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ABSTRACT

In this paper we present our experiments in parsing Hindi. We first explored Malt and MST 
parsers. Considering pros of both these parsers, we developed a hybrid approach combining the 
output of these two parsers in an intuitive manner. We report our results on both development 
and test data provided in the Hindi Shared Task on Parsing at workshop on MT and parsing in 
Indian Languages, Coling 2012. Our system secured labeled attachment score of 90.66% and 
80.77% for gold standard and automatic tracks respectively. These accuracies are 3rd best and 5th 

best for gold standard and automatic tracks respectively.

1 Introduction

Dependency parsing is the task of uncovering the dependency tree of a sentence, which consists 
of labeled links representing dependency relationships between words. Parsing is useful in major 
NLP applications like Machine Translation, Dialogue systems, text generation, word sense 
disambiguation etc. This led to the development of grammar-driven, data-driven and hybrid 
parsers. Due to the availability of annotated corpora in recent years, data driven parsing has 
achieved considerable success. The availability of phrase structure treebank for English has seen 
the development of many efficient parsers.

Unlike English, many Indian (Hindi, Bangla, Telugu, etc.) languages are free-word-order and are 
also morphologically rich. It has been suggested that free-word-order languages can be handled 
better using the dependency based framework than the constituency based one (Bharati et al., 
1995). Due to the availability of dependency treebanks, there are several recent attempts at 
building dependency parsers. Two CoNLL shared tasks (Buchholz and Marsi, 2006; Nivre et al., 
2007b) were held aiming at building state-of-the-art dependency parsers for different languages. 
Recently in two ICON Tools Contest (Husain, 2009; Husain et al., 2010), rule-based, constraint 
based, statistical and hybrid approaches were explored towards building dependency parsers for 
three Indian languages namely, Telugu, Hindi and Bangla. In all these efforts, state-of-the-art 
accuracies are obtained by two data-driven parsers, namely, Malt (Nivre et al., 2007a) and MST 
(McDonald et al., 2006).

We first explored Malt and MST parsers. Considering pros of both these parsers, we developed a 
hybrid approach combining the output of these two parsers in an intuitive manner. We report our 
results on both development and test data provided in the Hindi Shared Task on Parsing at 
workshop on MT and parsing in Indian Languages, Coling 2012. Our system secured labeled 
attachment score of 90.66% and 80.77% for gold standard and automatic tracks respectively. 
These accuracies are 3rd best and 5th best for gold standard and automatic tracks respectively.

In this paper, we give a brief introduction to the Shared Task in Section 2 and related work in 
Section 3. We describe our approach and settings in Sections 4 and 5 respectively. We present 
our results and analysis in Section 6. We conclude the paper with future work in Section 7.
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2 Shared Task

Hindi Shared Task on Parsing was organized at workshop on MT and parsing in Indian 
Languages, Coling 2012. As part of the shared task, a part of the Hindi Treebank (HTB) 
containing gold standard morphological analyses, part-of-speech tags, chunks and dependency 
relations labeled in the computational paninian framework was released.

2.1 The Task

The task is to assign labeled dependency structures by means of a fully automatic dependency 
parser. There are two evaluation tracks namely, gold standard and automatic. In the gold 
standard track, the input to the system consists of sentence tokens with gold standard 
morphological analysis, part-of-speech tags, chunks and the additional features. In the automatic 
track, the input to the system contains only the sentence token and the part-of-speech tags from 
an automatic tagger. In both the tracks, the parser must output the head and the corresponding 
dependency relation for each token in the input sentence.

The teams are provided with training and development data containing gold standard 
morphological analysis (lemma, coarse POS tag, gender, number, person, vibhakti, tense-aspect-
modality), part-of-speech tags, chunks, labeled dependency structures along with some additional 
features such as sentence type, sentence voice etc. 

2.2 Data

A subset of the dependency annotated Hindi Treebank (HTB ver-0.5) was released as part of the 
Shared Task. HTB ver-0.5 is a multi-layered dependency treebank with morphological, part-of-
speech and dependency annotations on sentences from news domain corpus acquired from ISI-
Kolkata, India. During annotation, the dependency relations are only marked between chunks in 
the sentence and the words are annotated with POS tags and morphological analysis. The 
annotations are stored in the Shakti Standard Format. The statistics of the data released for the 
task are as below

• Training Data – 12041 sentences, 268,093 words

• Development Data – 1233 sentences, 26,416 words

• Testing Data – 1828 sentences, 39,775 words

3 Related Work

In two ICON Tools Contest (Husain, 2009; Husain et al., 2010), different rule-based, constraint 
based, statistical and hybrid approaches were explored towards building dependency parsers for 
Indian languages. Ghosh et al. (2009) used a CRF based hybrid method. Nivre (2009), Ambati et 
al. (2009), and Kosaraju et al. (2010) used Malt Parser and explored the effectiveness of local 
morphosyntactic features, chunk features and automatic semantic information. Parser settings in 
terms of different algorithms and features were also explored. Zeman (2009) combined various 
well known dependency parsers forming a superparser by using a voting method. Yeleti and 
Deepak (2009) and Kesedi et al. (2010) used a constraint based approach. The scoring function 
for ranking the base parses is inspired by a graphbased parsing model and labeling. Attardi et al. 
(2010) used a transition based dependency shift reduce parser (DeSR parser) that uses a 
Multilayer Perceptron (MLP) classifier with a beam search strategy. 
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4 Approach

For the experiments reported in this paper we used two data-driven parsers namely, MaltParser 
(Nivre et al., 2007a), and MST (McDonald et al., 2006). 

