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Preface 

 

It is our great pleasure to present the proceedings of the Second Workshop on Advances in Text 

Input Methods (WTIM-2) held in conjunction with Coling 2012, on 15
th

 December 2012, in 

Mumbai, India. This workshop is a sequel to the first WTIM which was held in conjunction with 

IJCNLP 2011 in November 2011, Chiang Mai, Thailand. The aim of the current workshop 

remains the same as the previous one that is to bring together the researchers and developers of 

text input technologies around the world, and share their innovations, research findings and 

issues across different applications, devices, modes and languages. 

The proceedings contain nine contributions, five as long papers and the rest as short papers or 

demonstration proposals. Together they cover research on various languages including Assamese, 

Arabic, Bangla, Chinese, Dzongkha and Japanese, as well as keyboard design aspects of many 

languages using Brahmi derived scripts. The workshop featured two invited talks by Paul 

Butcher, Chief Software Architect of SwiftKey and Ram Prakash H., Founder and CEO of 

Tachyon Technologies, both of whom gave insights into development and deployment of 

commercial text input systems SwiftKey and Quillpad respectively. We would like to thank both 

the speakers for taking the time to share their experiences. The volume also includes a paper by 

Ram Prakash H. based on his invited talk. 

In order to facilitate more interaction between the participants and presenters, all papers in 

WTIM-2 were presented as posters during a long session, which was preceded by short elevator 

pitches. In line with the same objective of increased interaction, we organized two focused 

sessions namely an open discussion on data and resources and a panel discussion on research and 

community building for text input methods. 

We would like to take this opportunity to thank all the panelists, participants, presenters and 

authors for making WTIM-2 an enriching experience. We would also like to thank our PC 

members who did a wonderful job of critically reviewing the submissions and providing 

constructive feedback to the authors. Thanks are also due to Coling 2012 organizers for giving us 

this opportunity and helping us with various phases of organization, and to Microsoft Research 

Lab India for sponsorship. Last but not the least we would like to extend our gratitude to Hisami 

Suzuki, Microsoft, the founding co-chair of WTIM series, who advised us on different aspects of 

organization of the workshop. 

 

Kalika Bali, Monojit Choudhury, Yoh Okuno 

Organizing Co-Chairs 

WTIM 2012 

 

iii





Committees 

 

Organizing Co-chairs 

Kalika Bali, Microsoft Research Lab India 

Monojit Choudhury, Microsoft Research Lab India 

Yoh Okuno, SwiftKey 

 

 

Program Committee 
 

Achraf Chalabi, Microsoft ATLC, Egypt 

Hiroshi Manabe 

Hiroyuki Tokunaga, Preferred Infrastructure 

Hisami Suzuki, Microsoft Research Lab Redmond 

Jugal Kalita, University of Colorado, Colorado Springs 

Jun Hatori, Apple 

Pushpak Bhattacharyya, IIT Bombay 

Richa, LDC-IL, Central Institute of Indian Languages Mysore 

Samit Bhattacharya, IIT Guwahati 

Sarvnaz Karimi, CSIRO, Sydney 

Shinsuke Mori, Kyoto University 

Sriganesh Madhvanath, HP Labs India 

Taku Kudo, Google Japan 

Tim Paek, Microsoft Research Lab Redmond 

Vasudeva Varma, IIIT Hyderabad 

Virach Sornlertlamvanich, NECTEC 

Xianchao Wu, Baidu 

 

v



vi



 
Invited Talks 

 

 
SwiftKey: Building a commercial success upon firm theoretical foundations  
Speaker: Paul Butcher, SwiftKey 
  

Abstract: At the heart of SwiftKey's success are well motivated Machine Learning and 

Natural Language Processing principles. But that foundation is only the start, it's also 

required relentless focus on User Experience, solving endless real world issues and building 

and connecting with the vibrant community of SwiftKey users worldwide. This talk will 

take you through the story of how we turned a great IME into the most successful paid 

Android application in the world. 

  

Speaker’s Bio: Paul is Chief Software Architect of NLP company SwiftKey, creators of the 

market-leading input method by the same name. 

  

 
 
Quillpad multilingual predictive transliteration system  
Speaker: Ram Prakash H, Tachyon Technologies 
  

Abstract: Transliteration has been one of the common methods for multilingual text input. 

Many earlier methods employed transliteration schemes for defining one to one mapping of 

input alphabet combinations to output alphabet combinations. Though such well-defined 

mappings made it easier to write a transliteration program, the end user was burdened with 

learning the mappings. Further, though transliteration schemes try to map the alphabet 

combinations phonetically, it is unavoidable to introduce non intuitive combinations into 

the scheme. An alternative is to use predictive transliteration, where user could input a 

word, by intuitively combining the input alphabet phonetically and the predictive 

transliteration system should correctly convert it to the target language. In this talk, I will 

present the challenges that must be addressed by such a system, and describe how Quillpad 

can be trained for performing predictive transliteration between any two alphabets.  

 

Speaker’s Bio: Ram Prakash is the founder of Tachyon Technologies, and developer of 

Quillpad, the first online Indian language phonetic transliteration based input system. He 

was listed as one of the twenty MIT TR-35 2010 Young Innovators from India for Quillpad. 
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Statistical Input Method
based on a Phrase Class n-gram Model

Hirokuni Maeta1 Shinsuke Mori1

(1) Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto, Japan
maeta@ar.media.kyoto-u.ac.jp, forest@i.kyoto-u.ac.jp

ABSTRACT
We propose a method to construct a phrase class n-gram model for Kana-Kanji Conversion by
combining phrase and class methods. We use a word-pronunciation pair as the basic prediction
unit of the language model. We compared the conversion accuracy and model size of a phrase
class bi-gram model constructed by our method to a tri-gram model. The conversion accuracy
was measured by F measure and model size was measured by the vocabulary size and the
number of non-zero frequency entries. The F measure of our phrase class bi-gram model was
90.41%, while that of a word-pronunciation pair tri-gram model was 90.21%. In addition,
the vocabulary size and the number of non-zero frequency entries in the phrase class bi-gram
model were 5,550 and 206,978 respectively, while those of the tri-gram model were 22,801
and 645,996 respectively. Thus our method makes a smaller, more accurate language model.

KEYWORDS: Kana-Kanji Conversion, n-gram model, phrase-based model, class-based model.
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1 Introduction

Japanese input methods are an essential technology for Japanese computing. Japanese has over
6,000 characters, which is much larger than the number of keys in a keyboard. It is impossible
to map each Japanese character to a key. So an alternate input method for Japanese characters
is needed. This is done by inputting a pronunciation sequence and converting it to an output
sequence of words. Here, the input sequence of pronunciation is a sequence of kana characters
and the output sequence of words is a mixture of kana and kanji characters. So this conversion
is called Kana-Kanji Conversion (KKC).

The noisy channel model approach has been successfully applied to input methods (Chen and
Lee, 2000; Mori et al., 1999). In KKC, a word sequence is predicted from a pronunciation
sequence. The system is composed of two modules: a language model, which measures the
likelihood of a word sequence in the language and a word-pronunciation model, which describes
a relationship between a word sequence and a pronunciation sequence. Thus, the conversion
accuracy of KKC depends on the language model and the word-pronunciation model. The
language model is, however, more important since it describes the context and it is larger in
size than the word-pronunciation model.

We focus on how to improve the language model for KKC. An n-gram model is generally used
for many tasks. In KKC, considering the need for the conversion speed and the size of the
language model, bi-gram models are often used. However, bi-gram models can not refer to a
long history. A tri-gram model, which is also popular for many tasks, can refer a longer history
but the size of tri-gram models is larger than that of bi-gram models. There have been many
attempts at improving language models. A class n-gram model (Brown et al., 1992; Kneser and
Ney, 1993; Mori et al., 1998), which groups words of similar behavior into a single class, and a
phrase n-gram model (Deligne and Bimbot, 1995; Ries et al., 1996; Mori et al., 1997) which
replaces some word sequences by single tokens, are known to be practical in speech recognition
community.

In this paper, we propose a method to construct a smaller, more accurate language model
for KKC. It is often thought that accurate models are larger and that small models are less
accurate. However, we successfully built a smaller, more accurate language model. This is
done by combining phrase and class methods. First, we collect phrases and construct a phrase
sequence corpus. By changing the prediction unit from a word to a word sequence, the model
can use a longer history. Then we perform word clustering to restrict the growth of the model
size. As a result, we obtain a phrase class n-gram model. This model is small and expected to
be accurate because it uses a history as long as those used by higher order n-gram models.

In order to test the effectiveness of our method, we compared the conversion accuracy and the
model size of the phrase class bi-gram model constructed by our method to other language
models. We used a word-pronunciation pair as the basic prediction unit of the language models.
The conversion accuracy is measured by F measure, which is the harmonic mean of precision
and recall. The F measure of our phrase class bi-gram model was 90.41%, while that of a
word-pronunciation pair tri-gram model was 90.21%. In addition, the vocabulary size and
the number of non-zero frequency entries in the phrase class bi-gram model were 5,550 and
206,978 respectively, while those of the tri-gram model were 22,801 and 645,996 respectively.
These results show that our method of combining phrase and class methods makes a smaller,
more accurate language model for KKC.
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2 Statistical Input Method

In this section we give a brief explanation of a statistical input method and a word-pronunciation
pair n-gram model, which is applied as the language model to KKC in the subsequent sections.

2.1 Input Method based on a Word n-gram Model

We explain a statistical approach to an input method based on the noisy channel model (Chen
and Lee, 2000; Mori et al., 1999). This approach uses a word as the prediction unit of a
language model.

Let x = x1 x2 · · · x l be a pronunciation sequence and w = w1w2 · · ·wm be a word sequence.
Given x as input, the goal of the input method is to output ŵ that maximizes the probability
p(w |x ) as follows:

ŵ = argmax
w

p(w |x ).

By Bayes’ theorem,

p(w |x ) = p(x |w )p(w )
p(x )

.

Since p(x ) is independent of w , we have

ŵ = argmax
w

p(w |x )

= argmax
w

p(x |w )p(w )
p(x )

= argmax
w

p(x |w )p(w ).

Here, the problem is divided into two parts. p(w ) is a language model and we call p(x |w ) a
word-pronunciation model.

A language model p(w ) outputs the probability of a word sequence w . First the probability
p(w ) is assumed to be expressed as a product of a set of conditional probabilities

p(w ) = p(w1w2 · · ·wm)

=
m∏

i=1

p(wi |w1w2 · · ·wi−1). (1)

Then p(wi |w1 · · ·wi−1) is approximated as k-order Markov process

p(wi |w1w2 · · ·wi−1)≈ p(wi |wi−kwi−k+1 · · ·wi−1),

where k = n− 1.

The other part, the word-pronunciation model p(x |w ), outputs the probability of the pronunci-
ation sequence x given the word sequence w . This probability is assumed to be decomposed as
follows:

p(x |w ) =
m∏

i=1

p(x i |wi),

where x i is the sequence of pronunciation corresponding to the word wi .

3



詰め/tsu-me 将棋/sho-u-gi の/no 本/ho-n を/wo
買/ka っ/ttsu て/te き/ki ま/ma し/shi た/ta 。/.

Figure 1: An example of a word-pronunciation pair sentence.

2.2 A Word-pronunciation Pair n-gram Model

In this paper we use a word-pronunciation pair n-gram model. A word-pronunciation pair
n-gram model takes a pair of a word and its pronunciation as the prediction unit. Thus we can
model a word and its pronunciation at the same time. This is because some Japanese kanji
characters have the same pronunciation. So it is expected to be better to predict both a word
and its pronunciation than predicting a word only.

Figure 1 shows an example of a corpus for training a word-pronunciation pair n-gram model.
Units are separated with a white space. The left hand side of the slash in a unit is a word and
right hand side is its pronunciation.

First we change the mathematics of the input method.

ŵ = argmax
w

p(w |x )

= argmax
w

p(w , x )
p(x )

= argmax
w

p(w , x ). (2)

Here, the problem is p(w , x ) only. Then we express p(w , x ) by a word-pronunciation pair
n-gram model as follows:

p(w , x ) = p(〈w1, x 1〉〈w2, x 2〉 · · · 〈wm, x m〉),

where 〈wi , x i〉 denotes a pair of a word wi and its pronunciation x i . The character subsequences
x 1, x 2, . . . , x m satisfy that

x = x 1x 2 · · · x m. (3)

A word-pronunciation pair n-gram model outputs the probability of a word-pronunciation pair
sequence 〈w1, x 1〉〈w2, x 2〉 · · · 〈wm, x m〉. Like word n-gram models, this probability is expressed
as a product of a set of conditional probabilities and approximated as k-order Markov process,
where k = n− 1

p(〈w1, x 1〉〈w2, x 2〉 · · · 〈wm, x m〉)

=
m∏

i=1

p(〈wi , x i〉|〈w1, x 1〉〈w2, x 2〉 · · · 〈wi−1, x i−1〉),

p(〈wi , x i〉|〈w1, x 1〉〈w2, x 2〉 · · · 〈wi−1, x i−1〉)
≈ p(〈wi , x i〉|〈wi−k, x i−k〉〈wi−k+1, x i−k+1〉 · · · 〈wi−1, x i−1〉).
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2.3 Parameter Estimation

The probability p(〈wi , x i〉|〈wi−k, x i−k〉〈wi−k+1, x i−k+1〉 · · · 〈wi−1, x i−1〉) is defined by maximum
likelihood from a training corpus

p(〈wi , x i〉|〈wi−k, x i−k〉〈wi−k+1, x i−k+1〉 · · · 〈wi−1, x i−1〉)
de f .
=

N(〈wi−k, x i−k〉〈wi−k+1, x i−k+1〉 · · · 〈wi−1, x i−1〉〈wi , x i〉)
N(〈wi−k, x i−k〉〈wi−k+1, x i−k+1〉 · · · 〈wi−1, x i−1〉)

,

where N(〈w,x 〉 · · · ) is the number of times that the word-pronunciation pair sequence occurs in
the corpus. The word segmentation and pronunciation tagging of the training corpus should be
accurate.

2.4 Interpolation

There are data-sparseness problems such that a zero-probability problem. In order to avoid
these problems, we use a linear interpolation (Brown et al., 1992).

p′(〈wi , x i〉|〈wi−k, x i−k〉〈wi−k+1, x i−k+1〉 · · · 〈wi−1, x i−1〉)

=
k∑

j=0

λ j p(〈wi , x i〉|〈wi− j , x i− j〉〈wi− j+1, x i− j+1〉 · · · 〈wi−1, x i−1〉),

where 0≤ λ j ≤ 1,
∑k

j=0λ j = 1.

2.5 Unknown Word Model

The probability p(w , x ) in Equation (2) equals to 0 if the input character sequence x can
not be expressed as a sequence of characters in the vocabulary. In other words, in this case,
the system can not find 〈w1, x 1〉〈w2, x 2〉 · · · 〈wm, x m〉 that satisfies Equation (3). So we need
a model that gives the probability larger than 0 for these character sequences. This model is
called an unknown word model.

An unknown word model p(x ) outputs the probability of a character sequence x and it should
give a higher probability if the character sequence is likely a word not in a vocabulary of the
language model.

As word n-gram models are often used to predict a word sequence, character n-gram models
are often used to predict a character sequence of an unknown word. So p(x ) is easily trained
from the words in a training corpus that are not in the vocabulary.

