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Abstract

The OS* algorithm is a unified approach to exact optimization and sampling, based on
incremental refinements of a functional upper bound, which combines ideas of adaptive
rejection sampling and of A* optimization search. We first give a detailed description of
OS*. We then explain how it can be applied to several NLP tasks, giving more details on two
such applications: (i) decoding and sampling with a high-order HMM, and (ii) decoding and
sampling with the intersection of a PCFG and a high-order LM.

1 Introduction

Optimization and Sampling are usually seen as two completely separate tasks. However, in
NLP and many other domains, the primary objects of interest are often probability distributions
over discrete or continuous spaces, for which both aspects are natural: in optimization, we are
looking for the mode of the distribution, in sampling we would like to produce a statistically
representative set of objects from the distribution. The OS∗ algorithm approaches the two
aspects from a unified viewpoint; it is a joint exact Optimization and Sampling algorithm that is
inspired both by rejection sampling and by classical A∗ optimization (O S ∗).

Common algorithms for sampling high-dimensional distributions are based on MCMC techniques
[Andrieu et al., 2003, Robert and Casella, 2004], which are approximate in the sense that they
produce valid samples only asymptotically. By contrast, the elementary technique of Rejection
Sampling [Robert and Casella, 2004] directly produces exact samples, but, if applied naively to
high-dimensional spaces, typically requires unacceptable time before producing a first sample.

By contrast, OS∗ can be applied to high-dimensional spaces. The main idea is to upper-bound
the complex target distribution p by a simpler proposal distribution q, such that a dynamic
programming (or another low-complexity) method can be applied to q in order to efficiently
sample or maximize from it. In the case of sampling, rejection sampling is then applied to q,
and on a reject at point x , q is refined into a slightly more complex q′ in an adaptive way. This
is done by using the evidence of the reject at x , which implies a gap between q(x) and p(x), to
identify a (soft) constraint implicit in p which is not accounted for by q. This constraint is then
integrated into q to obtain q′.

The constraint which is integrated tends to be highly relevant and to increase the acceptance rate
of the algorithm. By contrast, many constraints that are constitutive of p are never “activated”
by sampling from q, because q never explores regions where they would become visible. For
example, anticipating our HMM experiments in section 3.1, there is little point in explicitly
including in q a 5-gram constraint on a certain latent sequence in the HMM if this sequence
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is already unlikely at the bigram level: the bigram constraints present in the proposal q will
ensure that this sequence will never (or very rarely) be explored by q.

The case of optimization is treated in exactly the same way as sampling. Formally, this consists
in moving from assessing proposals in terms of the L1 norm to assessing them in terms of the
L∞ norm. Typically, when a dynamic programming procedure is available for sampling (L1
norm) with q, it is also available for maximizing from q (L∞ norm), and the main difference
between the two cases is then in the criteria for selecting among possible refinements.

Related work In order to improve the acceptance rate of rejection sampling, one has to lower
the proposal q curve as much as possible while keeping it above the p curve. In order to do that,
some authors [Gilks and Wild, 1992, Görür and Teh, 2008], have proposed Adaptive Rejection
Sampling (ARS) where, based on rejections, the q curve is updated to a lower curve q′ with
a better acceptance rate. These techniques have predominantly been applied to continuous
distributions on the one-dimensional real line, where convexity assumptions on the target
distribution can be exploited to progressively approximate it tighter and tighter through upper
bounds consisting of piecewise linear envelopes. These sampling techniques have not been
connected to optimization.

One can find a larger amount of related work in the optimization domain. In an heuristic
optimization context the two interesting, but apparently little known, papers [Kam and Kopec,
1996, Popat et al., 2000], discuss a technique for decoding images based on high-order language
models where upper-bounds are constructed in terms of simpler variable-order models. Our
application of OS∗ in section 3.1 to the problem of maximizing a high-order HMM is similar to
their (also exact) technique; while this work seems to be the closest to ours, the authors do
not attempt to generalize their approach to other optimization problems amenable to dynamic
programming. Among NLP applications, [Kaji et al., 2010, Huang et al., 2012] are another
recent approach to exact optimization for sequence labelling that also has connections to
our experiments in section 3.1, but differs in particular by using a less flexible refinement
scheme than our variable-order n-grams. In the NLP community again, there is currently a
lot of interest for optimization methods that fall in the general category of “coarse-to-fine"
techniques [Petrov, 2009], which tries to guide the inference process towards promising regions
that get incrementally tighter and tighter. While most of this line of research concentrates
on approximate optimization, some related approaches aim at finding an exact optimum.
Thus, [Tromble and Eisner, 2006] attempt to maximize a certain objective while respecting
complex hard constraints, which they do by incrementally adding those constraints that are
violated by the current optimum, using finite-state techniques. [Riedel and Clarke, 2006]
have a similar goal, but address it by incrementally adding ILP (Integer Linear Programming)
constraints. Linear Programming techniques are also involved in the recent applications of Dual
Decomposition to NLP [Rush et al., 2010, Rush and Collins, 2011], which can be applied to
difficult combinations of easy problems, and often are able to find an exact optimum. None of
these optimization papers, to our knowledge, attempts to extend these techniques to sampling,
in contrast to what we do.

