
for all A ∈ L
π(i, j, A) = max(A→BC,i,s,j)∈Gckyπ(i, s, B) + π(s+ 1, j, C) + Gbin(A→ BC, i, s, j)
δ(i, j, A) = arg max(A→BC,i,s,j)∈Gcky

π(i, s, B) + π(s+ 1, j, C) + Gbin(A→ BC, i, s, j)
Create a new tree tr:

From δ(1, n, root), generate middle nodes recursively.
Return the tree tr

4. Generate the leaves : tr1 · · · trn. Each leaf tri
are composed by a word wi and its POS tag
ti, forming ti → wi. As each word can have
k results, thus we can use voting to assign the
word’s best POS tag ti.

5. Reparse the sentence using CKY parsing al-
gorithm with Gcky and leaves : tr1 · · · trn.

5.2 Bagging System Exploiting CTB Corpus
The training process of the baseline bagging sys-
tem:

1. Sample k new training corpus from the over-
all TCT corpus and sample k new training
corpus from the overall CTB corpus. We will
get 2k new training corpus in this step.

2. Train 2k submodels using the sampled 2k
new train corpus, where k submodels are the
TCT stype parsers and the other k submodels
are the CTB style parsers.

3. Train a transformation model from CTB style
to TCT style MapCTB→TCT. It can be finished
by the following steps.

(a) Train a model using all CTB Corpus,
(b) Parse the entire TCT training corpus,
(c) Binarize the gold TCT style PS struc-

ture,
(d) Binarize the predicted CTB style PS

structure,
(e) Compare the gold TCT results

and the predicted results and
get a final transformation model.

For a TCT grammar (Atct →
BtctCtct, stct,mtct, etct) and a CTB gram-
mar (Actb → BctbCctb, sctb,mctb, ectb),
if (stct,mtct, etct) = (sctb,mctb, ectb),
we would add a mapping rule (Atct →
BtctCtct, Actb → BctbCctb, stct,mtct, etct)
to MapCTB→TCT, and if (stct, etct) =
(sctb, ectb), we would add a map-
ping rule (Atct → BtctCtct, Actb →
BctbCctb, stct, etct) to MapCTB→TCT.

The decoding process of the baseline bagging
system:

1. Parse the input sentence by the k TCT sub-
models and get k PS results of TCT style.

2. Binarize the k PS results.

3. Generate the grammar Gcky. We extract all
rules (A → BC, s,m, e) from the k PS re-
sults. The weight of each rule equals their
frequency.

4. Generate the leaves : tr1 · · · trn. Each leaf tri
are composed by a word wi and its POS tag
ti, forming ti → wi. As each word can have
k results, thus we can use voting to assign the
word’s best POS tag ti.

5. Parse the input sentence by the k CTB sub-
models and get k PS results of CTB style.

6. Adjust the grammar Gcky by k PS results of
CTB style. First we extract all grammars
from the k PS results. For each grammar
(Actb → BctbCctb, sctb,mctb, ectb), we find

171



its mapping rule from MapCTB→TCT. The
mapping rule result can be either (Atct →
BtctCtct, Actb → BctbCctb, stct,mtct, etct) or
(Atct → BtctCtct, Actb → BctbCctb, stct, etct).
Then we traverse all grammars in Gcky,
if the grammar matches with (Atct →
BtctCtct, stct,mtct, etct) or partially matches
with (Atct → BtctCtct, stct, etct), then its
weight will be increased by value α. The
value α should be adjusted according to de-
velopment set.

7. Reparse the sentence using CKY parsing al-
gorithm with Gcky and leaves : tr1 · · · trn.

6 Experiments

6.1 Data Set

The task organizers have offered 17,758 annotated
sentences for train our model. They are chosen
from TCT corpus. Before they share us for train,
the trees which have more than two leaves have
been processed to ensure all the grammars in the
train sentences containing only unaries and bina-
ries. We use the training section of CTB7.0 to to
train the models of CTB. The training sections are
selected by the documents of LDC2010T07. The
total number of CTB training is 46,572. To adjust
some parameters in our model, we split a devel-
opment data set from the entire training corpus.
After get the value of these parameters, we retrain
our system using all the corpus. Table 1 shows the
statistics of the data set.

Corpus Section # sent.

Parameter Adjusting Train 15802
Devel 1756

CTB7.0 Train 46572

Final Test Train 17558
Test 1000

Table 1: Statistics of Data Set.