3 Language Model Improvement

Class modeling (Brown et al., 1992; Kneser and Ney, 1993; Mori et al., 1998) makes smaller
language models and phrase modeling (Deligne and Bimbot, 1995; Ries et al., 1996; Mori
et al., 1997) makes more accurate language models. They are known to be practical in speech
recognition community. In this section we give a brief explanation of these improvements. The
prediction unit of the models here is a word, but we apply these ideas to the word-pronunciation
pair n-gram model for our statistical input method by changing the prediction unit.
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3.1 Class n-gram Model

We use an n-gram model as the language model for KKC. An n-gram model predicts the i-th
word referring to the last n− 1 words. Although an n-gram model works well, the model size is
often the serious problem.

One of the solutions to this problem is grouping similar words together. By assigning words
to its class, we can obtain the language model of less states. Let f be a function that maps a
word w into its class c. Given the map f , a class n-gram model predicts the i-th class referring
to the last k = n− 1 classes and the i-th word referring to the i-th class. Therefore we define
p(wi |wi−kwi−k+1 · · ·wi−1) in Equation (1) as follows:

p(wi |wi−kwi−k+1 · · ·wi−1)
de f .
= p(ci |ci−kci−k+1 · · · ci−1)p(wi |ci),

where c∗ = f (w∗). With the map f , p(ci |ci−kci−k+1 · · · ci−1) and p(wi |ci) are defined by maxi-
mum likelihood from a training corpus.

p(ci |ci−kci−k+1 · · · ci−1)
de f .
=

N(ci−kci−k+1 · · · ci−1ci)
N(ci−kci−k+1 · · · ci−1)

p(wi |ci)
de f .
=

N(wi)
N(ci)

,

where N(c · · · ) is the number of times that the class sequence occurs in the corpus.

The problem is how to determine the map f . In other words, how to do word clustering. Of
course it should be done carefully, or the language model would get worse.

There are some methods for word clustering. Here we follow (Mori et al., 1998)’s clustering
method, where the criterion is the average cross-entropy of sub corpora. Because of this
criterion, this method is expected not to increase the cross-entropy of language models.

In the method, first the training corpus is split into k sub corpora C1, C2, . . . , Ck. Then
{C1, C2, . . . , Ck} \ {Ci} is used to estimate the model parameters and Ci is used to evaluate the
objective function for i = 1,2, · · · , k. The objective function is the average cross-entropy

H( f )
de f .
=

1

k

k∑
i=1

H(Mi( f ), Ci),

where Mi( f ) is a class n-gram model constructed from f , which maps a word into its class, and
sub corpora {C1, C2, . . . , Ck} \ {Ci}. Thus H(Mi( f ), Ci) is the cross-entropy of the corpus Ci by
the model Mi( f ) and H( f ) is their average. The lower H( f ) is, the better f is expected to be.
This is just like evaluating a language model.

Therefore the best map f̂ is the one that minimizes H( f ). Namely,

f̂ = argmin
f

H( f ).

It is, however, impossible to find the best map among all the possible maps. Alternatively we
apply a greedy algorithm, which is shown in Figure 2, to find an optimal f̂ .

6



1: Sort words w1, w2, . . . , wN by frequency in descending order.
2: for i← 1, N do
3: ci ← {wi}
4: f (wi)← ci
5: end for
6: for i← 2, N do
7: c← argminc∈{c1, c2, ..., ci−1} H(MOVE( f , wi , c))
8: if H(MOVE( f , wi , c))< H( f ) then
9: f ← MOVE( f , wi , c)

10: end if
11: end for

12: procedure MOVE( f , w, c)
13: f (w)← f (w) \ {w}
14: c← c ∪ f (w)
15: return f
16: end procedure

Figure 2: Clustering algorithm

3.2 Phrase n-gram Model

Here we explain the other language model improvement. We saw two kinds of n-gram models
so far: a word n-gram model and a class n-gram model. Both models predict the next word
referring to the last n− 1 words. In other words, each of the prediction units of the models is a
word. Actually, language models whose prediction unit is a word does not always have the best
performance. A phrase n-gram model, whose prediction unit is a word sequence, can treat a
word sequence that co-occurs frequently as a single word. Thus we can expect that it improves
n-gram models.

The mathematics of a phrase n-gram model is the same as that of a word n-gram model except
for the prediction unit because of the definition of the phrase model.

Let w = w1w2 · · ·wm be the input sequence of words. In a phrase n-gram model, the word
sequence w is converted to the phrase sequence γ= γ1γ2 · · ·γm′ and the phrase sequence γ is
predicted,

p(w )
de f .
= p(γ).

A phrase γi is a token that represents a word sequence. So γ becomes w if each phrase is
replaced by its words.
Then p(γ) is calculated like word n-gram models,

p(γ) = p(γ1γ2 · · ·γm′)

=
m′∏
i=1

p(γi |γ1 · · ·γi−1),

p(γi |γ1 · · ·γi−1) ≈ p(γi |γi−kγi−k+1 · · ·γi−1),

7



1: Γ← {}
2: Estimate the interpolation coefficients.
3: Collect all the word sequences γ1,γ2, · · · ,γi , · · · where γi is a sequence of 2 or more

words and it occurs in all the sub corpora C1, C2, . . . , Ck.
4: Sort γ1, · · · ,γN ,γN+1, · · · so that H({γ1})< · · ·< H({γN})< H({})< H({γN+1}).
5: for i← 1, N do
6: if H(Γ∪ {γi})< H(Γ) then
7: Γ← Γ∪ {γi}
8: Estimate the interpolation coefficients.
9: end if

10: end for

Figure 3: Algorithm for finding phrases

where k = n− 1. p(γi |γi−kγi−k+1 · · ·γi−1) is defined by maximum likelihood from a training
corpus

p(γi |γi−kγi−k+1 · · ·γi−1)
de f .
=

N(γi−kγi−k+1 · · ·γi−1γi)
N(γi−kγi−k+1 · · ·γi−1)

,

where N(γ · · · ) is the number of times that the phrase sequence occurs in the corpus.

Phrase n-gram models require a phrase sequence corpus that can be obtained by collecting
sequences of words for phrases and replacing each of those sequences in the original corpus by
a single token. Sequences of words should be collected so that, by treating each of them as a
single token, a phrase n-gram model has less cross-entropy.

Here we follow (Mori et al., 1997), where sequences of words are collected so that the average
cross-entropy of sub corpora becomes less by the replacement of those sequences by tokens.
This method find a sequence of greater than or equal to two words and it is expected to decrease
the cross-entropy of language models because of the criterion.

The method of finding phrases is similar to that of word clustering. Here the training corpus is
split into k sub corpora C1, C2, . . . , Ck. {C1, C2, . . . , Ck} \ {Ci} is used to estimate the model
parameters and Ci is used to evaluate the objective function for i = 1,2, · · · , k. The objective
function is the average cross-entropy

H(Γ)
de f .
=

1

k

k∑
i=1

H(Mi(Γ), Ci),

where Mi(Γ) is a phrase n-gram model constructed from a set of word sequences for phrases Γ
and sub corpora {C1, C2, . . . , Ck} \ {Ci}. Thus H(Mi(Γ), Ci) is the cross-entropy of the corpus
Ci by the model Mi(Γ) and H(Γ) is their average. The lower H(Γ) is, the better Γ is expected to
be.

Therefore the best set of word sequences Γ̂ is the one that minimizes H(Γ). Namely,

Γ̂ = argmin
Γ

H(Γ).

It is, however, impossible to find the best set among all the possible sets. Alternatively we apply
a greedy algorithm, which is shown in Figure 3, to find an optimal Γ̂.
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1: For the given training corpus, find the optimal set of word sequences Γ̂ using the algorithm
in Figure 3.

2: Build the phrase sequence corpus from Γ̂ acquired in step 1 by replacing the word
sequence with its phrase.

3: For this phrase sequence corpus, find the optimal map f̂ using the algorithm in Figure 2.

Figure 4: Combining the phrase and class methods.

4 Statistical Input Method based on a Phrase Class n-gram Model

In this section, we propose a method of combining the two language model improvements in
the section 3 and construct a phrase class n-gram model so that we can realize the compact but
accurate system. In addition, we also explain how to integrate the phrase class n-gram model
into the statistical input method.

4.1 Combining the Phrase and Class Methods

A phrase model has less cross-entropy than a word model (Mori et al., 1997). Phrase modeling
makes a more accurate language model. However the vocabulary size of phrase models is
larger than that of word models, because some word sequences for phrases are added to the
vocabulary of the phrase models. As a result, phrase models are often larger than word models.

This problem is solved by the method of class modeling. A class model is smaller than a word
model (Brown et al., 1992; Kneser and Ney, 1993; Mori et al., 1998). A vocabulary size of a
phrase model can be decreased by clustering the words and phrases in the vocabulary using the
algorithm in Figure 2. Figure 4 shows our procedure of combining the two methods. As shown
in this procedure, the clustering algorithm is applied to the phrase sequence corpus used for a
phrase model.

4.2 Phrase Class n-gram Model

We can construct a phrase class n-gram model using a phrase sequence corpus and a function f
that maps a phrase into its class. Because the phrase class n-gram model is made by combining
the phrase and class methods, the mathematics of the phrase class n-gram model is also the
combination of the mathematics of the two models.

Let w = w1w2 · · ·wm be an input sequence of words and f be a function that maps a phrase
γ into its class c. In a phrase class model, like phrase models, w is converted to the phrase
sequence γ = γ1γ2 · · ·γm′ , which is corresponding to w , and the phrase sequence γ is predicted.

p(w )
de f .
= p(γ)
= p(γ1γ2 · · ·γm′)

=
m′∏
i=1

p(γi |γ1γ2 · · ·γi−1),

p(γi |γ1γ2 · · ·γi−1) ≈ p(γi |γi−kγi−k+1 · · ·γi−1).

Then, like class models, the phrase class n-gram model predicts the i-th class referring to the

9



last k = n− 1 classes and the i-th phrase referring to the i-th class.

p(γi |γi−kγi−k+1 · · ·γi−1)
de f .
= p(ci |ci−kci−k+1 · · · ci−1)p(γi |ci), (4)

where c∗ = f (γ∗). p(ci |ci−kci−k+1 · · · ci−1) and p(γi |ci) are defined by maximum likelihood from
a training corpus.

p(ci |ci−kci−k+1 · · · ci−1)
de f .
=

N(ci−kci−k+1 · · · ci−1ci)
N(ci−kci−k+1 · · · ci−1)

, (5)

p(γi |ci)
de f .
=

N(γi)
N(ci)

. (6)

The prediction unit of the phrase class n-gram model constructed here is a word. We can
construct in the same way a phrase class n-gram model whose basic prediction unit is a word-
pronunciation pair, and it can be applied to the input method in the section 2.2. In that case, γ∗
in this section represents a word-pronunciation pair sequence.

4.3 Input Method based on a Phrase Class n-gram Model

We integrate the phrase class n-gram model, where the basic prediction unit is a word-
pronunciation pair, and the unknown word model described in the section 2.5.

Given a pronunciation sequence x as an input, the goal of the input method is to output ŵ
that maximizes the likelihood p(w , x ) = p(〈w1, x 1〉〈w2, x 2〉 · · · 〈wm, x m〉), as we explained in
the section 2.2. We use a phrase class n-gram model whose basic prediction unit is a word-
pronunciation pair to calculate p(〈w1, x 1〉〈w2, x 2〉 · · · 〈wm, x m〉). In the phrase class n-gram
model, first 〈w1, x 1〉〈w2, x 2〉 · · · 〈wm, x m〉 is converted to the phrase sequence γ= γ1γ2 · · ·γm′ ,
where the phrase γi represents a word-pronunciation pair sequence, and then p(γ) is calculated
as follows:

p(〈w1, x 1〉〈w2, x 2〉 · · · 〈wm, x m〉) de f .
= p(γ)
= p(γ1γ2 · · ·γm′)

=
m′∏
i=1

p(γi |γ1γ2 · · ·γi−1),

p(γi |γ1γ2 · · ·γi−1) ≈ p(γi |γi−kγi−k+1 · · ·γi−1).

If γi is in the vocabulary of the phrase class n-gram model, by Equations (4), (5) and (6) we
have

p(γi |γi−kγi−k+1 · · ·γi−1) =
N(ci−kci−k+1 · · · ci−1ci)
N(ci−kci−k+1 · · · ci−1)

N(γi)
N(ci)

.

Otherwise, we approximate p(γi |γi−kγi−k+1 · · ·γi−1) using the unknown word model p(x ) in
the section 2.5 as follows:

p(γi |γi−kγi−k+1 · · ·γi−1)≈ p(x ′ i),

where x ′ i is the character sequence corresponding to γi .
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usage #sentences #words #chars
training 53,424 1,258,805 1,813,135

test 6,350 137,642 201,477

Table 1: Corpora.

5 Experiments

In order to test the effectiveness of combining the phrase and class methods, we constructed
phrase class bi-gram using our method and compared the conversion accuracy and the model
size of our model to other language models. In this section we show the experimental results
and discuss them.

5.1 Experimental Settings

We used the core corpus of the Balanced Corpus of Contemporary Written Japanese (BCCWJ)
(Maekawa, 2008) for the experiments. The BCCWJ is composed of two corpora, the BCCWJ-
CORE corpus and the BCCWJ-NON-CORE corpus, and we used the BCCWJ-CORE. A sentence
of the BCCWJ-CORE corpus is a sequence of pairs of a word and its pronunciation as shown in
Figure 1. The word segmentation and pronunciation tagging were done manually.

We split the BCCWJ-CORE into two parts: one is for training language models and the other is
for the test of them. Table 1 shows the specifications of the corpora.

We constructed language models and a vocabulary from the training corpus of the BCCWJ. The
vocabulary was constructed according to (Mori et al., 1998) and (Mori et al., 1997).

The following is a list of language models we compared.

1. Word-pronunciation pair bi-gram model

2. Class bi-gram model (Prediction unit: Word-pronunciation pair)

3. Phrase bi-gram model

4. Phrase class bi-gram model (Prediction unit: Phrase)

5. Word-pronunciation pair tri-gram model

5.2 Criterions

One of the criterions we took in this paper is conversion accuracy. The conversion accuracy is
measured by F measure, which is the harmonic mean of precision P and recall R. Let NCW J
be the number of characters of a sentence in the BCCWJ for the test, NSY S be the number of
characters of a sentence that KKC outputs, and NLCS be the number of characters of the longest
common subsequence. The precision P is defined as NLCS/NSY S and the recall R is defined as
NLCS/NCW J . Hence F measure is 2

1/P+1/R
.