4.1 Malt Parser

MaltParser is a freely available implementation of the parsing models described in (Nivre et al., 
2007a). MaltParser implements the transition-based approach to dependency parsing, which has 
two essential components:

• A transition system for mapping sentences to dependency trees

• A classifier for predicting the next transition for every possible system configuration

Given these two components, dependency parsing can be realized as deterministic search through 
the transition system, guided by the classifier. With this technique, parsing can be performed in 
linear time for projective dependency trees and quadratic time for arbitrary (possibly non-
projective) trees.

MaltParser comes with a number of built-in transition systems. Some of the well-known 
algorithms which gave best performance in previous parsing experiments are Nivre arc-eager, 
Nivre arc-standard, Covington non-projective, Covington projective. MaltParser also provides 
options for LIBSVM and LIBLINEAR learner algorithms.

4.2 MST Parser

MSTParser is a freely available implementation of the parsing models described in McDonald et 
al. (2006). It is a graph-based parsing system in that core parsing algorithms can be equated to 
finding directed maximum spanning trees (either projective or non-projective) from a dense 
graph representation of the sentence.

MST uses Chu-Liu-Edmonds Maximum Spanning Tree algorithm for non-projective parsing and 
Eisner's algorithm for projective parsing. It uses online large margin learning as the learning 
algorithm (McDonald et al., 2005a).

4.3 Our Approach

McDonald and Nivre (2007) compared the accuracy of MSTParser and MaltParser along a 
number of structural and linguistic dimensions. They observed that, though the two parsers 
exhibit indistinguishable accuracies overall, MSTParser tends to outperform MaltParser on 
longer dependencies as well as those dependencies closer to the root of the tree (e.g., verb, 
conjunction and preposition dependencies), whereas MaltParser performs better on short 
dependencies and those further from the root (e.g., pronouns and noun dependencies). Since long 
dependencies and those near to the root are typically the last constructed in transition-based 
parsing systems, it was concluded that MaltParser does suffer from some form of error 
propagation. Similar observations were made by Ambati et al. (2009) for Hindi.

In our approach, we tried to combine both Malt and MST to extract the best out of the both 
parsers. For this, we first tuned both Malt and MST for Hindi. Details of the settings can be 
found in Section 5. After we got the best models of Malt and MST, we extracted the output of 
both the parsers on the development data. We also made a list of long distance labels. We 
compared the output of Malt and MST. Whenever there is a mismatch between outputs of both 
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the parsers, we checked the dependency label given by the parsers. If MST marked it as a long 
distance label, then we considered MST’s output. Otherwise we considered Malt’s output. In this 
way, we gave more weightage to MST in case of long distance label for which it is best. 
Similarly, we gave more weightage to Malt in case of short distance labels, as Malt is best at 
short distance relations. Intuition behind this is that Malt is good at short distance dependencies 
and MST is good at long distance dependencies. The long distance dependency labels list which 
we used for our approach are “main”, “ccof”, “nmod__relc”, “rs”, “rsym”, and “vmod”.

5 Settings

We first developed our baseline models using Malt Parser and MST Parser. We CoNLL format 
of the data in wx-notation for our experiments.

5.1 Data Settings

In case of gold standard track, we explored different features provided in the FEATS column and 
found that only root, category, vibhatki, TAM and chunk information are useful. Gender, 
number, person and other information didn’t give any improvements. This observation is similar 
to previous work by Ambati et al. (2010) and Kosaraju et al. (2010). For automatic track, as the 
FEATS column is empty, we used the file provided as it is.

5.2 Parser Settings

For Malt, we explored different parser algorithms for Hindi and found that nivre arc-standard 
gave better performance over others. In case of learning algorithms, LIBLINEAR gave better 
performance compared to LIBSVM. Also, LIBLINEAR was very faster than LIBSVM learner. 

In case MST, we different options provided by the parser and found that non-projective 
algorithm and training-k=5, gave best results.

6 Results and Analysis

We considered Malt and MST as baselines. Out Approach performed better than these baselines 
in all the experiments. Performance of Malt, MST, and Our Approach on development and test 
data for both gold standard and automatic track are provided in Table 1 and Table 2 respectively. 
We used standard Labelled Attachment Score (LAS), Un-labeled Attachment Score (USA) and 
Labeled Score (LS) metrices for our evaluation.