Paper organization The remainder of this paper is structured as follows. In section 2, we
describe the OS∗ algorithm, explain how it can be used for exact optimization and sampling,
and show its connection to A∗. In section 3, we first describe several NLP applications of the
algorithm, then give more details on two such applications. The first one is an application to
optimization/sampling with high-order HMMs, where we also provide experimental results;
the second one is a high-level description of its application to the generic problem of optimiza-
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tion/sampling with the intersection of a PCFG with a high-order language model, a problem
which has recently attracted some attention in the community. We finally conclude and indicate
some perspectives.

2 The OS* algorithm
OS∗ is a unified algorithm for optimization and sampling. For simplicity, we first present its
sampling version, then move to its optimization version, and finally get to the unified view. We
start with some background and notations about rejection sampling.

Note: The OS∗ approach was previously described in an e-print [Dymetman et al., 2012], where
some applications beyond NLP are also provided.

2.1 Background
Let p : X → R+ be a measurable L1 function with respect to a base measure µ on a space
X , i.e.
∫

X
p(x)dµ(x) < ∞. We define p̄(x) ≡ p(x)∫

X
p(x)dµ(x)

. The function p can be seen as

an unnormalized density over X , and p̄ as a normalized density which defines a probability
distribution over X , called the target distribution, from which we want to sample from1. While
we may not be able to sample directly from the target distribution p̄, let us assume that we can
easily compute p(x) for any given x . Rejection Sampling (RS) [Robert and Casella, 2004] then
works as follows. We define a certain unnormalized proposal density q over X , which is such
that (i) we know how to directly sample from it (more precisely, from q̄), and (ii) q dominates
p, i.e. for all x ∈ X , p(x)≤ q(x). We then repeat the following process: (1) we draw a sample
x from q, (2) we compute the ratio r(x)≡ p(x)/q(x)≤ 1, (3) with probability r(x) we accept
x , otherwise we reject it, (4) we repeat the process with a new x . It can then be shown that this
procedure produces an exact sample from p. Furthermore, the average rate at which it produces
these samples, the acceptance rate, is equal to P(X )/Q(X ) [Robert and Casella, 2004], where
for a (measurable) subset A of X , we define P(A)≡

∫
A

p(x)dµ(x) and Q(A)≡
∫

A
q(x)dµ(x). In

Fig. 1, panel (S1), the acceptance rate is equal to the ratio of the area below the p curve with
that below the q curve.

2.2 Sampling with OS∗

The way OS∗ does sampling is illustrated on the top of Fig. 1. In this illustration, we start
sampling with an initial proposal density q (see (S1)). Our first attempt produces x1, for which
the ratio rq(x1) = p(x1)/q(x1) is close to 1; this leads, say, to the acceptance of x1. Our second
attempt produces x2, for which the ratio rq(x2) = p(x2)/q(x2) is much lower than 1, leading,
say, to a rejection. Although we have a rejection, we have gained some useful information,
namely that p(x2) is much lower than q(x2), and we are going to use that “evidence” to define
a new proposal q′ (see (S2)), which has the following properties:

• p(x)≤ q′(x)≤ q(x) everywhere on X ;

• q′(x2)< q(x2).

One extreme way of obtaining such a q′ is to take q′(x) equal to p(x) for x = x2 and to q(x)
for x 6= x2, which, when the space X is discrete, has the effect of improving the acceptance rate,
but only slightly so, by insuring that any time q′ happens to select x2, it will accept it.

1By abuse of language, we will also say that a sample from p̄ is a sample from p.
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Figure 1: Sampling with OS∗ (S1, S2), and optimization with OS∗ (O1, O2).