In addition to the conversion accuracy, we also evaluated our methods from the viewpoint of
the size of language models. The size of a language model is measured by the vocabulary size
and the number of non-zero frequency entries of bi-gram or tri-gram.
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Model Precision Recall F measure
Word-pronunciation pair bi-gram 89.86 90.32 90.09

Class bi-gram 89.78 90.28 90.03
Phrase bi-gram 90.26 90.53 90.39

Phrase class bi-gram 90.25 90.58 90.41
Word-pronunciation pair tri-gram 89.97 90.45 90.21

Table 2: Conversion accuracy

Model Vocabulary size #non-zero frequency entries
Word-pronunciation pair bi-gram 22,801 264,336

Class bi-gram 4,245 141,482
Phrase bi-gram 25,056 339,574

Phrase class bi-gram 5,550 206,978
Word-pronunciation pair tri-gram 22,801 645,996

Table 3: Model size

5.3 Results

Table 2 shows the conversion accuracies of the bi-gram models and the tri-gram model.
Comparing the conversion accuracies of the word-pronunciation pair bi-gram model and the
phrase bi-gram model, it can be said that phrase modeling makes better language models.
Class modeling does not have a significant effect on the conversion accuracy by comparing
the conversion accuracies of the word-pronunciation pair bi-gram model and the class bi-gram
model. The phrase class model, which was constructed by our method, has the best F measure.

Table 3 shows the model sizes of the bi-gram models and the tri-gram model. The vocabulary
size of the phrase bi-gram model is larger than that of the word-pronunciation pair bi-gram
model. Generally, the vocabulary size of a phrase model is larger than that of a word model
since the phrase model adds some phrases to its vocabulary. We see that word clustering or
phrase clustering makes smaller language models. As the result of phrase clustering, the size of
our phrase class bi-gram model is smaller than that of the word-pronunciation pair bi-gram
model and the word-pronunciation pair tri-gram model.

5.4 Evaluation on Large Training Data

We performed another more practical experiment. In this experiment, we also constructed a
phrase class bi-gram model and a word-pronunciation pair tri-gram model. We used the training
corpus that has about 360,000 sentences mainly from BCCWJ-NON-CORE. The results are in
table 4 and 5. We see that the phrase class bi-gram model is smaller and it has the comparable
conversion accuracy as the word-pronunciation pair tri-gram model.

6 Conclusion

In this paper we proposed a method to improve the language model for KKC by combining the
phrase and class methods. We used a word-pronunciation pair as the basic prediction unit of
the language model and constructed a phrase class n-gram model. We compared the conversion
accuracy and model size of the phrase class bi-gram model to the other models. The results
showed that the phrase class bi-gram model is smaller and it has the comparable or better
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Model Precision Recall F measure
Phrase class bi-gram 91.38 91.80 91.59

Word-pronunciation pair tri-gram 91.23 91.80 91.51

Table 4: Conversion accuracy

Model Vocabulary size #non-zero frequency entries
Phrase class bi-gram 10,421 862,890

Word-pronunciation pair tri-gram 61,040 3,225,937

Table 5: Model size

conversion accuracy than that of the word-pronunciation pair tri-gram model. Therefore our
method of combining the improvements of phrase and class modeling makes a smaller, more
accurate language model for KKC.
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ABSTRACT

Since Japanese and Chinese languages have too many characters to be input directly
using a standard keyboard, input methods for these languages that enable users to input the
characters are required. Recently, input methods based on statistical models have become
popular because of their accuracy and ease of maintenance. Most of them adopt word-based
models because they utilize word-segmented corpora to train the models. However, such
word-based models suffer from unknown words because they cannot convert words correctly
which are not in corpora. To handle this problem, we propose a character-based model that
enables input methods to convert unknown words by exploiting character-aligned corpora
automatically generated by a monotonic alignment tool. In addition to the character-based
model, we propose an ensemble model of both character-based and word-based models
to achieve higher accuracy. The ensemble model combines these two models by linear
interpolation. All of these models are based on joint source channel model to utilize rich context
through higher order joint n-gram. Experiments on Japanese and Chinese datasets showed
that the character-based model performs reasonably and the ensemble model outperforms the
word-based baseline model. As a future work, the effectiveness of incorporating large raw data
should be investigated.

KEYWORDS: Input Method, Machine Transliteration, Joint Source Channel Model, Automatic
Alignment, Ensemble Method, Japanese, Chinese.
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1 Introduction

There are more than 6,000 basic Kanji characters and 50 Hiragana/Katakana characters in
Japanese language. A Kanji character represents one meaning, while Hiragana/Katakana
characters represent their sounds. Therefore, it is difficult to input all kind of Japanese texts
into computers or mobile phones by a standard keyboard which has only 100 keys. In order to
input Japanese texts, it is common to use input methods called Kana-Kanji conversion, which
convert Hiragana characters into Kanji or mixed characters. Since there are no spaces between
words, most of Japanese input methods process texts sentence by sentence. Chinese language
has nearly the same problem. There are more than 10,000 Hanzi characters in Chinese and
Pinyin input methods are used to convert Roman characters into Chinese characters.

In these days, statistical models are used for such input methods to achieve high accuracy and
automate parameter tuning (Mori et al., 1999; Chen and Lee, 2000). The statistical models are
trained before actual conversion from corpora in each language. Sentences in these corpora
are segmented word by word and annotated to specify the words’ pronunciation, whether
manually or automatically. Most of the models treat a word as an atomic unit; that means, they
distinguish all words completely even if they share some characters in their strings. In this
paper, we call such approaches word-based models.

However, such word-based models suffer from unknown words in principle, because they cannot
convert or even enumerate a word in the candidate list when the word is not contained in the
corpora. Instead of word-based models, we propose a new character-based model for input
methods to avoid such a problem. In addition, we also propose an ensemble model which is a
combination of both word-based and character-based models to achieve higher accuracy and
take advantages of both models.

The rest of this paper is organized as follows: section 2 introduces related work, section 3
proposes the models, section 4 describes experimental results, and section 5 summarizes this
paper and future work.

2 Related Work

There is a limited number of studies specialized in statistical models for input methods. However,
closely related tasks such as machine transliteration, letter-to-phoneme conversion, language
modeling, or machine translation share similar problems and solutions with input methods.

Early models for input methods adopt noisy channel model (Mori et al., 1999; Chen and Lee,
2000), which are less accurate than joint source channel model (Li et al., 2004). Conventionally,
noisy channel model is used to divide joint model into conditional model and language model
so that language model can be trained from large raw data such as crawled websites. Joint
source channel model can also be combined such large raw data, though it is remained as a
future work. In this paper, we focus on models for standard annotated corpora to keep the
study reproducible and comparable with other works.

In noisy channel model, character n-gram is used as a back-off model for word n-gram model
to address unknown word problem (Mori et al., 2006; Gao et al., 2002). However, character
n-gram model does not exploit rich information of joint n-gram of word and its pronunciation.
Moreover, it is not straightforward to extend character n-gram model to character-based joint
n-gram model without recent development in alignment techniques we use (Jiampojamarn
et al., 2007; Kubo et al., 2011).
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Figure 1: An Ensemble Model of Word-based and Character-based Models

Recently, discriminative models are introduced to input methods (Tokunaga et al., 2011;
Jiampojamarn et al., 2008; Cherry and Suzuki, 2009), but they are impractical for higher
order n-gram because of their large model size and long training time. Spelling correction
is commonly incorporated with Chinese input methods (Zheng et al., 2011; Suzuki and Gao,
2012).

Machine transliteration is a similar task to input method, which translates proper names into
foreign languages based on their sounds (Zhang et al., 2012). Machine transliteration is
formulated as monotonic machine translation that is purely based on characters rather than
words (Finch and Sumita, 2008). According to the manner of statistical machine translation
(SMT), automatic alignment is applied to estimate character alignment between source and
target strings (Jiampojamarn et al., 2007; Kubo et al., 2011).

Hatori and Suzuki (2011) solved Japanese pronunciation inference combining word-based and
character-based features within SMT-style framework to handle unknown words. Neubig et al.
(2012) proposed character-based SMT to incorporate word segmentation and handle sparsity.
They solved different problems using similar solutions.

3 An Ensemble Model of Word-based and Character-based Models

We propose an ensemble model as a combination of word-based and character-based models.
Figure 1 shows the training process for our model. The left side shows word-based model, while
the right side shows character-based model. The difference between word-based model and
character-based model is that later has an alignment step to produce character-aligned corpus
by an automatic alignment tool. The two models are combined using linear interpolation to
produce the final ensemble model.

Our model is built on top of joint source channel model (Li et al., 2004), which is an improve-
ment on noisy channel model. In this section, we explain noisy channel model first, and joint
source channel model next. Then the word-based model, the character-based model, and the
ensemble model are explained.
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3.1 Noisy Channel Model

A common statistical approach for input method is called noisy channel model, which models a
conditional probability of output words given input strings to prioritize output candidates. The
model decomposes the conditional distribution into language model and input model by Bayes
rule:

P(Y |X ) = P(Y )P(X |Y )
P(X )

∝ P(Y )P(X |Y ) (1)

Y is the output sequence and X is the input sequence. Language model P(Y ) stands for how
likely the output is in the language, while input model P(X |Y ) stands for how proper the
pronunciation is.

A standard language model is n-gram model, which utilizes contexts of length n− 1 to predict
the current word yi .

P(Y ) =
L∏

i=1

P(yi |y i−1
i−n+1) (2)

yi is the i-th output word, x i is corresponding input string, L is the length of output sequence,
n is the order of n-gram model, and y j

i is a output sequence from i to j.

Input model is usually simple unigram or uniform distribution assigned to possible pronuncia-
tions.

P(X |Y ) =
L∏

i=1

P(x i |yi) (3)

However, it has a problem to ignore context around the word, leading low accuracy in conver-
sion.

3.2 Joint Source Channel Model

Joint source channel model (Li et al., 2004) adopts a joint distribution rather than conditional
distribution;

P(Y |X ) = P(X , Y )
P(X )

∝ P(X , Y ) (4)

The joint distribution is modeled as joint n-gram sequence.

P(X , Y ) =
L∏

i=1

P(x i , yi |x i−1
i−n+1, y i−1

i−n+1) (5)

This enables exploiting rich context of joint distribution to achieve fine-grained joint model.
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Figure 2: Alignment Step for Character-based Model

We adopt modified Kneser-Ney smoothing (Kneser and Ney, 1995) because it performed best
in our experiment. SRILM (Stolcke, 2002) 1, which is a language model toolkit, is used for
training n-gram models.

3.3 Word-based Model

In this study, we adopt the word-based model as a baseline model. The word-based model is
trained from a word-segmented corpus. That means, the corpus is segmented word by word,
and each word is annotated to specify its pronunciation. Each word and its pronunciation in
the corpus are coupled into a unit to train a joint n-gram model.

This baseline model is strong enough if the corpus is properly segmented and annotated. It
works well for words which are contained in the corpus. The ambiguity in homonyms are
solved using their contexts through joint source channel model. However, the word-based
model suffers from unknown words because it cannot properly handle words that are not in the
corpus.

3.4 Character-based Model

In order to overcome the shortcomings of the word-based model, we propose a character-based
model that is trained on character-aligned corpus. Since we do not have such a corpus, we need
to produce a character-aligned corpus from a word-segmented corpus automatically. Though it
is not trivial, recent development on character alignment tools enables it.

We adopted an alignment tool called mpaligner (Kubo et al., 2011) 2, which is suitable for this
purpose. It assigns pronunciation to each character based on expectation maximization (EM)
algorithm. Figure 2 shows how the alignment step works. Basically, it finds alignments between
a character and its pronunciation based on co-occurrence in the corpus.

A word in the corpus is monotonically aligned one by one. That means, any words or pronunci-
ations cannot be aligned across their word boundaries in the original corpus. Once the corpus
is aligned, the training step is exactly same to the word-based model.

In addition to character alignment, mpaligner has a feature called many-to-many alignment that
can find words whose pronunciations cannot be divided into combination of pronunciations
for each character. This feature is effective especially in Japanese since Japanese language
sometimes add its own pronunciation to Chinese words. For this reason, the result is not purely
character-aligned, but most of characters are aligned to each pronunciation.

In Japanese and Chinese languages, it is common that a word contains only one character. Such
a word is called a single character word. Most of words are consists of single character words
and their pronunciations, while some words can not be represented as a combination of single
character words because of its phonetic variation.

1http://www.speech.sri.com/projects/srilm/
2http://sourceforge.jp/projects/mpaligner/
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Figure 3: Alignment Examples

Character alignment step reveals such phonetic variation of character which is not contained as
a single character word. Pronunciation of a character can be changed when it is used in a word.
When an unknown word contains such a pronunciation, the character-based model enables it
to be converted correctly.

Figure 3 shows the examples of alignment result in Japanese. It shows pairs of word and
its pronunciation with alignment type. Word and pronunciation are separated with spaces
if the aligner split the word into characters. Each alignment type corresponds to features
explained above; combined means that the word has unique pronunciation so it can not split
into characters, split means that the word is split into characters and their pronunciations, and
variation means that the word contains phonetic variation which does not appear in single
character words.

3.5 Ensemble Model

Although the character-based model can capture unknown words, it achieves relatively poor
compared to the word-based model in our experiment. There are two reasons why the character-
based model does not work well. First, it tends to overfit to the training data because the corpus
is segmented more finely. Second, the errors caused in the alignment step can be problematic.

In order to achieve higher accuracy, we propose an ensemble model which is linear interpolation
of word-based model Pw(X , Y ) and character-based model Pc(X , Y ).

P(X , Y ) = αPw(X , Y ) + (1−α)Pc(X , Y ) (6)

The interpolation weight α (0≤ α≤ 1) means the ratio in which model is used. α= 1 means
pure word-based model, while α = 0 means pure character-based model. α = 0.5 is nearly
equivalent to the model trained from corpora which is a concatenation of original corpus and
character-aligned corpus.

α is determined empirically. In our experiment, α has an optimal value between 0.5 and 0.7.
That means, both word-based and character based models are complementary to each other
and the ratio of these two models should be a bit closer to word-based model.
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Domain Sentences Data Source
OC 6,266 Yahoo! Q&A
OW 4,080 Government Document
OY 6,253 Yahoo! Blog
PN 11,582 Newspaper
PB 6,645 Book
PM 9,356 Magazine
ALL 44,182 All of above

Table 1: Details of BCCWJ

4 Experiment

To confirm the effectiveness and properties of our models, we conducted experiments on
Japanese and Chinese corpora in various situations. We divided each corpus into 90% of
training data and 10% of test data, trained our models and evaluated on test data. The models
are evaluated by comparing system output and gold standard; system output is produced by a
decoder which is an implementation of Viterbi algorithm for higher order n-gram models 3.

4.1 Data Set

For Japanese corpus, we adopt BCCWJ (Balanced Corpus of Contemporary Written Japanese)
(Maekawa, 2008). BCCWJ is a corpus in various domains. It is annotated both by human and
machine learning algorithm. We use human-annotated part which consists of 44,182 sentences.
Table 1 shows the details.

For Chinese corpus, we adopt LCMC (The Lancaster Corpus of Mandarin Chinese) (McEnery
et al., 2003). It has Hanzi and Pinyin pairs, but the Pinyin part of the corpus is annotated
automatically. It contains 45,595 lines from 15 domains.

4.2 Evaluation Metric

We adopt evaluation metrics based on the longest common sequence (LCS) between system
output and gold standard following (Mori et al., 1999) and (Tokunaga et al., 2011).

precision=
NLCS

NSY S
(7)

recall=
NLCS

NDAT
(8)

F-score= 2
precision · recall

precision+ recall
(9)

Here, NLCS is the length of the LCS, NSY S is the length of the system output sequence, NDAT is
the length of gold standard. Note that LCS is not necessarily a continuous string contained in
both string; that means, LCS can be concatenation of separated strings which are contained in
both strings in order. CER (Character Error Rate) and ACC (Sentence Accuracy) are also shown
for convenience, but F-score is used as our main metric.