6.2 Parameter Adjusting

First we look at how bagging numbers k influence
the the baseline bagging system. In this work, we
set the bagging num k = 15. Figure 2 displays the
result. As is shown in Figure 2, the performance
increments gradually when the bagging number
becomes larger. The performance is better than a
single model since the bagging number is 3.

79

80

81

82

83

84

85

0 3 6 9 12 15

bagging

base

Figure 2: Bagging results. The baseline denotes
the model which doesn’t exploit sampling and
bagging.

Second we adjust the parameter α by develop-
ment also. The α should be less than 1 by intu-
ition. We gradually increase the value of α from
0.5 to 1.0. Figure 3 display the results on develop-
ment set. According to the results, we set α = 0.9

84.85

84.9

84.95

85

85.05

0.5 0.6 0.7 0.8 0.9 1

parameter adjusting 

Figure 3: Parameter adjusting result.

6.3 Final Results

First, to get a better understanding of our sys-
tem, we show the results on the development data
set. Berkeley denotes the result of Berkeley parser
which doesn’t use bagging. Bbag denotes our
baseline bagging system which uses only TCT
corpus. Cbag denotes our final system which uses
both TCT corpus and CTB corpus. Table 2 dis-
plays the results.

System P R F1
Cbag 85.04 85.03 85.03
Bbag 84.4 84.42 84.41
Berkeley 81.31 81.35 81.33

Table 2: Final results on the development set.

Table 3 displays our final result on test data
which the task organizers offered. BestClosedS-
ingle denotes the best closed system of the task.

172



From the results in both Table 2 and Table 3, we
can find that bagging is a very simple and effective
method to combine multiple TreeBanks.

System P R F1
Cbag 81.20 81.12 81.16
Bbag 80.23 80.11 80.17
BestClosedSingle 76.35 76.20 76.27

Table 3: Final results on the development set.

7 Conclusions and Future Work

In this paper, we propose to exploit bagging to en-
hance the performance PSG parsing. The method
is very simple and effective. The bagging is imple-
mented upon a CKY reparsing algorithm. We in-
troduce CKY reparsing algorithm in detail and in-
troduce the preprocess binarization algorithm. By
bagging, we can achieve increases nearly 3% in
F1 score. Further, we exploit bagging to integrate
CTB corpus to enhance PSG parsing. And finally,
we have achieved further increases nearly 1% after
using CTB7.0.

In the future, we will investigate the transfor-
mation methods to better integrate multiple Tree-
Banks. We are very interested in statistical models
to finish this transformation.

Acknowledgments

This work was supported by National Natural
Science Foundation of China (NSFC) via grant
61133012, the National 863 Major Projects via
grant 2011AA01A207, and the National 863
Leading Technology Research Project via grant
2012AA011102.

References
Michael Collins. 1999. Head-Driven Statistical Mod-

els for Natural Language Parsing. Ph.D. thesis,
Pennsylvania University.

Slav Petrov and Dan Klein. 2007. Improved infer-
ence for unlexicalized parsing. In Human Language
Technologies 2007: The Conference of the North
American Chapter of the Association for Computa-
tional Linguistics; Proceedings of the Main Confer-
ence, pages 404–411, Rochester, New York, April.
Association for Computational Linguistics.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan
Klein. 2006. Learning accurate, compact, and
interpretable tree annotation. In Proceedings of

the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 433–440,
Sydney, Australia, July. Association for Computa-
tional Linguistics.

Zhou Qiang. 2004. Annotation scheme for chinese
treebank. Journal of Chinese Information Process-
ing, 18(4):1–8.

Kenji Sagae and Alon Lavie. 2006. Parser combi-
nation by reparsing. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 129–132,
New York City, USA, June. Association for Compu-
tational Linguistics.

Xinying Song, Shilin Ding, and Chin-Yew Lin. 2008.
Better binarization for the CKY parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 167–
176, Honolulu, Hawaii, October. Association for
Computational Linguistics.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural Lan-
guage Engineering, 11(2):207–238.

Yue Zhang and Stephen Clark. 2009. Transition-
based parsing of the chinese treebank using a global
discriminative model. In Proceedings of the 11th
International Conference on Parsing Technologies
(IWPT’09), pages 162–171, Paris, France, October.
Association for Computational Linguistics.

Hui Zhang, Min Zhang, Chew Lim Tan, and Haizhou
Li. 2009. K-best combination of syntactic parsers.
In Proceedings of the 2009 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1552–1560, Singapore, August. Association
for Computational Linguistics.

173