A better generic way to find a q′ is the following. Suppose that we are provided with a
small finite set of “one-step refinement actions" a j , depending on q and x2, which are able to
move from q to a new q′j = a j(q, x2) such that for any such a j one has p(x) ≤ q′j(x) ≤ q(x)
everywhere on X and also q′j(x2)< q(x2). Then we will select among these a j moves the one
that is such that the L1 norm of q′j is minimal among the possible j’s, or in other words, such that∫

X
q′j(x)dµ(x) is minimal in j. The idea is that, by doing so, we will improve the acceptance

rate of q′j (which depends directly on ‖q′j‖1) as much as possible, while (i) not having to explore
a too large space of possible refinements, and (ii) moving to a representation of q′j that is only
slightly more complex than q, rather than to a much more complex representation for a q′ that
could result from exploring a larger space of possible refinements for q.2 The intuition behind
such one-step refinement actions a j will become clearer when we consider concrete examples
below.

2.3 Optimization with OS∗

The optimization version of OS∗ is illustrated on the bottom of Fig. 1, where (O1) shows on
the one hand the function p that we are trying to maximize from, along with its (unknown)
maximum p∗, indicated by a black circle on the p curve, and corresponding to x∗ in X . It also
shows a “proposal” function q which is such — analogously to the sampling case — that (1) the

2In particular, even if we could find a refinement q′ that would exactly coincide with p, and therefore would have the
smallest possible L1 norm, we might not want to use such a refinement if this involved an overly complex representation
for q′.
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function q is above p on the whole of the space X and (2) it is easy to directly find the point x1
in X at which it reaches its maximum q∗, shown as a black circle on the q curve.

A simple, but central, observation is the following one. Suppose that the distance between
q(x1) and p(x1) is smaller than ε, then the distance between q(x1) and p∗ is also smaller than
ε. This can be checked immediately on the figure, and is due to the fact that on the one hand
p∗ is higher than p(x1), and that on the other hand it is below q(x∗), and a fortiori below q(x1).
In other words, if the maximum that we have found for q is at a coordinate x1 and we observe
that q(x1)− p(x1)< ε, then we can conclude that we have found the maximum of p up to ε.

In the case of x1 in the figure, we are still far from the maximum, and so we “reject” x1, and
refine q into q′ (see (O2)), using exactly the same approach as in the sampling case, but for one
difference: the one-step refinement option a j that is selected is now chosen on the basis of how
much it decreases, not the L1 norm of q, but the max of q — where, as a reminder, this max
can also be notated ‖q‖∞, using the L∞ norm notation.3

Once this q′ has been selected, one can then find its maximum at x2 and then the process can
be repeated with q1 = q, q2 = q′, ... until the difference between qk(xk) and p(xk) is smaller
than a certain predefined threshold.

2.4 Sampling L1 vs. Optimization L∞
While sampling and optimization are usually seen as two completely distinct tasks, they can
actually be viewed as two extremities of a continuous range, when considered in the context of
Lp spaces.

If (X ,µ) is a measure space, and if f is a real-valued function on this space, one defines the Lp

norm ‖ f ‖p, for 1≤ p <∞ as: ‖ f ‖p ≡
�∫

X
| f |p(x)dµ(x)
�1/p

[Rudin, 1987]. One also defines
the L∞ norm ‖ f ‖∞ as: ‖ f ‖∞ ≡ inf{C ≥ 0 : | f (x)| ≤ C for almost every x}, where the right
term is called the essential supremum of | f |, and can be thought of roughly as the “max” of the
function. So, with some abuse of language, we can simply write: ‖ f ‖∞ ≡maxx∈X | f |. The space
Lp, for 1 ≤ p ≤∞, is then defined as being the space of all functions f for which ‖ f ‖p <∞.
Under the simple condition that ‖ f ‖p <∞ for some p <∞, we have: limp→∞ ‖ f ‖p = ‖ f ‖∞.

The standard notion of sampling is relative to L1. However we can introduce the following
generalization — where we use the notation Lα instead of Lp in order to avoid confusion with
our use of p for denoting the target distribution. We will say that we are performing sampling of
a non-negative function f relative to Lα(X ,µ), for 1≤ α <∞, if f ∈ Lα(X ,µ) and if we sample
— in the standard sense — according to the normalized density distribution f̄ (x)≡ f (x)α∫

X
f (x)αdµ(x)

.