3https://github.com/nokuno/jsc
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Model N Precision Recall F-score CER ACC Size
Word 2 0.932 0.932 0.932 0.088 0.334 4.3MB
Char 4 0.925 0.922 0.923 0.099 0.292 3.1MB

Ensemble 3 0.937 0.936 0.937 0.082 0.349 8.7MB

Table 2: Result for Japanese

Model N Precision Recall F-score CER ACC Size
Word 2 0.958 0.958 0.958 0.044 0.505 4.6MB
Char 4 0.950 0.950 0.950 0.053 0.428 3.3MB

Ensemble 3 0.958 0.958 0.958 0.045 0.496 8.8MB

Table 3: Result for Chinese with tone

Model N Precision Recall F-score CER ACC Size
Word 3 0.895 0.895 0.895 0.109 0.297 5.1MB
Char 3 0.871 0.871 0.871 0.133 0.210 3.3MB

Ensemble 4 0.895 0.895 0.895 0.111 0.274 8.7MB

Table 4: Result for Chinese without tone

4.3 Result Summary

Table 2, Table 3, Table 4 show the summary of our experiments to compare three models;
word-based, character-based and ensemble models. The value of n is chosen to perform the
best in terms of F-score.

In Japanese language, the word-based model outperforms the character-based model, and the
ensemble model outperforms the word-based model consistently in all metrics.

In LCMC corpus, we could not find any improvement in the ensemble model over the word-
based model. This is reasonable because the corpus is automatically annotated word by word.
In our experiment, we found tone (1-4 digits) information reduces the ambiguity of pinyin
input method greatly. Rest of experiments are conducted on Japanese corpus.

Model size and decoding time depend on the implementation of decoder which is not focus
in this study, but we showed file size for each model in SRILM binary format. We can see that
character-based model is smaller than word-based model whereas ensemble model is bigger
than word-based model.

4.4 N-gram Order

Figure 4 shows F-score for three models with various n values from 1 to 10. It is notable that
the character-based model performs best when n= 4 or larger, while n= 2 is enough for the
word-based model. This shows that the character-based model requires longer context than
the word-based model because it splits words into shorter characters. The ensemble model
performs best when n= 3 which is middle of word-based and character-based models. In all
models, higher order than the best order did not degrade the performance under the modified
Kneser-Ney smoothing.
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Figure 4: N-gram Order

Figure 5: Interpolation Weight

4.5 Interpolation Weight

To investigate the effect of interpolation weight, we changed α from 0 (pure character-based)
to 1 (pure word-based) by interval of 0.1. The result in Figure 5 shows that the weight from
0.5 to 0.7 is optimal in this case. That means, the two models are complementary to each other
and the word-based model can be ameliorated by mixing the character-based model.

4.6 Cross Domain Analysis

In practice, it is important to choose right domain for training corpus. Table 5 shows F-score
when the categories in training corpus and test corpus are different. To compare domains fairly,
the smallest size of corpus is adopted; that means, we used only 4,080 sentences from each
corpus. Therefore, the absolute F-score is relatively low. As we expected, the accuracy is the
highest when the domain of training and testing corpus is the same. In addition, we can see
that clean corpora such as newspaper or magazines can outperform corpus from web. It is
possible to combine large general corpus and small but specific corpus to achieve more higher
accuracy.

4.7 Smoothing Methods

Table 6 shows F-score of different smoothing methods. In our experiment, modified Kneser-Ney
smoothing performed better than other smoothing methods.
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Train | Test OC OW OY PB PM PN
OC 0.869 0.744 0.774 0.779 0.750 0.705
OW 0.749 0.966 0.701 0.759 0.717 0.747
OY 0.822 0.782 0.846 0.791 0.755 0.746
PB 0.807 0.761 0.755 0.902 0.754 0.740
PM 0.837 0.811 0.794 0.828 0.876 0.764
PN 0.812 0.848 0.762 0.820 0.783 0.867

Table 5: Cross Domain Analysis

Smoothing Precision Recall F-score CER ACC
Modified Kneser-Ney 0.931 0.932 0.931 0.087 0.361

Witten-Bell 0.929 0.930 0.930 0.090 0.338
Absolute discounting 0.929 0.931 0.930 0.090 0.343

Ristad’s natural discounting law 0.925 0.927 0.926 0.094 0.322
Add one smoothing 0.798 0.819 0.808 0.223 0.174

Table 6: Smoothing Methods

Pruning Threshold F-score 1-gram size 2-gram size 3-gram size File size
1e-4 0.808 345416 2232 144 15MB
1e-5 0.877 345416 27450 3345 15MB
1e-6 0.914 345416 222883 72087 17MB
1e-7 0.936 345416 1200021 833593 34MB
1e-8 0.942 345416 5286912 4146260 98MB

Table 7: Pruning Effect

4.8 Pruning Effect

In practical input methods, model size is important because the memory in a device is limited.
In order to reduce model size, we applied entropy pruning (Stolcke, 2000) to word-based
model. Table 7 shows the result of F-score, N-gram size and file size in the SRILM binary format
for various thresholds. In this experiment, all data in BCCWJ including automatically annotated
one is used to confirm the effectiveness of big data. The result shows practical tradeoff between
model size and accuracy; more larger model might improve accuracy in the future.

4.9 Error Analysis

Figure 6 shows some examples of output from the ensemble model and the word-based model,
and correct output. There are some typical cases where the ensemble model outperforms the
word-based model: 1) casual expression, 2) foreign words, 3) number expression.

Last four lines show the samples where the ensemble model did not work well. In these
examples, the character-based model breaks the correct result. From these analysis, we can see
the effectiveness of our ensemble model not only in unknown words, but also sparseness of
training corpus. In most cases, the ensemble model showed consistent results in one sentence
while the word-based model break the consistency because of its sparseness.
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Figure 6: Error Analysis

Conclusion

In this paper, we proposed an ensemble model of word-based and character-based models.
The character-based model exploit a character alignment tool to aquire fine-grained model.
The expriments showed that the ensemble model outperforms the word-based model and
character-based model performs modestly. The optimal n for the character-based model and
the ensemble model was longer than word-based model. The optimal interpolation weight for
ensemble model was 0.5 to 0.7, which is close to the word-based model. As a future work,
the effectiveness of unannotated corpora such as crawled web pages should be confirmed. In
practice, it is important to integrate various corpora into single model. It is possible to apply
discriminative models to character-based model or ensemble model if we can train and decode
the model for higher order n-gram features effectively.
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ABSTRACT
The development of efficient keyboards is an important element of effective human-computer
interaction. This paper explores the use of multi-objective optimization and machine learning to
create more effective keyboards. While previous research has focused on simply improving the
expected typing speed of keyboards, this research utilizes multiple optimization criteria to create
a more robust keyboard configuration. As these criteria are incorporated, they will often conflict
with each other making this a complex optimization problem. Machine learning techniques
were utilized and were proven to be an effective tool in keyboard optimization. The results
reported here demonstrate that multi-objective genetic algorithms can be used to efficiently
generate optimized keyboards. An English keyboard designed after 20000 generations was able
to double the efficiency of the unoptimized QWERTY keyboard for multiple constraints. Despite
having twice the number of characters, an Assamese keyboard was generated that performed
better than the QWERTY layout.

KEYWORDS: Soft keyboards, user interfaces, Brahmic scripts, optimization, genetic algorithms,
Android development..
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1 Introduction
As technology progresses, it is important that user interfaces improve the efficiency of infor-
mation transfer between users and computers. Because keyboards are a continuing, integral
part of human-computer interactions, research into improving their efficiency is particularly
valuable to improving data entry. The speed at which a user can input data can be greatly
affected by the arrangement of keys on a keyboard. Based on the large number of possible key
combinations, hand optimizing a keyboard is a tedious process. The use of artificial intelligence
can make the process of generating optimal user interfaces much more efficient.

There are multiple considerations in determining the effectiveness of a keyboard. For example,
the size, position and spacing of the keys on the device being used can dramatically change
the speed that a user can input data. Additional factors such as accommodating user disability
and adjusting to user preference can also affect the usability of a keyboard. An effective
keyboard needs to be adaptable to the specific needs of each user. Touch-screen devices, with
their soft-keyboards, have the potential to provide the flexibility required to adapt to these
constraints. Since all of these factors are interconnected, it is difficult to accurately model them
separately.

Previous research projects have used single objective optimization to increase the typing speed
of a keyboard. While this method has produced good results, it ignores other factors that
affect efficient typing. These machine generated keyboards could be more useful if a broader
selection of constraints is used. This more generalized approach would allow optimization
based on a wide variety of constraints such as ease of learning or user disability. The result of
the optimization process is a set of optimal solutions that consider all of the constraints with a
variety of weights.

This paper discusses the use of multi-objective optimization in creating efficient keyboards. In
order to demonstrate value of this research on a global scale, we chose to develop keyboards
for two very different languages, English and Assamese. Assamese is an Indic language from
Northeast India, spoken by about thirty million people. The number of characters in this
language makes the problem more complex and allows us to develop a more generic approach
to the solution. We use Assamese as an exemplar of languages of the Indic class of languages,
which are spoken by a more than a billion people, particularly in South Asia. At this time, these
languages suffer from a lack of efficient and easily learned soft keyboards

The first constraint to consider is the typing speed, based on the expected typing style of the
user. For example, some users will use a single finger, while others might use both of their
thumbs for input. Another constraint for consideration is the ease with which a user can learn
the layout of the keyboard. This can be represented as a constraint where the keyboard is
biased toward a familiar, existing layout.

As constraints are added, some of them may conflict with each other, requiring a compromise
to be made. The use of multi-objective genetic algorithms has been an effective and efficient
approach to solving complex optimization problems(Konak et al., 2006). Multi-objective genetic
algorithms allow the solutions to be optimized based on all of the objectives simultaneously. A
solution is considered optimal if it performs better than or equal to the other solutions for every
constraint. These optimal solutions will form a set known as a pareto front (Figure 1). This
front contains the most efficient solutions, each involving a different compromise between the
objectives. The set of solutions can be saved and accessed by the user based on their individual
needs.
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Figure 1: A simplified example of a pareto frontier. The darker points are the set of pareto
optimal solutions. Source: WIKIPEDIA

2 Related Research

Some of the earliest research in modeling human-computer interaction was done by Fitts in the
1950’s(Fitts, 1954). The model developed was able to compute the average time required for a
human to move between two targets. Fitts’ model is commonly expressed as the equation:

M T =
1

I P
log2

�
D

W
+ 1
�

(1)

where I P is the index of performance for the device, D is the distance between the targets, and
W is the size of the target.

This model has been used by many other researchers to estimate the time required for a human
to move between controls in a graphical user interface(MacKenzie, 1992).

MacKenzie extended Fitts’ law to model the human input speed on with a QWERTY keyboard
on a mobile device(MacKenzie and Soukoreff, 2002). This model was later compared with
human testing data and was shown to be a reasonably accurate estimate of actual human
performance(Clarkson et al.).

In addition to analyzing the physical action of pressing the keys on the keyboard, researchers
have also investigated the ability of users to learn a new keyboard layout. As researchers have
worked on optimizing keyboards, it has been acknowledged that one of the limiting factors in
users typing speed is the time spent searching for the keys(MacKenzie and Zhang, 1999). Smith
and Zhai suggested adding an alphabetic bias to an optimized keyboard(Smith and Zhai, 2001).
Lee and Zhai investigated techniques to help users quickly learn a new keyboard(P. U. Lee,
2004).

Much of the early development in keyboard design focused on creating variations of alphabetic
and QWERTY layouts for the English language. The primary objective was to improve the ability
of the keyboard to conform to mechanical limitations.

As technology improved, designers were able to focus on improving the typing speed of the
keyboards. MacKenzie created one of the first character-frequency optimized layouts, the OPTI
keyboard(MacKenzie and Zhang, 1999). The use of the Metropolis random walk algorithm was
able to further increase the efficiency of soft keyboards(Zhai et al., 2000). These techniques
have been able to improve expected typing speed up to 42 WPM.
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Genetic algorithms have been used to achieve even higher levels of efficiency in keyboard
design(Raynal and Vigouroux, 2005). (Hinkle et al., 2010) and (Hinkle et al., 2012) had
worked extensively with optimization of Assamese and other Indic language keyboards. Their
optimization was carried out with the single objective of maximization of input speed. They
had created four different soft keyboards for Assamese: flat alphabetic, layered alphabetic, flat
GA-designed and layered GA-designed.1

Gajos and Weld developed a technique for evaluating the effectiveness of user interfaces with
respect to the individual needs of each user. With this analysis, they were able to generate
personalized user interfaces with their SUPPLE project(Gajos et al., 2010).

3 Genetic Algorithm Optimization

The multi-objective optimization for this project was done using the NSGA-II multi-objective
genetic algorithm(Deb et al., 2002). This algorithm was chosen based on its efficiency and
effectiveness in multi-objective optimization. The algorithm was implemented using the JCLEC
Java library2. This is an open-source library that provides implementations for several genetic
algorithms.

For the purpose of keyboard design, two evaluators were written for designing keyboards on two
devices. One evaluates the keyboard for its effectiveness for use as an on-screen keyboard for a
desktop computer accessed with a mouse. The other evaluator tests the keyboard’s effectiveness
for both single finger and two-thumb input on a touch-screen mobile phone. The genetic
algorithm was implemented using ordered crossover for recombination. As in (Hinkle et al.,
2012), a mutation probability of 0.08% was used.

3.1 Preparation and General Keyboard Layout

Before starting the optimization process, it was necessary to determine a basic shape and
pattern for the keyboards. In his research on user interface design, Ahlström found that expert
users can make selections 35% faster from a square menu(Ahlström et al., 2010). Hinkle used
a square layout for designing keyboards for Brahmic scripts (Hinkle et al., 2012). Based on this
research, we decided that the on-screen keyboards should be designed assuming an essentially
square shape with the keys being filled starting at the top.

This approach was impractical for a mobile device because the necessary size of the keyboard
would have filled the entire screen. A practical solution to this problem was to base the
keyboards on a variation of the QWERTY keyboard commonly used on mobile devices. Un-
derstandably, this shape would not work for languages with more characters. We designed
the keyboards for the Assamese language assuming the use of two smaller QWERTY-shaped
keyboards. The user can quickly switch between these keyboards as they type.

The first experiment was to establish a basis for comparison by evaluating the unoptimized
QWERTY layout with the fitness function. The result was an estimated typing speed of 47 WPM
for the first objective. The second objective reported on average distance of 2.88 keys between
two characters in the same group. This analysis is shown in Figure 2.

1The first two were created by hand and the last two were created by single-objective GA optimization. The first
was simply an alphabetic layout of the keys on a single keyboard and the second had a layer of alphabetic diacritics
that popped up when one typed a consonant. The third was similar to the first, and the fourth to the second. The
assumption in all four of these keyboards was that one types with a single finger. In addition, there was only one board
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Figure 2: The analysis of the QWERTY keyboard using our evaluator. This layout has an
estimated typing speed of 47 WPM and an average distance of 2.88 keys between two characters
in the same group. The lower diagram shows the group number of each character.