Gold standard Automatic

LAS UAS LS LAS UAS LS

Malt 89.76 % 94.39 % 91.31 % 79.84 % 87.66 % 82.42 %

MST 95.99 % 89.54 % 91.19 % 75.08 % 90.55 % 77.13 %

Our 
Approach

95.54 % 90.85 % 92.52 % 81.46 % 89.45 % 83.62 %

TABLE 1 – Performance of different systems on development data.
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Gold standard Automatic

LAS UAS LS LAS UAS LS

Malt 89.38 % 93.86 % 90.93 % 79.18 % 87.11 % 81.86 %

MST 89.20 % 95.78 % 90.79 % 75.12 % 90.45 % 77.37 %

Our 
Approach

90.66 % 95.18 % 92.28 % 80.77 % 88.91 % 83.03 %

TABLE 2 – Performance of different systems on test data.

On the test data, Malt and MST gave LAS of 89.38% and 89.20% respectively for gold standard 
track. Using our approach, we could achieve LAS of 90.66%, which is 1.28% better than the 
baseline systems. Similarly, in automatic track, Malt and MST gave LAS of 79.18% and 75.12% 
respectively. Whereas our approach could achieve LAS of 80.77%, which is 1.59% better than 
the baseline systems.

Gold standard Automatic
Malt MST Our 

Approach
Malt MST Our 

Approach

Development 
Data

k1 85.65 % 82.56 % 85.71 % 66.38 % 55.77 % 66.85 %

k2 76.00 % 75.13 % 75.94 % 66.55 % 58.81 % 66.47 %

r6 91.58 % 88.46 % 91.48 % 68.97 % 51.61 % 69.20 %

main 79.93 % 97.73 % 91.12 % 71.60 % 95.46 % 81.23 %

ccof 90.64 % 91.37 % 91.32 % 81.62 % 85.23 % 84.58 %

nmod__
relc

34.95 % 51.28 % 51.28 % 22.44 % 25.00 % 25.80 %

rsym 91.79 % 96.30 % 96.36 % 83.50 % 93.92 % 93.87 %

Test 
Data

k1 85.62 % 83.43 % 85.72 % 65.89 % 56.92 % 65.88 %

k2 73.52 % 75.03 % 73.99 % 65.88 % 59.24 % 66.18 %

r6 89.99 % 87.88 % 89.99 % 66.89 % 52.21 % 66.76 %

main 78.22 % 97.16 % 89.93 % 71.80 % 95.13 % 81.75 %

ccof 88.96 % 91.08 % 90.77 % 80.06 % 84.38 % 83.34 %

nmod__
relc

42.85 % 48.64 % 48.64 % 26.42 % 27.23 % 28.45 %

rsym 91.12 % 96.49 % 96.51 % 82.71 % 92.53 % 92.66 %

TABLE 3 – Performance of different systems on short distance vs. long distance dependencies on 
development and test data.
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Table 3, gives an overview of how Malt, MST and our approach perform on short distance vs. 
long distance dependencies. We have taken three short distance dependencies (k1, k2, r6) and 
four long distance dependencies (main, ccof, nmod__relc, rysm). From Table 3, it is clear that 
our approach gives similar performance to Malt in case of short distance dependencies. In case of 
long distance dependencies like “main” and “ccof”, MST still gives the best accuracies. But, note 
that, our system give great improvements, nearly 10% for “main” and 2-3% for “ccof”, over Malt 
for these labels. In case of “nmod__relc”, and “rsym” our system gave better results over both 
Malt and MST. By obtaining similar performance on short distance dependencies and huge 
improvements on long distance dependencies (by taking MST output) over Malt, we could 
achieve better accuracies over both the parsers. Taking the fact that Malt is good at short distance 
dependencies and MST is good at long distance dependencies, into consideration, we developed 
our system, which outperformed both Malt and MST.

7 Conclusion and Future Work

In this paper, we first explored Malt and MST parsers and developed best models, which we 
considered as the baseline models for our approach. Considering pros of both these parsers, we 
developed a hybrid approach combining the output of these two parsers in an intuitive manner. 
As Malt is good at short distance dependencies and MST is good at long distance dependencies, 
we gave more weightage to Malt in case of short distance dependencies and gave more 
weightage to MST in case of long distance dependencies. We showed that a simple system like 
combining both MST and Malt in an intuitive way, can perform better than both the parsers. We 
reported our results on both development and test data provided in the Hindi Shared Task on 
Parsing at workshop on MT and parsing in Indian Languages, Coling 2012. Our system secured 
labeled attachment score of 90.66% and 80.77% for gold standard and automatic tracks 
respectively. These accuracies are 3rd best and 5th best for gold standard and automatic tracks 
respectively. 

In our current approach, we combined the output of both Malt and MST to get a better system 
over both the parsers. In future, we would like to combine both the models in a way similar to 
McDonald and Nivre (2007). In case of automatic track, we only, used the input provided. For 
our experience with gold standard track, and from the previous literature, we can say that chunk 
information and morphological information in the form of vibhakti and TAM plays an important 
role in Hindi dependency parsing. In future, we would like to experiment with the usefulness of 
these features in automatic track data by using automatic morphological analyser and chunker for 
Hindi.
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