In the case α=∞, we will say that we are sampling relative to L∞(X ,µ), if f ∈ L∞(X ,µ) and
if we are performing optimization relative to f , more precisely, if for any ε > 0, we are able to
find an x such that |‖ f ‖∞ − f (x)|< ε.
Informally, sampling relative to Lα “tends” to sampling with L∞ (i.e. optimization), for α
tending to∞, in the sense that for a large α, an x sampled relative to Lα “tends” to be close to
a maximum for f . We will not attempt to give a precise formal meaning to that observation
here, but just note the connection with the idea of simulated annealing [Kirkpatrick et al.,

3A formal definition of that norm is that ‖q‖∞ is equal to the “essential supremum” of q over (X ,µ) (see below), but
for all practical purposes here, it is enough to think of this essential supremum as being the max, when it exists.
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1983], which we can view as a mix between the MCMC Metropolis-Hastings sampling technique
[Robert and Casella, 2004] and the idea of sampling in Lα spaces with larger and larger α’s.

In summary, we thus can view optimization as an extreme form of sampling. In the sequel we
will often use this generalized sense of sampling in our algorithms.4

2.5 OS∗ as a unified algorithm

The general design of OS∗ can be described as follows:

• Our goal is to OS-sample from p, where we take the expression “OS-sample” to refer to a
generalized sense that covers both sampling (in the standard sense) and optimization.

• We have at our disposal a family Q of proposal densities over the space (X ,µ), such that,
for every q ∈Q, we are able to OS-sample efficiently from q.

• Given a reject x1 relative to a proposal q, with p(x1)< q(x1), we have at our disposal a
(limited) number of possible “one-step” refinement options q′, with p ≤ q′ ≤ q, and such
that q′(x1)< q(x1).

• We then select one such q′. One possible selection criterion is to prefer the q′ which
has the smallest L1 norm (sampling case) or L∞ norm (optimization). In one sense,
this is the most natural criterion, as it means we are directly lowering the norm that
controls the efficiency of the OS-sampling. For instance, for sampling, if q′1 and q′2 are two
candidates refinements with ‖q′1‖1 < ‖q′2‖1, then the acceptance rate of q′1 is larger than
that of q′2, simply because then P(X )/Q′1(X )> P(X )/Q′2(X ). Similarly, in optimization, if
‖q′1‖∞ < ‖q′2‖∞, then the gap between maxx(q′1(x)) and p∗ is smaller than that between
maxx(q′2(x)) and p∗, simply because then maxx(q′1(x))<maxx(q′2(x)). However, using
this criterion may require the computation of the norm of each of the possible one-step
refinements, which can be costly, and one can prefer simpler criteria, for instance simply
selecting the q′ that minimizes q′(x1).

• We iterate until we settle on a “good” q: either (in sampling) one which is such that
the cumulative acceptance rate until this point is above a certain threshold; or (in
optimization) one for which the ratio p(x1)/q(x1) is closer to 1 than a certain threshold,
with x1 being the maximum for q.

The following algorithm gives a unified view of OS∗, valid for both sampling and optimization.
This is a high-level view, with some of the content delegated to the subroutines OS-Sample,
Accept-or-Reject, Update, Refine, Stop, which are described in the text.

4Note: While our two experiments in section ?? are based on discrete spaces, the OS∗ algorithm is more general, and
can be applied to any measurable space (in particular continuous spaces); in such cases, p and q have to be measurable
functions, and the relation p ≤ q should be read as p(x)≤ q(x) a.e. (almost everywhere) relative to the base measure
µ.
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Algorithm 1 The OS∗ algorithm

1: while not Stop(h) do
2: OS-Sample x ∼ q
3: r ← p(x)/q(x)
4: Accept-or-Reject(x , r)
5: Update(h, x)
6: if Rejected(x) then
7: q ← Refine(q, x)
8: return q along with accepted x ’s in h

On entry into the algorithm, we assume that we are either in sample mode or in optimization
mode, and also that we are starting from a proposal q which (1) dominates p and (2) from
which we can sample or optimize directly. We use the terminology OS-Sample to represent either
of these cases, where OS-Sample x ∼ q refers to sampling an x according to the proposal q or
optimizing x on q (namely finding an x which is an argmax of q, a common operation for many
NLP tasks), depending on the case. On line (1), h refers to the history of the sampling so far,
namely to the set of trials x1, x2, ... that have been done so far, each being marked for acceptance
or rejection (in the case of sampling, this is the usual notion, in the case of optimization, all but
the last proposal will be marked as rejects). The stopping criterion Stop(h) will be to stop: (i)
in sampling mode, if the number of acceptances so far relative to the number of trials is larger
than a certain predefined threshold, and in this case will return on line (8), first, the list of
accepted x ’s so far, which is already a valid sample from p, and second, the last refinement q,
which can then be used to produce any number of future samples as desired with an acceptance
ratio similar to the one observed so far; (ii) in optimization mode, if the last element x of the
history is an accept, and in this case will return on line (8), first the value x , which in this mode
is the only accepted trial in the history, and second, the last refinement q (which can be used
for such purposes as providing a “certificate of optimality of x relative to p”, but we do not
detail this here).