3.2 Values for Fitts’ Law Constants

Our evaluation of the keyboards relies on Fitts’ Law to estimate the top typing speed for each
keyboard layout. In order to accurately calculate the input speed for each device, it was first
necessary to measure the Fitts’ law Index of Performance(I P) for each device. This requires
human testing to find the average movement time on each device. The approach to this
calculation is similar to that used by Zhai(Zhai, 2004). For this experiment, we gave the
human testers a series of randomly placed targets of varying sizes. The average time between
targets was measured and used to calculate the Index of Performance based on the Index of
Difficulty(I D).

3.2.1 Setting up the Experiment

The equation to calculate the I P for Fitts’ Law is:

I P =
I D

M T
(2)

where

I D = log2

�
D

W
+ 1
�

(3)

The basic approach to this calculation is to have a user move between two targets with a varying
I D with the test program calculating the average time(M T) between the targets. After several
tests, it is possible to use the average I D and M T to calculate the I P for the current device. A
program was used to generate random targets and calculate the time required to move between
them(See Figure 3).

in each case. We present a comparison of these keyboards with our results in Table 3 .
2Available at http://jclec.sourceforge.net/
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Figure 3: A screenshot of the IP testing program.

Average Time Average I D I P

Mouse 0.53 2.58 4.9

Touch-screen: 0.54 2.58 4.8
Right thumb

Touch-screen: 0.63 2.58 4.1
Left thumb

Table 1: Results of I P test.

3.2.2 Results

The test program was used to calculate the I P for two applications. The results were obtained
from 1000 data points after 100 consistent calculations. The first device was a desktop computer
accessed using a mouse. This returned an I P value of 4.9. The second test was with a touch-
screen device. The goal of this test was to calculate the constants for two-thumb typing. This
required a separate calculation for each thumb. The result for a right-handed user was an I P of
4.8 for the right thumb and an I P of 4.1 for the left thumb.

3.3 Objective Constraints: Typing Speed

A primary objective in the keyboard optimization problem is to increase the typing speed. Our
approach is to reduce the average time needed to move between two characters. This should
result in the highest frequency characters being placed close together, minimizing the movement
distance.

The average time between characters is calculated using an adaptation of Fitts’ Law.

t̄ =
n∑

i=1

n∑
j=1

Pi j

I P

�
log2

�Di j

Wi
+ 1
��

(4)

where Pi j is the frequency of each digraph, I P is the calculated Index of Performance for the
current device, Di j is the distance between the two keys, and Wi is the width of each key. When
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a digraph consists of a repeated letter, it is assumed to take constant time. The experimental
value for this constant is 0.127.

For two-thumb typing on the touch screen device, we calculate the average time between
characters using a method similar to MacKenzie’s model(MacKenzie and Soukoreff, 2002).
The Fitt’s law equation is used when the digraph is formed from two characters pressed with
the same thumb. When the digraph consists of characters pressed with opposite thumbs, the
mean time is chosen to be the greatest value between, either 1/2 of the constant TREPEAT ,
or the Fitts’ law calculation to move from the character last pressed by that thumb. For the
Assamese two-keyboard arrangement, we add an experimental constant value for the average
time required to change between keyboards.

3.4 Objective Constraints: Ease of Learning

The simplest approach to creating an easy to learn interface is follow a pattern that is already
familiar to the users. Smith and Zhai did research comparing the performance of novice users
on optimized keyboards with and without an alphabetic bias(Smith and Zhai, 2001). Given two
keyboards with similar predicted typing speeds, they found that the users were able to learn
the alphabetic biased keyboard more quickly and performed up to 10% better.

The approach taken in this paper is to group alphabetically close characters together. For each
language, we organized the characters into groups based on their position in the alphabet.

We implemented this constraint as a minimization problem for the average distance between
any two characters in the same group. It should be noted that this does not consider the time
between characters, it is simply the visual distance between the characters. The objective is to
allow the user to more quickly find each character in these smaller alphabetic clusters.

3.5 Groups Split Across Two Keyboards

This constraint is an extension to the ease of learning that is unique to the Assamese mobile
keyboard. The layout of the Assamese mobile keyboard is split between two smaller, QWERTY-
sized keyboards. This constraint prevents the character groups from being split between the
two keyboards. This is implemented as a penalty for keyboards that have many split groups.
The goal is to minimize the number of split groups.

4 English Keyboard Optimization

We used the English language as our basis for comparison with the other languages. The smaller
character set made it easier to evaluate the results of the optimization.

The specific keyboard shape for the single-input on-screen keyboard, was a 6× 5 square grid.
The two-input mobile keyboard was modeled after the QWERTY layout. For the ease of learning
constraint, we created 5 character groups, {{a, b, c, d, e, f},{g, h, i...}...}.

4.1 Optimization: Single-Input

Using the specifications above, we used the genetic algorithm to optimize the key positions.
The optimized keyboard was generated from a population of 5000 solutions allowed to evolve
over 20000 generations. The result was a pareto front containing 900 optimal solutions. For a
representative solution, we selected the solution with the highest ratio (Objective 1/Objective
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Figure 4: Optimized English keyboard generated with a population of 5000 over 20000
generations. This layout has an estimated typing speed of 46 WPM and an average distance of
1.1 keys between two characters in the same group.

2). The evaluator reported this solution as having an estimated typing speed of 46.43 WPM
and an average distance of 1.1 keys between two characters in the same group(See Figure 4).

4.2 Optimization: Two-Input Mobile Keyboard

We ran a test with a population of 5000 solutions evaluated over 20000 generations. This
experiment generated a large set of optimal keyboard layouts. A representative solution had
an estimated typing speed of 84.2 WPM and an average distance of 1.43 keys between two
characters in the same group(See Figure 5). Based on the evaluator, this keyboard performs
nearly 2 times well as the QWERTY keyboard for both of the constraints.

4.3 Optimization: Three-Constraint Mobile Keyboard

In order to observe how a compromise is made between a set of constraints, we wanted to run
the genetic algorithm with more constraints. For a final test we set up the algorithm to optimize
a mobile keyboard for both single finger and two-thumb input. The goal of this experiment
was to create a more universal keyboard that would allow a user to typing with either of these
techniques. We maintained the ease of learning constraint so this test implemented three
constraints.

This keyboard was designed based on the QWERTY shape like the two-input mobile keyboard.
In Figure 6, we show a representative keyboard from the pareto set. This keyboard has an
estimated typing speed of 81.99 WPM for two-thumb input and 26.96 WPM for single-finger
input. There is an average distance of 1.46 keys between two characters from the same group.

4.4 Human Testing

The human testing had two objectives: to prove that this keyboard was an improvement over
an unoptimized alphabetic layout and to show that our ease of learning constraint was effective
in improving typing rates for novice users.

The human testers were given two different keyboards selected from the pareto front: the

36



Figure 5: Optimized English mobile keyboard generated with a population of 5000 over 20000
generations. This layout has an estimated typing speed of 84 WPM and an average distance
of 1.43 keys between two characters in the same group. The lower diagram shows the group
number of each character.

Figure 6: English keyboard optimized for both single finger and two-thumb input. This keyboard
was generated with a population of 5000 over 20000 generations. This layout has an estimated
typing speed of 82 WPM for two-thumb input and 27 WPM for single-finger input. There is an
average distance of 1.46 keys between two characters in the same group. The lower diagram
shows the group number of each character.
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Figure 7: Optimized English keyboard generated with a population of 5000 over 20000
generations. This layout has an estimated typing speed of 50 WPM and an average distance of
1.9 keys between two characters in the same group.

keyboard with the highest predicted typing speed(See Figure 7), and the keyboard with the
best compromise between the two objectives(Shown above in Figure 4). In order to facilitate a
reasonable comparison, the testing process was similar to that used by Smith and Zhai(Smith
and Zhai, 2001). The first task given to the testers was to type the entire alphabet. This was
representative of the average speed that the users could find a character of the keyboard. The
testers were then given a set of phrases to type. For a direct comparison, this set of phrases was
the same as those used by Smith and Zhai.

The testers typed in 10 minute sessions once a day for a week. Figure 8 shows a graph of the
average typing speed over these 7 sessions. The keyboard with the alphabetic bias performed
around 10% better than the optimal keyboard for the first test. As the testing progressed, the
performance on the optimal keyboard improved until it matched the alphabetic keyboard.

Based on the character frequency analysis, the optimal keyboard has a top typing speed 10%
higher than the alphabetic keyboard. However, in an empirical test, novice users were able to
type 10% faster on the alphabetic keyboard. The learning curve for the alphabetic keyboard
was much quicker. The testers were able to find all of the characters on the alphabetic keyboard
twice as fast as the optimal keyboard. On average, the testers found the keys in 10 seconds for
the alphabetic keyboard and in 24 seconds for the optimal keyboard.

5 Assamese Keyboard Optimization

The Assamese language has more than twice the number of characters used in English. Hick’s
Law relates a users selection speed to the number of choices available(Hick, 1952). From this,
we can assume that the efficiency is improved when a keyboard has fewer characters. We
noticed that the Assamese language has two characters two represent each vowel. The vowel
is written explicitly at the beginning of a word, but it is represented as a diacritic mark when
used inside a word. We decided to create this distinction inside the user interface program
instead of creating separate keys. When the user presses the vowel key, the appropriate symbol
is displayed based on the context.

The specific keyboard shape for the single-input on-screen keyboard was a 8× 7 square grid.
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Figure 8: Results from human testing. The typing speed is an average computed from the
results of 5 testers. During the early tests, a novice user was able to type around 10% faster
using a the keyboard with alphabetic bias.

The two-input mobile keyboard was modeled as two QWERTY-shaped keyboards.

The large number of characters in the Assamese language made it difficult to determine the
best method for grouping the characters for the ease of learning objective. We decided to create
one group for the vowels and divide the consonants into 9 sub-groups based on the consonant
rows. In order to determine the best combination of groups, we ran a series of tests to find
the relation between the size of the groups and the predicted typing speed. Table 2 shows
the results of these tests. There appears to be little variation in the typing speed between the
different combinations of groups. The best results were achieved when the vowels were not
grouped together. The combination of 4 groups appears to be the best compromise between
group size and typing speed.

5.1 Optimization: Single-Input

Using the specifications above, we used the genetic algorithm to optimize the key positions.
As with the English keyboard optimization, the optimized keyboard was generated from a
population of 5000 solutions allowed to evolved over 20000 generations. The result was a
pareto front containing 900 optimal solutions. For a representative solution, we selected the
solution with the highest ratio (Objective 1/Objective 2). The evaluator reported this solution
as having an estimated typing speed of 38.8 and an average distance of 1.6 keys between two
characters in the same group(See Figure 9).

5.2 Optimization: Two-Input Mobile Keyboard

The next experiment involved generating an optimized mobile keyboard for the Assamese
language. This test was run with a population of 5000 over 15000 generations. This test
implemented the third constraint to eliminate groups being split between the two keyboards.
For this test, we created 4 character groups to cluster for the second constraint. A representative
solution had an estimated typing speed of 52 WPM and an average distance of 2 keys between
two characters in the same group(See Figure 10).
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# of Avg. WPM Avg. Vowels Free
Groups Group Size Group Dist.

1 40.0 38.99 3.342 YES

1 26.0 38.29 2.632 NO

2 20.0 39.01 2.333 YES

2 17.3 38.43 2.333 NO

3 13.3 38.50 1.887 YES

3 13.0 38.07 1.917 NO

4 10.0 39.10 1.639 YES

4 10.4 38.46 1.759 NO

9 4.44 38.39 1.022 YES

9 5.20 38.01 1.190 NO

Table 2: Results of changing the number of groups.

Figure 9: Optimized Assamese keyboard generated with a population of 5000 over 20000
generations. This layout has an estimated typing speed of 39 WPM and an average distance of
1.6 keys between two characters in the same group.

Keyboard WPM

Flat alphabetic 25.1

Layered alphabetic 33.9

Flat GA-designed 34.2

Layered GA-designed 40.2

Flat multi-objective 38.8

Multi-objective mobile 52.0

Table 3: Comparison of our keyboards with those designed by (Hinkle et al., 2012).
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Figure 10: Optimized Assamese keyboard generated with a population of 5000 over 20000
generations. This layout has an estimated typing speed of 52 WPM and an average distance
of 2 keys between two characters in the same group. The evaluated alphabetic groups are
highlighted.

Figure 11: Preliminary results from human testing of the Assamese keyboards.

5.3 Human Testing

Under conditions identical to those in Section 4.4 , preliminary results were obtained from a
single tester. While not as conclusive as the results for the English language, the graph in Figure
11 shows a similar pattern for the learning curve.

6 Future Work

The results reported for the performance of the English keyboards showed a significant improve-
ment in early typing speeds for novice users. In order to make a conclusive comparison, the
results reported for the Assamese language will need to be verified through additional human
testing. Through the process of testing we hope to confirm the optimal number of character
groups and the ease of learning. In order to facilitate the human testing process, we plan to
make the keyboards available on-line for potential users to download. We also plan to make our
mobile keyboards available on the Android market in return for user feedback on the usability
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of the keyboards.

Valuable information could be gained by optimizing keyboards for other languages. An interest-
ing comparison could be made between the results for different languages. In the immediate
future, a comparison could be made between the Assamese language and the Bengali language
which shares the same character set.

Conclusion

The design of efficient user interfaces is critical for continued progress in human-computer
interaction. The large number of variables in user interface design make it difficult to optimize
interfaces. Multi-objective genetic algorithms provide a convenient method for optimization in
applications that have a large number of constraints.

The use of multi-objective genetic algorithms was shown to produce very good results for
creating optimized keyboards. An English keyboard designed after 20000 generations was able
to double the efficiency of the unoptimized QWERTY keyboard for multiple constraints. Despite
having twice the number of characters, an Assamese keyboard was generated that performed
better than the QWERTY layout. Future work will validate the results discovered so far.
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Abstract
Kana-Kanji conversion is known as one of the representative applications of Natural Language
Processing (NLP) for the Japanese language. The N-pos model, presenting the probability of
a Kanji candidate sequence by the product of bi-gram Part-of-Speech (POS) probabilities and
POS-to-word emission probabilities, has been successfully applied in a number of well-known
Japanese Input Method Editor (IME) systems. However, since N-pos model is an approximation
of n-gram word-based language model, important word-to-word collocation information are lost
during this compression and lead to a drop of the conversion accuracies. In order to overcome
this problem, we propose ways to improve current N-pos model. One way is to append the high-
frequency collocations and the other way is to sub-categorize the huge POS sets to make them more
representative. Experiments on large-scale data verified our proposals.

Keywords: Input Method Editor, K-means clustering, n-gram language model, collocation.

1 Introduction

In Japanese IME systems 1, Kana-Kanji conversion is known as one of the representative applications
of NLP. Unfortunately, numerous researchers have taken it for granted that current NLP technologies
have already given a fully support to this task and there are few things left to be done as research
topics. However, as we go deeper to this “trivial” task, we recognize that converting from a
romanized Hirakana sequence (i.e., users’ input) into a mixture of Kana and Kanji sequence (i.e.,
users’ expected output) is more difficult than it looks. Concretely, we are facing a lot of NLP
research topics such as Japanese word/chunk segmentation, POS tagging, n-best decoding, etc.
Existing algorithms dealing with these topics are challenged by the daily-updating and large-scale
Web data.

Traditional n-gram word-level language model (short for “word n-gram model”, hereafter) is good at
ranking the Kanji candidates. However, by using the large-scale Web data in tera-bytes (TB), even
bi-gram word-level language model is too large2 to fit the memories (for loading the model) and
computing abilities (for decoding) of users’ personal computers (PCs). Dealing with this limitation,
n-pos model (Kudo et al., 2011) was proposed to make a compression3 of the word n-gram model.
N-pos model takes POS tags (or word classes) as the latent variable and factorizes the probability of
a Kanji candidate sequence into a product of POS-to-POS transition probabilities and POS-to-word

1The Japanese IME mentioned in this paper can be freely downloaded from: http://ime.baidu.jp/type/?source=pstop
2For example, using the 2.5TB data, the word n-gram model has 421 million 1-grams and 2.6 billion 2-grams.
3Indeed, as pointed out by one reviewer, n-pos model has its own benefits by organizing the semantically similar words

and dealing with low frequency words. Thus, even the result n-pos model is smaller than word n-gram model, it is considered
to be also bring accuracy improvements (Kneser and Ney, 1993; Mori et al.).
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emission probabilities. This factorization makes n-pos model alike the well-known Hidden Markov
Model (HMM). Since the number of POS tags is far smaller than the number of word types in
the training data, n-pos model can significantly smaller the final model without deteriorating the
conversion accuracies too much.

Compared with word n-gram model, n-pos model is good for its small size for both storing and
decoding. However, the major disadvantage is that important word-level collocation information are
not guaranteed to be kept in the model. One direction to remedy the n-pos model is to find those
lost word-level information and append it. The other direction is to sub-categorize the original POS
tags to make the entries under one POS tag contain as less homophonic words as possible. These
considerations yielded our proposals, first by appending collocations and second by sub-categorizing
POS tags. Experiments by making use of large-scale training data verified the effectiveness of our
proposals.

This paper is organized as follows. In the next section, we give the formal definition of n-pos model
and explain its disadvantage by real examples. In Section 3 we describe our proposed approaches.
Experiments in Section 4 testify our proposals. We finally conclude this paper in Section 5.

2 N-pos Model and Its Disadvantage
2.1 N-pos model
For statistical Kana-Kanji conversion, we use x to express the input Hirakana sequence, y to
express the output mixed Kana-Kanji sequence and P(y|x) to express the conditional probability for
predicting y given x. We further use ŷ to express the optimal y that maximize P(y|x) given x. Based
on the Bayesian theorem, we can derive P(y|x) from the product of the language model P(y) and
the Kanji-Kana (pronunciation) model P(x|y). This definition is also similar with that described in
(Mori et al., 1999; Komachi et al., 2008; Kudo et al., 2011).

ŷ= argmaxP(y|x)
= argmaxP(y)P(x|y)

There are flexibilities in implementing the language model and the pronunciation model. Suppose
the output y contains n words, i.e., y = w1...wn. We use 1) product of word class bigram model
and word class to word emission model as the language model, and 2) word-pronunciation unigram
model as the Kanji-Kana model. That is,

P(y) =
n∏

i=1

P(wi |ci)P(ci |ci−1) (1)

P(x|y) =
n∏

i=1

P(ri |wi) (2)

Here, ci is the word class for word wi (frequently corresponds to POS tags or inflected forms),
P(wi |ci) is the word generation probability from a word class ci to word wi , P(ci |ci−1) is the word
class transition probability, ri is the Kana pronunciation candidate for word wi , and P(ri |wi) is
the probability that word wi is pronounced as ri . The optimal output ŷ (or even n-best list) can be
effectively computed by the Viterbi algorithm (Viterbi, 1967; Huang and Chiang, 2005).

There are many methods for designing the word classes, such as unsupervised clustering, POS tags,
etc. Following (Kudo et al., 2011), we designed the word classes by using the POS information
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generated by an open-source toolkit Mecab4 (Kudo et al., 2004) which was developed for Japanese
word segmenting and POS tagging. Since POS bi-gram model plays an essential role in Equation 1,
we call it n-pos model. Specially, similar to (Kudo et al., 2011), we also use the following rules to
determine a word class:

• the deepest POS tag layers (totally six layers) of the IPA POS system5 was used;

• for the words with inflection forms, their conjugated forms and inflections are all appended;

• particles, auxiliary verbs, and non-independence content words6 are all taken as independent
word classes; and,

• high-frequency verbs, nouns except named entities, adjectives, suffixes, prefixes are all taken
as independent word classes.

Since there are many special words that are taken as word classes, we finally obtained around 2,500
word classes.

Probabilities P(wi |ci) and P(ci |ci−1) can be computed from the POS-tagged corpus by using the
maximum likelihood estimation method. The Kanji-Kana pronunciation model P(ri |wi) can be
computed by first mining Kanji-Kana pairs from the Web and then estimate their probabilities in a
maximum likelihood way. Since Mecab also assigns Kana pronunciations and POS tags to Japanese
words simultaneously during performing word segmentation, we can simply estimate P(ri |wi)
using the Web corpus pre-processed by Mecab. That is, P(ri |wi) = f req(ri , wi)/ f req(wi). Here,
function f req() returns the (co-)frequency of a word and/or a Kana sequence in the training data. In
our IME system, besides our basic Kana-Kanji conversion dictionary, the Kanji-Kana pairs mined
from the Web are individually taken as "cell dictionaries". That is, they are organized by their
category such as “idioms", “actor names", and so on. These cell dictionaries are optimal to the users
and they can download those dictionaries which fit their interests. We also use a log-style function
based on the frequencies of the Kanji candidates to compute the weights of the Kana-Kanji pairs.
The weights are used to determine the rank of the Kanji candidates to be shown to the users.

2.2 The disadvantage
The basic motivation for factorizing P(y) into Equation 1 is to compress the word n-gram model into
the production of a bigram n-pos model P(ci |ci−1) and an emission model P(wi |ci). N-pos model is
good for its small size and the usage of syntactic information for predicting the next word. However,
compared with word n-gram model, the disadvantage is clear: the co-frequency information of wi−1
and wi is not taken into consideration during predicting.

Figure 1 shows an example for intuitive understanding of the disadvantage. Suppose both wi−1
(gennshi/nuclear) and wi (hatsudenn/generate electricity) are low-frequency words in the training
corpus, yet wi−1 always appears together with wi (or we say wi−1 and wi form a collocation). Under
n-pos model, the total score of wi−1 wi is determined mainly by P(ci |ci−1) and P(wi |ci), but not
P(wi |wi−1). Thus, the best candidate “nuclear power” in word n-gram model is possibly not be able
to be predicated as the top-1 candidate in n-pos model.

4http://mecab.sourceforge.net/
5http://sourceforge.jp/projects/ipadic/
6non-independent content words (such as oru, aru, etc.) are those content words that do not have an independent semantic

meaning, but have to be used together with another independent content word to form a complete meaning.
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Figure 1: An example for the disadvantage of n-pos model.

Figure 2: Changing n-pos model by replacing individual words A and B with collocation AB.

3 The Proposed Method

3.1 Appending “partial” word n-gram model
The disadvantage of n-pos model is mainly caused by its compression of word n-gram model. N-pos
model can deal with a large part of the Kana-Kanji conversion problem yet short at dealing with
collocations. We are wondering if partial of the word n-gram model can be “appended” to the n-pos
model to further improve the final conversion precision.

The challenge is how to balance the usage of the two models for ranking the Kanji candidates. The
score of a Kanji candidate sequence AB (with two words) can be computed by both the word n-gram
model and the n-pos model. One simple consideration is to trust word n-gram model whenever
n-pos model “fails” to make a better ranking. That is, we make use of word n-gram model only if
candidate AB was assigned a higher score in word n-gram model than that in n-pos model.

We explain this idea through an example shown in Figure 2. In this figure, we want to replace
individual words A and B in the decoding word lattice in the original n-pos model by a collocation
AB, knowing that A and B sharing a high co-frequency in the training data.

P1(AB) = P(A|cA)P(cB|cA)P(B|cB)

=
f req(A)
f req(cA)

× f req(cAcB)
f req(cA)

× f req(B)
f req(cB)

;

P2(AB) =
f req(AB)
f req(cA)

.

Here, cA and cB stand for the POS tag (or word class) of word A and B; function f req() returns the
frequency of words and POS tags in the training data. When appending collocations to the n-pos
model, we need to let P1(AB)< P2(AB) to ensure the collocation candidate has a higher rank in the
candidate set. That is,
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f req(A)
f req(cA)

× f req(cB)
f req(cA)

× f req(B)
f req(cB)

<
f req(AB)
f req(cA)

, i.e.,

f req(A) f req(B)
f req(cA) f req(cB)

<
f req(AB)

f req(cAcB)
(3)

We make use of Formula 3 for mining collocations from the bi-grams in the training data.

There is one approximation in Formula 3. For collocation AB, its word class sequence is cAcB . When
computing P2(AB), we only used f req(cA) instead of f req(cAcB). Note that when computing the
right-hand-side of AB in the second line, we still use cB as the right-hand-side POS of AB. Similar
strategy (of using cA as the left-hand-side POS tag and cB as the right-hand-side POS tag of AB) has
been applied in Mecab and ChaSen7 for Japanese word segmenting and POS tagging.

3.2 K-means clustering
The objective for unsupervised K-means clustering is to avoid (as much as possible) assigning
entries with identical pronunciations or with large frequency variances into one word class. One big
problem that hurts the precision of n-pos model is the existence of Kanji candidates with identical
pronunciations in one word class, since the ranking is only determined by p(wi |ci). If we could
assign different word classes to the homophonic Kanji candidates, we can further make use of
P(ci |ci−1) instead of only P(wi |ci) to yield a better candidate ranking.

We define a kernel function8 F(A1, A2) to describe the difference of pronunciations between two
Kanji candidates A1 and A2:

F(A1, A2) =
1

ed(pron(A1), pron(A2)) + 0.001
(4)

Here, function pron() returns the romanized Japanese Katakana sequence of a Kanji word9; function
ed() returns the edit distance of two string parameters. In this paper, we use the Levenshtein distance
as defined in (Levenshtein, 1966). Through this definition, we know that the smaller the edit distance
is, the larger value the F() function returns. In case of A1 and A2 share an identical pronunciation,
F() returns the maximum value of 1,000. On the other hand, the bigger the edit distance, F() is
closer to 0. Thus, we say F() ∈ (0, 1000].

Table 1 shows the top-5 high frequency pronunciations in our Kana-Kanji conversion lexicon. In
this table, yuuki takes the highest frequency of 156. We thus set the K in K-means clustering to be
156 so that optimally all the 156 Kanji candidates with the pronunciation of yuuki can be assigned
to some word class that is different from each other.

During K-means clustering, we first randomly pack 156 pronunciations as centre points from the
Kana-Kanji conversion lexicon and then computer the distance score of F() by using Equation 4.
We aggressively assign one entry to the word class with the biggest F() score.

7http://chasen-legacy.sourceforge.jp/
8As pointed out by one reviewer, this is not the only way to estimate the distance between to entries. Indeed, there are

many personal names which should be taken as one special word class, we take this as an interesting future work.
9For example, in Figure 1, “gennshihatsudenn” is the result by applying pron() to the Kanji candidates.
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Table 1: The top-5 high frequency pronunciations in our Kana-Kanji conversion lexicon.

Table 2: The top-10 high frequency six-level POS tags in our Kana-Kanji conversion lexicon.

There is one difficulty that we should mention here. Note that the edit distance function does not
satisfies triangle inequality. That is, we cannot ensure ed(A, B)< ed(A, C) + ed(C , B). This makes
it a bit difficult to determine the new centre point in a word class. In our approach, instead of drawing
the centre point by a determined string for the future computing of F() for a given pronunciation
string, we use the averaged F() score from the given string to all the string in a word class as the
distance. This modification changes the complexity of K-means clustering algorithm from O(nK t)
to O(n2K t), where n is the number of entries in the Kana-Kanji conversion lexicon, K is the number
of word classes, and t is the number of iterations.

In our preliminary experiments, we found that clustering on the whole conversion lexicon did not
yield a better result. The major reason was that, we ignored the frequency information of the entries,
POS tags, and pronunciations in the lexicon. That is, we should make a sub-categorization on the
big POS sets, such as nouns, verbs, adjectives.

Table 2 lists the top-10 high frequency six-level POS tags10 in our Kana-Kanji conversion lexicon
which contains 907,003 entries. Note that the top-8 POS tags are nouns and occurs 80.47% of the
lexicon. Table 2 also lists the most frequently appears Kana (i.e., pronunciation) in each of the POS
set. If we independently run K-means clustering for each of the top-10 POS sets and take K to be
the number of the top-Kata frequency, we will extend these 10 sets into 242 sets.

J =
K∑

i=1

∑
p∈ci

∑
p′∈ci

F2(p, p′)

|ci |
(5)

10http://sourceforge.jp/projects/ipadic/
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The objective function of the K-means clustering algorithm is shown in Formula 5. Here, ci
represents a word class, p and p′ are word entries (with word, POS tag, and pronunciation) in ci ,
and F() function is defined in Equation 4.

4 Experiments

4.1 Setup
As mentioned earlier, we use 2.5TB Japanese Web pages as our training data. We run Mecab
on Hadoop11, an open source software that implemented the Map-Reduce framework (Dean and
Ghemawat, 2004), for word segmenting and POS tagging the data. Then, based on maximum
likelihood estimation, we estimate P(ci |ci−1), P(wi |ci), and P(ri |wi) (referring to Equation 1 and
2). Our foundational Kana-Kanji conversion lexicon contains 907,003 entries. Based on the re-
constructing strategies described in Section 2.1, we initially obtained 2,569 word classes for these
lexicon entries.

We report conversion accuracies on three test sets:

• 23Kw: this test set contains 23K common words that are manually collected from the Web (w
is short for “word" level test set);

• 6Ks: this test set contains 6K sentences that are randomly collected from the Web as well (s
is short for “sentence" level test set);

• 5Kw: this test set contains 5K words that are manually collected from the Web.

Specially, the 5K test set includes the following entries:

• 2.5K high frequency words that are collected from the Web;

• 1K common words that are randomly selected from Nagoya University’s common word list12;

• 0.5K basic concept verbs;

• 0.2K single Bensetsu (alike English chunk) words that are manually collected from the Web;

• 0.2K Japanese family names;

• 0.2K Japanese idioms;

• 0.2K Japanese place names;

• 0.2K Japanese single Kanji characters.

We use the following evaluation metrics:

• top-1/3/5 “precision”, i.e., if the reference Kanji string is included in the 1(3/5)-best output
list;

11http://hadoop.apache.org/
12http://kotoba.nuee.nagoya-u.ac.jp/jc2/base/list
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Test set System Top-1 Top-3 Top-5 1st screen Recall
23Kw baseline 73.34% 90.30% 94.08% 96.75% 98.71%
23Kw +collocations 73.48% 90.58% 94.23% 96.91% 98.87%
23Kw +clustering 73.30% 90.57% 94.24% 96.86% 98.76%
23Kw +collocations+clustering 73.40% 90.33% 94.06% 96.77% 98.81%
6Ks baseline 66.36% 89.25% 91.77% 93.00% 93.68%
6Ks +collocations 68.56% 90.50% 92.83% 93.97% 94.62%
6Ks +clustering 66.71% 91.77% 93.87% 95.38% 95.38%
6Ks +collocations+clustering 68.34% 90.02% 92.43% 93.53% 94.23%
5Kw baseline 82.79% 93.07% 95.04% 96.48% 98.71%
5Kw +collocations 82.84% 93.62% 95.55% 96.69% 98.98%
5Kw +clustering 82.88% 93.54% 95.49% 96.72% 98.86%
5Kw +collocations+clustering 82.88% 93.20% 95.27% 96.57% 98.92%

Table 3: The accuracies of appending collocations and K-means clustering. Here, w = word, s =
sentence.