On line (3), we compute the ratio r, and then on line (4) we decide to accept x or not based on
this ratio; in optimization mode, we accept x if the ratio is close enough to 1, as determined by
a threshold5; in sampling mode, we accept x based on a Bernoulli trial of probability r.

On line (5), we update the history by recording the trial x and whether it was accepted or not.

If x was rejected (line (6)), then on line (7), we perform a refinement of q, based on the
principles that we have explained.

2.6 A connection with A*

A special case of the OS∗ algorithm, which we call “OS∗ with piecewise bounds”, shows a deep
connection with the classical A∗ optimization algorithm [Hart et al., 1968] and is interesting in
its own right. Let us first focus on sampling, and suppose that q0 represents an initial proposal
density, which upper-bounds the target density p over X . We start by sampling with q0, and on
a first reject somewhere in X , we split the set X into two disjoint subsets X1, X2, obtaining a
partition of X . By using the more precise context provided by this partition, we may be able

5When X is a finite domain, it makes sense to stop on a ratio equal to 1, in which case we have found an exact
maximum. This is what we do in our experiments in section 3.1.

85



ARSstar1 

p 

q0 

X 

q1 

q2 

Figure 2: A connection with A∗.

to improve our upper bound q0 over the whole of X into tighter upper bounds on each of X1
and X2, resulting then in a new upper bound q1 over the whole of X . We then sample using q1,
and experience at some later time another reject, say on a point in X1; at this point we again
partition X1 into two subsets X11 and X12, tighten the bounds on these subsets, and obtain a
refined proposal q2 over X ; we then iterate the process of building this “hierarchical partition”
until we reach a certain acceptance-rate threshold.

If we now move our focus to optimization, we see that the refinements that we have just
proposed present an analogy to the technique used by A∗. This is illustrated in Fig. 2. In A∗, we
start with a constant optimistic bound — corresponding to our q0 — for the objective function
which is computed at the root of the search tree, which we can assume to be binary. We then
expand the two daughters of the root, re-evaluate the optimistic bounds there to new constants,
obtaining the piecewise constant proposal q1, and move to the daughter with the highest bound.
We continue by expanding at each step the leaf of the partial search tree with the highest
optimistic bound (e.g. moving from q1 to q2, etc.).

It is important to note that OS∗, when used in optimization mode, is in fact strictly more general
than A∗, for two reasons: (i) it does not assume a piecewise refinement strategy, namely that
the refinements follow a hierarchical partition of the space, where a given refinement is limited
to a leaf of the current partition, and (ii) even if such a stategy is followed, it does not assume
that the piecewise upper-bounds are constant. Both points will become clearer in the HMM
experiments of section 3.1, where including an higher-order n-gram in q has impact on several
regions of X simultaneously, possibly overlapping in complex ways with regions touched by
previous refinements; in addition, the impact of a single n-gram is non-constant even in the
regions it touches, because it depends of the multiplicity of the n-gram, not only on its presence
or absence.

3 Some NLP applications of OS∗

The OS∗ framework appears to have many applications to NLP problems where we need to
optimize or sample from a complex objective function p. Let us give a partial list of such
situations:

• Efficient decoding and sampling with high-order HMM’s.

• Combination of a probabilistic context free grammar (PCFG) with a complex finite-state
automaton (FSA):
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– Tagging by joint usage of a PCFG and a HMM tagger;

– Hierarchical translation with a complex target language model

• Parsing in the presence of non-local features.

• PCFG’s with transversal constraints, probabilistic unification grammars.

We will not explore all of these situations here, but will concentrate on (i) decoding and
sampling with high-order HMM’s, for which we provide details and experimental results, and
(ii) combining a PCFG with a complex finite-state language model, which we only describe at
a high-level. We hope these two illustrations will suffice to give a feeling of the power of the
technique.

3.1 High-Order HMMs

Note: An extended and much more detailed version of these HMM experiments is provided in
[Carter et al., 2012].

The objective in our HMM experiments is to sample a word sequence with density p̄(x)
proportional to p(x) = plm(x) pobs(o|x), where plm is the probability of the sequence x under
an n-gram model and pobs(o|x) is the probability of observing the noisy sequence of observations
o given that the word sequence is x . Assuming that the observations depend only on the current
state, this probability can be written:

p(x) =
∏̀
i=1

plm(x i |x i−1
i−n+1) pobs(oi |x i) . (1)

Approach Taking a tri-gram language model for simplicity, let us define w3(x i |x i−2 x i−1) =
plm(x i |x i−2 x i−1) pobs(oi |x i). Then consider the observation o be fixed, and write p(x) =∏

i w3(x i |x i−2 x i−1). In optimization/decoding, we want to find the argmax of p(x), and in
sampling, to sample from p(x). Note that the state space associated with p can be huge, as we
need to represent explicitly all contexts (x i−2, x i−1) in the case of a trigram model, and even
more contexts for higher-order models.

We define w2(x i |x i−1) = maxx i−2
w3(x i |x i−2 x i−1), along with w1(x i) = maxx i−1

w2(x i |x i−1),
where the maxima are taken over all possible context words in the vocabulary. These quantities,
which can be precomputed efficiently, can be seen as optimistic “max-backoffs” of the trigram
x i

i−2, where we have forgotten some part of the context. Our initial proposal is then q0(x) =∏
i w1(x i). Clearly, for any sequence x of words, we have p(x)≤ q0(x). The state space of q0

is much less costly to represent than that of p(x).

The proposals qt , which incorporate n-grams of variable orders, can be represented efficiently
through weighted FSAs (WFSAs). In Fig. 3(a), we show a WFSA representing the initial proposal
q0 corresponding to an example with four observations, which we take to be the acoustic
realizations of the words ‘the, two, dogs, barked’. The weights on edges correspond only to
unigram max-backoffs, and thus each state corresponds to a NULL-context. Over this WFSA,
both optimization and sampling can be done efficiently by the standard dynamic programming
techniques (Viterbi [Rabiner, 1989] and “backward filtering-forward sampling” [Scott, 2002]),
where the forward weights associated to states are computed similarly, either in the max-product
or in the sum-product semiring.
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Figure 3: An example of an initial q-automaton (a), and its refinement (b).

Consider first sampling, and suppose that the first sample from q0 produces x1 = the two dog
barked, marked with bold edges in the drawing. Now, computing the ratio p(x1)/q0(x1) gives
a result much smaller than 1, in part because from the viewpoint of the full model p, the
trigram the two dog is very unlikely; i.e. the ratio w3(dog|the two)/w1(dog) is very low. Thus,
with high probability, x1 is rejected. When this is the case, we produce a refined proposal q1,
represented by the WFSA in Fig. 3(b), which takes into account the more realistic bigram weight
w2(dog|two) by adding a node (node 6) for the context two. We then perform a sampling trial
with q1, which this time tends to avoid producing dog in the context of two; if we experience a
reject later on some sequence x2, we refine again, meaning that we identify an n-gram in x2,
which, if we extend its context by one (e.g from a unigram to a bigram or from a bigram to a
trigram), accounts for some significant part of the gap between q1(x2) and p(x2). We stop the
refinement process when we start observing acceptance rates above a certain fixed threshold.

The case of optimization is similar. Suppose that with q0 the maximum is x1 = the two dog
barked, then we observe that p(x1) is lower than q0(x1), reject x1 and refine q0 into q1. We
stop the process at the point where the value of qt , at its maximum xqt

, is equal to the value of
p at xqt

, which implies that we have found the maximum for p.

Setup We evaluate our approach on an SMS-message retrieval task. Let N be the number
of possible words in the vocabulary. A latent variable x ∈ {1, · · · , N}` represents a sentence
defined as a sequence of ` words. Each word is converted into a sequence of numbers based on
a mobile phone numeric keypad, assuming some level of random noise in the conversion. The
task is then to recover the original message.

We use the English side of the Europarl corpus [Koehn, 2005] for training and test data (1.3
million sentences). A 5-gram language model is trained using SRILM [Stolcke, 2002] on 90%
of the sentences. On the remaining 10%, we randomly select 100 sequences for lengths 1 to 10
to obtain 1000 sequences from which we remove the ones containing numbers, obtaining a test
set of size 926.

Optimization We limit the average number of latent tokens in our decoding experiments to
1000. In the plot (d1) of Fig. 4 we show the average number of iterations (running Viterbi then
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Figure 4: SMS experiments.

updating q) that the different n-gram models of size 3, 4 and 5 take to do exact decoding of
the sentences of fixed length (10 words) in the test-set. We can see that decoding with larger
n-gram models tends to show a linear increase w.r.t. n in the number of iterations taken. Plot
(d2) shows the average number of states in the final automaton q for the same sentences, also
showing a linear increase with n (rather than the exponential growth expected if all the possible
states were represented). We also display in Table 1 the distribution of n-grams in the final
model for one specific sentence of length 10. Note that the total number of n-grams in the full
model would be ∼3.0×1015; exact decoding here is not tractable using existing techniques. By
comparison, our HMM has only 118 five-grams and 9008 n-grams in total.

n: 1 2 3 4 5
q: 7868 615 231 176 118

Table 1: # of n-grams in our variable-order HMM.