Figure 3: Examples of bi-gram collocations.

• first screen “precision”, i.e., if the reference Kanji string is included in the first screen of the
output list. Currently, we set the first screen includes top-9 candidates;

• “recall”, i.e., if the reference Kanji string is included in the output list of the IME system.

By using the “precision” criteria, we hope to measure the goodness of the ranking of the output
candidate list. The best situation is that, all the reference Kanji strings appear as the 1-best output of
the IME system. Also, by using the “recall” criteria, we hope to measure the rate of missing Kanji
candidates for the given input Kana sequences. A lot of Japanese family names or given names
occur rarely even in the 2.5TB training data. However, we have to make sure they are included in
the candidate list, since this significantly influences users’ experience.

4.2 Appending Collections
We mined 423,617 bigram collocations by filtering the bigram set of the 2.5TB training data using
Formula 3. Figure 3 shows several examples of collocations mined. Each entry in the collocation
contains Kanji-style word sequence, POS tags, and Kana pronunciations. These entries are appended
to our foundational Kana-Kanji conversion lexicon.

Table 3 shows the top-1/3/5 precisions, first screen precisions, and recalls achieved by the baseline
and the baseline appended with collocations. From this table, we observe that in both test sets, the
collocation appending approach achieved a better precision/recall than the baseline system. Also,
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Table 4: 10 examples in our test sets that reflects both the reference Kanji and the top-1 output of
our IME system are acceptable results.

note that the first screen precisions already achieved more than 93% and the recalls achieved more
than 93%. Through these accuracies, we believe that our current IME system has achieved an
inspiring accuracy under these test sets.

Another interesting observation is that, there is a big jump (more than 10%) of the conversion
accuracies from top-1 to top-3 precisions. We made an inside analysis of the cases that took the
reference Kanji into the second or third positions of the final output. An important fact is that, a
lot of entries in the test sets do take multiple forms (i.e., either Kana or Kanji sequences) as their
appearances. In most cases, there are more than one candidates in the top-3 lists are acceptable to
the real users. Table 4 lists 10 cases that take both the reference and the top-1 output of our IME
system as acceptable results to the Kana inputs. Indeed, since the ranking of the candidates are
mainly based on their frequencies in the 2.5TB training data, we believe the top-1 outputs generated
by our IME system are more frequently used by most users and are more “commonly” used as
habits. Thus, we believe the top-1 precision is a “conservative” estimation of the final precision
and it is reasonable for use to also refer to the top-3/5 and first screen precisions to evaluate the
improvements of our proposed approach.

Finally, the improvements on the 6Ks sentence level test set are much better than that achieved in
the 23Kw and 5Kw word level sets. This reflects that appending of collections is more suitable for
large-context input experience.

After appending bi-gram collocations, we also performed extracting collocations from Japanese
single Bensetsu and several Bensetsus. The new accuracy (especially, Top-1 precision) in the
sentence level test set was significantly better than current results. We wish to report the detailed
techniques and results in our future publications.

4.3 K-means Clustering
By performing K-means clustering to the top-10 word classes, we finally obtained 2,811 word
classes. After obtaining the new word class set, we retrained P(ci |ci−1) and P(wi |ci) using the
2.5TB Web data.

The precisions and recalls by applying clustering to the baseline IME system are also shown in
Table 3. From the table, we also obtained improvements on both precisions and recall. Also, the
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improvements on sentence level test set with richer context information are better than that achieved
in the word level test sets.

We finally combined our two proposals together, i.e, modify the original n-pos model by both
appending collocations and sub-categorizing of POS tags. However, as shown in Table 3, the final
results did not show a further better result than either of the single approaches. The main reason is
that, the word classes for the collocations were based on the POS tags before sub-categorizing. This
makes the collocations not sensitive to the changes of fin-grained POS tags. One solution to this
problem is to enlarge the POS tags in the Japanese POS tagger, i.e., replacing the original IPA-style
POS tags with our fine-grained POS tags. Since we do not have a training set with fine-grained POS
tags, we wish to make use of the Expectation-Maximization algorithm (Dempster et al., 1977) to
solve this problem by taking the fine-grained POS tag set as latent variable. Similar idea has been
implemented for PCFG parsing with latent variables (Matsuzaki et al., 2005). We take this as a
future work.

5 Conclusion
We have described two ways to improve current n-pos model for Japanese Kana-Kanji conversion.
One way was to append the high-frequency collocations and the other way was to sub-categorize the
huge POS sets. Experiments on large-scale data verified our proposals. Our Japanese IME system
that implemented these ideas is completely free and has been used by millions of users running both
on Windows-style PCs and Android-style smart phones. Future work includes enrich the feature set
for unsupervised clustering, such as using the statistics, especially the context information13, from
the large-scale training data.
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ABSTRACT
Most of the past error correction systems for ESL learners focus on local, lexical errors in a post-
processing manner. However, learners with low English proficiency have difficulties even con-
structing basic sentence structure, and many grammatical errors can be prevented by presenting
grammatical phrases or patterns while they are writing. To achieve this, we propose an integrated
writing environment for ESL learners, called phloat to help such users look up dictionaries to
find semantically appropriate and grammatical phrases in real-time. Using the system, users can
look up phrases by either English or their native language (L1), without being aware of their input
method. It subsequently suggests candidates to fill the slots of the phrases. Also, we cluster sug-
gested phrases with semantic groups to help users find appropriate phrases. We conduct subject
tests using the proposed system, and have found the system is useful to find the right phrases and
expressions.

KEYWORDS: Writing Environment, Input Method, English as a Second Language, Suggestion
of Patterns, Clustering of Candidates, Predicate Argument Structure.
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1 Introduction

In the increasingly globalized world, opportunities to communicate with people who speak non-
native languages are also increasing. English has established its position as the de facto lingua
franca for many fields such as business and academia. This makes a large number of people world-
wide to communicate in English as English-as-a-second-language (ESL).

Writing in English poses special challenges for those people. The major difficulties for ESL
learners include lexicon, grammar or phrases, as well as articles and prepositions. A large number
of systems and methods have been proposed to aid ESL learners for different aspects. For example,
ESL Assistant and Criterion (Chodorow et al., 2010) is choosing and/or correcting appropriate
articles and prepositions. Systems to assist learners in choosing the right verbs are also proposed,
e.g. (Liu et al., 2011).

However, most of the systems are helpful only for local lexical or grammatical errors, and we
believe a phrasal suggestion is needed to improve the English proficiency of ESL learners. Indeed,
through a study on Japanese ESL learners’ compositions, we found a significant number of errors
which could be avoided if the learner knows appropriate phrases. Two examples from the study are
shown in Example (1) (with some modification for simplicity):

∗ The expense burden becomes your department.
∗ It’s usually the delivery of goods four business days. (1)

The first sentence, whose original intention is “Your department is responsible for the expense,”
is strongly affected by the first language (L1) expressionなります narimasu, whose literal transla-
tion is “become.” The author of this sentence translates the Japanese phrase into English literally,
resulting in an almost incomprehensible sentence. The second sentence, with the original intention
“It usually takes four business days to deliver the goods,” does not follow any basic English struc-
tures. The author is assumed to have completely failed to put the words in the right order, even
though he/she was successful in choosing the right words “delivery of goods” and “four business
days.”

These types of errors are extremely difficult to detect or correct by conventional ESL error cor-
rection systems. It is because they involve global structures of the sentence, and malformed sen-
tences hinder robust analysis of sentence structures. Instead of attempting to correct sentences after
they are written, we focus on preventing these types of errors even before they are actually made.
As for the first erroneous sentence shown above, the error could have been prevented if we could
somehow present a basic pattern “X is responsible for Y” to the author and let the author fill in the
slots X and Y with appropriate words and phrases. Similarly, presenting phrases such as “it takes X
to do Y” to the author of the second one could have been enough to prevent him/her from making
such an error. In order to achieve this, there is a clear need for developing a mechanism to suggest
and show such phrases while ESL learners are composing sentences.

Figure 1: The response of input “okuru” (send)
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We propose an integrated writing tool for ESL learners called phloat (PHrase LOokup Assistant
Tool) to achieve this. The system is integrated within a text editor, and suggests English words and
phrases based on the user input as shown in Figure 1. It also allows L1-based query input, i.e.,
if the user types a Romanized Japanese word, it shows all the words and phrases whose Japanese
translations contain the query, as implemented also in PENS (Liu et al., 2000) and FLOW (Chen
et al., 2012). In addition, the suggested phrases are classified and labeled based on their semantic
roles (case frames). Figure 1 shows that, for an L1 input “okuru,” which has several senses includ-
ing “send something” and “spend (a life),” the system shows clusters of phrases corresponding to
these senses. After the user chooses one of the phrases which contain slots to be filled, the system
automatically shows suggestions for words which are likely to fit in the slots based on the context.
This phrase clustering and slot suggestion help the user compose structurally more accurate, thus
understandable English sentences.

We evaluate the effectiveness of our system based on the user experiments, where the ESL learn-
ers are asked to compose English sentences with and without the phloat system. The results were
evaluated based on how grammatically accurate their English is (fluency), and how much of the
original intention is conveyed (adequacy). Also the composition speed is measured. We will show
that our system can help user find accurate phrases.

This paper is organized as follows: in Section 2, we summarize related work on English
spelling/grammar correction and writing support systems. Section 3 describes the target, basic
principle, and the design of our system. In Section 4, we describe the details of the implementation
and the data we used. We elaborate on the experiment details in Section 5, and we further discuss
the future work in Section 6.

2 Related Work

2.1 Post-edit Assistance Systems

There are a large number of post-edit systems for English spelling and grammar checking. ESL
assistant, proposed by (Leacock et al., 2009) Web-based English writing assistance tool focused
on errors which ESL learners are likely to make. It also shows parallel Web search results of the
original and suggested expressions to provide the user with real-world examples. Criterion, devel-
oped by (Burstein et al., 2004) is another Web-based learning tool which uses an automatic scoring
engine to rate the input learner’s composition. It also shows detailed stylistic and grammatical feed-
back to the learner for educational purposes. Other than these, one can also find many other free or
commercial English writing assistance systems including Grammarly1, WhiteSmoke2, and Ginger3

to name a few. However, all these systems assume rather static input, i.e., focus on post-processing
learners’ compositions already finished. However, as stated in the previous section, many errors
could be avoided by presenting appropriate feedback while the user is composing sentences.

2.2 Real-time Assistance Systems

Therefore, real-time assistance can be a more attractive solution for ESL error detection and cor-
rection. Recent versions of Microsoft Word4 have a functionality to automatically detect spelling

1http://www.grammarly.com
2http://www.whitesmoke.com/
3http://www.getginger.jp/
4http://office.microsoft.com/en-us/word/
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and elementary grammatical errors as the user types. AI-type5 is an English input assistance soft-
ware which helps users type at a higher rate by allowing partial matching of words. It also shows
context-sensitive suggestions based on word n-grams.

PENS (Liu et al., 2000) is a machine-aided English writing system for Chinese users. Particularly
noteworthy about the system is that it allows L1 (first language) input, that is, the system shows
English translations for the user input in a Pinyin (Romanized Chinese) form. FLOW (Chen et al.,
2012) is an English writing assistant system for Chinese, also allowing L1 input. Unlike PENS,
FLOW further suggests paraphrases based on statistical machine translation to help users refine
their composition. It is also helpful for writing in controlled natural languages to show real-time
grammatical suggestions.

英文名文メイキング “Eibun Meibun Meikingu” (lit. meaning Making excellent English) (Doi
et al., 1998) proposes an IME-type writing assistant for English. The system interacts with sub-
systems such as Japanese-English dictionary look-up, example sentence search, and Eisaku Pen,
which converts Japanese input directly into English expressions. Google Pinyin IME6 has support
features for Chinese ESL learners, including integrated dictionary look-up, L1-based input support,
and synonym suggestion. The same kind of L1-based dictionary look-up is also integrated in
many IMEs, such as ATOK7 and Google Japanese IME8 for Japanese, Sogou9, and Baidu Input
Method10 for Chinese. Some of those systems also support fuzzy matching with erroneous input,
and suggestion of frequent phrases.

In a somewhat different line of research, controlled natural languages also benefit from writing
support tools. AceWiki (Kuhn and Schwitter, 2008), which is a semantic wiki making use of a con-
trolled natural language ACE, also provides an interactive writing support tool which automatically
suggests subsequent word candidates as the user types.

Our proposal falls in this category. Compared to the previous systems, our tool is focus on phrase
suggestion on top of the useful features developed in the past.

2.3 Phrase Search Systems

Phrase search plays an important role in English translation and composition. Several projects
have been conducted for storing and searching useful English patterns such as “there is a tendency
for [noun] to [verb]” (Takamatsu et al., 2012; Kato et al., 2008; Wible and Tsao, 2010). However,
most of the phrase search systems require rather high level of English proficiency to use mainly
targeted at technical writing. Also, they are not integrated in a text editor, or do not allow L1-based
input, leaving a significant room for improvement when used in practice.

2.4 Translation Support System

ESL writing assistant is closely related to translation support systems because human translators
often have to refer to a wide range of resources such as dictionaries and example sentences. To
name a few of a wide variety of translation support systems, TransType2(Esteban et al., 2004) and
TransAhead (Huang et al., 2012) suggest candidate words and phrases in the target language based

5http://aitype.com
6http://www.google.com/intl/zh-CN/ime/english/features.html
7http://www.atok.com/
8http://www.google.co.jp/ime/
9http://pinyin.sogou.com/

10http://shurufa.baidu.com/
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on automatic translation of the source sentences. TWP (Translation Word Processor) (Muraki et al.,
1994; Yamabana et al., 1997) is another translation tool which support composes the target sentence
in an incremental and interactive manner.

3 Overview
3.1 Motivation

The proposed system aims to help users who are not necessarily good at English, especially in a
writing form. For them, writing English is not an easy task; looking up dictionary, finding the right
phrase, taking care of grammars and so on. It takes a lot of time for them to compose sentences.
In such a situation, real-time assistance can be a promising help for them, because it saves a lot of
their time spent on dictionary look-up. Additionally, because they may construct sentences based
on L1 influences, the real-time assistance can prevent mistakes which may otherwise be difficult to
correct by guessing what the users intended to say in the first place.

As we mentioned in Section 2, several systems have been proposed to address this issue. AI-
type and FLOW suggest subsequent phrases based on n-gram statistics and machine translation,
respectively. PENS and Google Pinyin IME suggest words corresponding to the L1 input.

However, these systems have two problems. First, they are not aiming at the users whose English
proficiency is really low. As shown in Example (1), simple concatenation of partial translations
does not necessarily produce grammatical sentences which express what they originally intended11.
Second, although previous systems simply show candidates in a single column, it is difficult to find
appropriate phrases when the number of candidates is really large.