Sampling For the sampling experiments, we limit the number of latent tokens to 100. We
refine our q automaton until we reach a certain fixed cumulative acceptance rate (AR). We also
compute a rate based only on the last 100 trials (AR-100), as this tends to better reflect the
current acceptance rate. In plot (s3) of Fig. 4, we show a single sampling run using a 5-gram
model for an example input, and the cumulative # of accepts (middle curve). It took 500
iterations before the first successful sample from p.

We noted that there is a trade-off between the time needed to compute the forward probability
weights needed for sampling, and the time it takes to adapt the variable-order HMM. To resolve
this, we use batch-updates: making B trials from the same q-automaton, and then updating our
model in one step. By doing this, we noted significant speed-ups in sampling times. Empirically,
we found B = 100 to be a good value, leading to an order of magnitude improvement in speed.
In plots (s1) and (s2), we show the average # of iterations and states in our models until
refinements are finished (for an AR-100 of 20%), for different orders n over sentences of length
10 in the test set. We note linear trends in the number of iterations and states when moving
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to higher n; for length=10, and for n= 3,4,5, average number of iterations: 3-658, 4-683,
5-701; averager number of states: 3-1139, 4-1494, 5-1718. In particular the number of states
is again much lower than the exponential increase we would expect if using the full underlying
state space.

3.2 OS∗ for intersecting PCFG’s with high-order LM’s

We now move to a high-level description of the application of OS∗ to an important class of
problems (including hierarchical SMT) which involve the intersection of PCFG’s with high-order
language models. The study of similar “agreement-based” problems involving optimization (but
not sampling) over a combination of two individual tasks have recently been the focus of a lot
of attention in the NLP community, in particular with the application of dual decomposition
methods [Rush et al., 2010, Rush and Collins, 2011, Chang and Collins, 2011]. We only sketch
the main ideas of our approach.

A standard result of formal language theory is that the intersection of a CFG with a FSA is a CFG
[Bar-Hillel et al., 1961]. This construct can be generalized to the intersection of a Weighted
CFG (WCFG) with a WFSA (see e.g. [Nederhof and Satta, 2003]), resulting in a WCFG. In our
case, we will be interested in optimizing and sampling from the intersection p of a PCFG6 G
with a complex WFSA A representing a high-order language model. For illustration purposes
here, we will suppose that A is a trigram language model, but the description can be easily
transposed to higher-order cases.

Let us denote by x a derivation in G, and by y = y(x) the string of terminal leaves associated
with x (the “yield” of the derivation x). The weighted intersection p of G and A is defined as:
p(x)≡ G(x).A(x), where A(x) is a shorthand for A(y(x)).

Due to the intersection result, p can in principle be represented by a WCFG, but for a trigram
model A, this grammar can become very large. Our approach will then be the following: we
will start by taking the proposal q(0) equal to G, and then gradually refine this proposal by
incorporating more and more accurate approximations to the full automaton A, themselves
expressed as weighted automata of small complexity. We will stop refining based on having
found a good enough approximation in optimization, or a sampler with sufficient acceptance
rate in sampling.

To be precise, let us consider a PCFG G, with
∑

x G(x) = 1, where x varies among all the finite
derivations relative to G.7 Let us first note that it is very simple to sample from G: just expand
derivations top-down using the conditional probabilities of the rules. It is also very easy to find
the derivation x of maximum value G(x) by a standard dynamic programming procedure.

We are going to introduce a sequence of proposals q(0) = G, q(1) = q(0).B(1), ..., q(i+1) =
q(i).B(i+1), ..., where each B(i) is a small automaton including some additional knowledge
about the language model represented by A. Each q(i) will thus be a WCFG (not normalized)
and refining q(i) into q(i+1) will then consist of a “local” update of the grammar q(i), ensuring a
desirable incrementality of the refinements.

Analogous to the HMM case, we define: w3(x5|x3 x4) = maxx2
w4(x5|x2 x3 x4), w2(x5|x4) =

maxx3
w4(x5|x3 x4), and w1(x5) =maxx4

w4(x5|x4).

6A Probabilistic CFG (PCFG) is a special case of a WCFG.
7Such a PCFG is said to be consistent, that is, it is such that the total mass of infinite derivations is null [Wetherell,

1980]. We do not go into the details of this (standard) assumption here.
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Figure 5: The “TwoDog” automaton.

Let’s first consider the optimization case, and suppose that, at a certain stage, the grammar q(i)

has already “incorporated” knowledge of w1(dog). Then suppose that the maximum derivation
x (i) = argmax(i)(x) has the yield: the two dog barked, where w1(dog) is much larger than the
more accurate w2(dog|two).

We then decide to update q(i) into q(i+1) = q(i).B(i+1), where B(i+1) represents the additional
knowledge corresponding to w2(dog|two). More precisely, let us define:

α≡ w2(dog|two)
w1(dog)

.

Clearly α ≤ 1 by the definition of w1, w2. Now consider the following two-state automaton
B(i+1), which we will call the “TwoDog” automaton:

In this automaton, the state (0) is both initial and final, and (1) is only final. The state (1) can
be interpreted as meaning “I have just produced the word two”. All edges carry a weight of 1,
apart from the edge labelled dog, which carries a weight of α. The “else” label on the arrow
from (0) to itself is a shorthand that means: “any word other than two”, and the “else” label on
the arrow from (1) to (0) has the meaning: “any word other than dog or two”.

It can be checked that this automaton has the following behavior: it gives a word sequence the
weight αk, where k is the number of times the sequence contains the subsequence two dog.

Thus, when intersected with the grammar q(i), this automaton produces the grammar q(i+1),
which is such that q(i+1)(x) = q(i)(x) if the yield of x does not contain the subsequence two dog,
but such that q(i+1)(x) = αk.q(i)(x) if it contains this subsequence k times. Note that because
q(i) had already “recorded” the knowledge about w1(dog), it now assigns to the word dog in
the context of two the weight w2(dog|two) = w1(dog).α, while it still assigns to it in all other
contexts the weight w1(dog), as desired.8

We will not go here into the detailed mechanics of intersecting the automaton “TwoDog” with the
WCFG q(i), (see [Nederhof and Satta, 2008] for one technique), but just note that, because this
automaton only contains two states and only one edge whose weight is not 1, this intersection
can be carried efficiently at each step, and will typically result in very local updates of the
grammar.

8Note: Our refinements of section 3.1 might also have been seen as intersections between a weighted FSA (rather
than a weighted CFG) and a “local” automaton similar to “TwoDog”, but their implementation was more direct.
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Figure 6: The “TwoNiceDog” automaton.

Higher-order n-grams can be registered in the grammar in a similar way. For instance, let’s sup-
pose that we have already incorporated in the grammar the knowledge of w2(dog|nice) and that
we now wish to incorporate the knowledge of w3(dog|two nice), we can now use the following
automaton (“TwoNiceDog” automaton), where β = w3(dog|two nice)/w2(dog|nice):

For optimization, we thus find the maximum x (i) of each grammar q(i), check the ratio
p(x (i))/q(i)(x (i)), and stop if this ratio is close enough to 1. Else, we choose an n-gram in
x (i) which is not yet registered and would significantly lower the proposal q(i)(x (i)) if added,
build the automaton corresponding to this n-gram, and intersect this automaton with q(i).

Sampling is done in exactly the same way, the difference being that we now use dynamic
programming to compute the sum of weights bottom-up in the grammars q(i), which is really a
matter of using the sum-product semiring instead of the max-product semiring.

4 Conclusion

In this paper, we have argued for a unified viewpoint for heuristic optimization and rejection
sampling, by using functional upper-bounds for both, and by using rejects as the basis for
reducing the gap between the upper-bound and the objective. Bringing together Optimization
and Sampling in this way permits to draw inspirations (A∗ Optimization, Rejection Sampling)
from both domains to produce the joint algorithm OS∗.

In particular, the optimization mode of OS∗, which is directly inspired by rejection sampling,
provides a generic exact optimization technique which appears to be more powerful than A∗ (as
argued in section 2.6), and to have many potential applications to NLP distributions based on
complex features, of which we detailed only two: high-order HMMs, and an agreement-based
model for the combination of a weighted CFG with a language model. As these examples
illustrate, often the same dynamic programming techniques can be used for optimization and
sampling, the underlying representations being identical, the difference being only a change of
semiring.

Both optimization and sampling are prominent questions in NLP generally, in the contexts of
inference as well as of learning. In particular, we are currently working on applying these
techniques to decoding and training tasks for phrase-based and also hierarchical statistical
machine translation.
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