In order to solve these problems, we propose an integrated writing environment for ESL learners
called phloat (PHrase LOokup Assistant Tool).

3.2 System Overview

The proposed system works on a simple editor. Authors can write English sentences, as he/she
does on a regular editor. Also, on top of English input, the author can type Romanized Japanese
words when he/she does not know what to write in English. The system searches corresponding
words in both languages, and displays the information in real-time.

For example, Figure 1 in Section 1 shows how the system supports when the user types “okuru”
(which means “send” or “spend” in English). On its left, it displays the word translation candidates,
and on its right (three columns in the figure), phrasal suggestions for “okuru” in three clusters are
shown with Japanese translations. In this manner, the author can choose the appropriate word or
phrase which matches the intent of the author.

If the author’s intent is to write “sending email”, the author can click the corresponding phrase
(in the example, the second phrase of the first cluster of “okuru”). This action replaces the user
input “okuru” with the corresponding English phrase “email the address of”. As we know that we
need to fill the slot of “address of”, the system suggests the possible fillers of this slot (Figure 2).

The system works even the input is partial Japanese (Figure 3) or a part of English phrase (Figure
4). It also shows the suggestion for a combination of two Japanese words (Figure 5).

In the next subsection, we will summarize the notable features of the system.
11AceWiki indeed supports and ensures grammatical composition, although semantic consistency is not guaranteed.
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Figure 2: The suggestion for the slot in
“okuru”

Figure 3: The response to input “okur” (A
prefix meaning “send” in Japanese)

Figure 4: The response to input “get forg”
Figure 5: The response to input “nimotsu”
(package) and “ okuru” (send)

3.3 Features

Phrase Suggestion It suggests English phrases, on top of English words. As we have described,
phrases could be better to be used in order to avoid unrepairable mistakes. Also, as the phrases
are accompanied by Japanese sentences, the author may find the right phrase if it exists in the
candidates. The phrases are semi-completed, natural phrases for native speakers like the ones
shown in Table 2.

Slot Suggestion After the user chooses one of the candidate phrases, the system subsequently
suggests candidates to fill in the slots of the phrase (Figure 2). These slot candidates are generated
from the context of the suggested English phrase and its Japanese translation. This enables users
to complete a long expression just by choosing a phrase and filling out the blanks in it.

Semantic Cluster Suggestion Since the system allows L1-based input in Romanized scripts, it
results in a large number of phrase candidates which (probably partially) contain the L1 query,
many of which belong to different semantic clusters. For example, Japanese verb “okuru” has at
least two senses, “to send somebody something”, and “to spend a life”. Because our phrase list
does not include sense knowledge, we need to group the phrases based on senses for the authors to
find the appropriate one easily. The system suggests candidates with semantic groups (Figure 1),
arranged it in multiple columns.

Flexible Input Words and phrases are suggested to the authors without being aware of their input
methods; English or Romanized Japanese. Otherwise, the authors would have to switch their input
method between the English direct input mode and the Japanese Kana-Kanji conversion mode,
which is very laborious. The inputs in the Romanized Japanese are converted back to Kana phonetic
characters (Figure 1) to find the candidates.

In addition, we implemented incremental search using the word prefix (Figure 3), making it
unnecessary to type the complete words. This is the same for English input (Figure 4).

Search by Two Japanese Words In some cases, users would like to narrow down the phrases
using two keywords, typically verbs and their arguments. For example, one can type “nimotsu
okuru” (lit. package send) to narrow down phrases which are related to sending some packages, as
illustrated in Figure 5.
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4 Implementation
Query (Japanese verb): 
  “okuru” 
  … 

Phrase and Word Suggestion 
Jpn to Eng & Eng to Jpn 

N-gram 

Case Frame Dictionary 

Jpn-Eng Dictionary 

Cluster Suggestion 

Slot Suggestion 

Query (Phrases with slots): 
  “send a package via airmail to ” 
  … 

Bitter, batten, .. 
Bitto(bit),  
In advance… 
send a package … 

okuru.01 
okuru.02 
… 

company 
friend 
… 

Resources 

Query (Others): 
  “bitt” 
  “in adv” 
  … 

Figure 6: Overview of the System

4.1 System Components

We illustrate the overview of the system in Figure 6. The system is comprised of three com-
ponents - Normal word/phrase look-up, cluster suggestion, and slot suggestion. Since the system
is unable to know the type of query (Romanized Japanese or English) from the input character
sequence in advance, the system executes all the following search procedures every time the user
types a character. The system receives 30 characters surrounding the carets as a query, which is in
turn used for dictionary lookup:

• Looking up by a prefix of a Japanese word in Romaji
(e.g.) hashi → chopsticks (hashi), edge (hashi), post (hashira). . .

• Looking up by a prefix of a Japanese phrase in Romaji
(e.g.) nimotsu → carry an armload of packages (nimotsu wo yama no youni kakaete iru). . .

• Looking up by a prefix of an English word
(e.g.) cong → congregation, congenital, congressman. . .

• Looking up a by prefix of an English phrase
(e.g.) in adv → in advance of～, in advanced disease. . .

After the look-up, all the results from each of the above search are shown. When the input is a
Japanese verb, the phrases returned by the dictionary look-up are shown in semantic clusters. After
the user chooses one of the phrases, the slot suggestion component is invoked to show suggestions.

All the components consult a Japanese-English dictionary. To achieve efficient look-up, all the
entries in the dictionary are indexed with all the possible prefixes of their English translation and
all the possible prefixes of tokens (except for particles) in Romaji of their sense in Japanese. For
example, a phrase “carry an armload of packages” is indexed as shown in Table 1 12.

original string prefixes
Japanese nimotsu wo yama no youni kakaete iru n, ni, nim, nimo, . . . , y, ya, yam, yama, . . .
English carry an armload of packages c, ca, car, carr, carry, carry a, carry an, . . .

Table 1: The Index of “carry an armload of packages”

12The variations, such as “ふ” (fu, hu) and “し”(shi, si) in Romanized forms of both Japanese senses and users input are
all normalized by exploiting the Romaji table by Microsoft (http://support.microsoft.com/kb/883232/ja)
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To avoid slow response and annoying users with too frequent suggestion, the first two searches
(Japanese word/phrase look-up) are invoked only when the query is two or more characters long,
and the last two are invoked only when the query is four or more characters long.

The system shows the set of lists, each of which is obtained from each component. The candi-
dates in each list are sorted in a descending order of the language model score. That is, we simply
ranked words depending on their unigram frequencies, and phrases on the language model score
divided by the number of tokens in the phrase. We adopted stupid backoff (Brants et al., 2007).

To make it easier for users to choose a candidate even among a long list of too many candidates,
the system groups them up by their meanings as described below.

Semantic Clustering Although it is ideal for the system to be able to cluster any phrases which
match the user query, we simply performed clustering only for verbs because it is relatively easy to
define what the “sense” of verb phrases are, given an appropriate lexical knowledge. Note that we
could perform similar clustering on nouns as well using resources such as (Sasano and Kurohashi,
2009).

Clustering is performed only when the user inputs a Japanese verb such as “okuru,” “nageru”
using a case frame dictionary, which looks like the one illustrated in Table 3. The dictionary con-
tains what kind of arguments each predicate takes, and the frequency is assigned to each argument
meaning how often the argument is used in the case frame (predicate sense).

To each phrase including a single verb, we assigned a case frame13 in the following way. First,
we analyze the predicate argument structure of the phrase and obtain its arguments, by using a
Japanese dependency parser, as stated below. We then sum up the frequencies of all the argument
by consulting the case frame dictionary, if the analyzed case frame has any arguments. Finally we
select the case frame with the highest frequency and assign it to the phrase.

For instance, the Japanese verb “送る” has two case frames, each of which corresponds to “to
send” and “to spend”, respectively, in the dictionary, and suppose we want to determine which case
frame,送る.1 or送る.2. a phrase “メールを人に送る” (send an e-mail to a person) belongs to.

In the phrase, the predicate has two arguments, “メール” (mail) with accusative case and “人”
(person) with dative case. The case frame 送る.1 has both of the arguments as its components,
and its score is computed as the sum of their frequencies (168 + 107022). On the other hand, the
phrase only has one argument for the case frame 送る.2, which is “人,” and its score will be the
argument’s frequency (80). Finally, because送る.1 has a higher score than送る.2, we regard the
phrase belongs to the cluster送る.1.

The system also suggests candidate to fill in the slot in phrases after the user selects a phrase in
the suggested candidates. We describe how to obtain this below.

Slot Suggestion The system suggests candidates to fill in the slots in two ways.

First, it uses N-gram statistics to obtain commonly used phrases around the slots. Take a phrase
“send a package via airmail to～” (～に航空便で荷物を送る) for instance, which has “via airmail
to” as the left context of the slot “～”. We can obtain most common phrases which follow the
words, e.g., “company,” “friend,” etc. by looking up the statistics.

We also use the right-hand-side context when available. The context length is limited by N ,
where N is the maximum length of N-grams contained in the database. Suppose that N = 5 and

13We discarded other phrases (e.g., phrases with two or more verbs) for clustering for simplicity
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context · · · w−3w−2w−1～w1w2w3 · · · is given, we can look up the N-gram database by multiple
queries like w−3w−2w−1 ∗ ∗, w−2w−1 ∗ ∗w1, and so on14. We merged the multiple sets of phrases
obtained in this way, and sorted them in the order of their frequencies.

Second, it uses a case frame dictionary to obtain plausible nouns which are likely to be filled in
the slots. Taking the same phrase “send a package via airmail to～” for example, the case frame
can be assigned in the same way as we described previously using the Japanese translation, and we
know that the slot “～” has the accusative case (に ni case). Now we can look up the case frame
dictionary and obtain the candidates using the case frame and the case, showing them in the order
of frequency.

4.2 Data and pre-processing

Eijiro We used words and phrases contained in the Japanese-English dictionary Eijiro version 134
(released on May 23th 2012) 15. This is a very large database of English-Japanese translations
developed by the Electronic Dictionary Project. It can also be looked up at “Eijiro on the web”16.
It is one of the most popular English dictionaries in Japan and it is accessed by over two million
people in a month and searched over a billion times in a year17. It includes over 330,000 words,
1,434,000 phrases which contain no slots, and 256,000 phrases which contain one or more slots.

We automatically annotated the Japanese translations of phrases with part-of-speech tags using
MeCab 0.994 18 with IPA dictionary 2.7.0-2007080 19 and parsed with dependency structures using
CaboCha 0.64 20.

In order to make the inversed index, we converted Japanese translations into Romaji, and ob-
tained predicate argument structures. We regarded words which depend on a verb as arguments of
the verb. Some samples of the predicate argument structure analysis are shown in Table 2.

Patterns Predicate argument structures
～に関する質問を（人）に E メールで送る Verb: 送る Accusative:人
e-mail someone with one’s questions regarding～ By:E メール
～のアドレスにメールを送る Verb:送る
e-mail the address of～ Accusative:メール Dative:アドレス
～を E メールで送る Verb:送る
send～ by e-mail Accusative:～ By:E メール

Table 2: Samples of Eijiro and their results of predicate argument structures analysis
Kyoto University’s Case Frame We used Kyoto University’s case frame data (KCF) ver 1.0
(Kawahara and Kurohashi, 2006)21 as a Japanese case frame dictionary for slot suggestions and
clustering. KCF is automatically constructed from 1.6 billion Japanese sentences on the Web.
Each case frame is represented by a predicate and a set of its case filler words. It has about 40,000
predicates and 13 case frames on average for each predicate. We show some entries in KCF at
Table 3.

Web 1T 5-gram We used Web 1T 5-gram Version 1 22 which includes unigrams to five-grams
collected from over 95 billion sentences on the Web for two purposes, for slot suggestion and

14Here ∗ denotes a wildcard.
15http://www.eijiro.jp/
16http://www.alc.co.jp/
17http://eowp.blogspot.jp/2011/12/on-web2011.html
18https://code.google.com/p/mecab/
19http://sourceforge.jp/projects/ipadic/
20https://code.google.com/p/cabocha/
21http://www.gsk.or.jp/catalog/GSK2008-B/catalog_e.html
22http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13
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送る.1 nominative 人:168,私:152,ファン:89,観客:80,皆:73, < 数量 > 人:71,誰:70, . . .
accusative メール:107022,メッセージ:34957,エール:14356,情報:14048,写 9047, . . .
dative 方:3024,友達:2679,アドレス:2492,携帯:1704,人:1557,客:1443, < 数量 >9,

送る.2 nominative 人:80,人々:62,子供:55,生徒:55,学生:41,自分:35,方:29. . .
accusative 生活:101316,人生:19631,余生:2001,暮らし:1563,寮生+活:57 . . .
dative 実際:39, < 補文 >:38,基:19,風:16,通り:12,よう:11,中:10,普通:10,中心:8. . .

Table 3: Entries of Kyoto University’s case frame data

candidate ranking, as discussed previously. For slot suggestion, we eliminates candidates which
include symbols such as “.”, “?”, and “< /S >”. We indexed this with Search System for Giga-
scale N-gram Corpus (SSGNC) 0.4.6 23 to achieve fast look-up.

5 Evaluation

5.1 Methods

We conducted user experiments to evaluate the effectiveness of the proposed system. The sub-
jects for the user test are 10 Japanese ESL learners whose English proficiency is intermediate level.
Their English proficiency is measured by TOEIC 24 score, and their average TOEIC score was 754.
We showed them two sets of English composition problems consisting of e-mail response writ-
ing, free picture description, and Japanese-to-English translation, and asked the subjects to write
answer English sentences with and without using the proposed system. The problem sample is
shown below (the actual problems were presented in Japanese):

We chose the two pictures shown in Problem 2 from the ones at Flickr 25 with a CC (Creative
Commons) License, making sure that the pictures somehow involve states/actions of animals26 and
humans27. The sentences in Problem 3 were chosen randomly from Tatoeba project28, excluding
too simple or too complex sentences.

Instruction

• Please answer the following problems and write English sentences USING THE SYSTEM.
(For the system group)

• Please answer the following problems and write English sentences WITHOUT using the sys-
tem. You can use your favorite editors or word processor software, unless they have spell check
functionality. You can freely consult any Japanese-English / English-Japanese dictionaries,
such as “Eijiro on the web”29. (For the baseline group)

Problem 1: E-mail composition You placed an order for a bag from an oversea shopping website.
But you found out that the item was partially broken and had some stains on it, and would like to
exchange it for a new one or to return it. Fill in the blank below and complete the e-mail. Your
composition will be evaluated in terms of: 1) how accurate your choice of English words and
grammar is, and 2) your intension is conveyed to the recipient in full.

23http://code.google.com/p/ssgnc/
24https://www.ets.org/toeic
25http://www.flickr.com/
26http://www.flickr.com/photos/tjflex/233574885/
27http://www.flickr.com/photos/yourdon/3386629036/
28http://tatoeba.org/
29http://www.alc.co.jp/
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Problem 2: Picture description Please describe the following picture using five or less English
sentences. Your composition will be evaluated in terms of: 1) how accurate your choice of English
words and grammar is, and 2) how accurately the reader of your description can reconstruct the
original image.

Problem 3: Japanese-English translation Please translate the Japanese sentences in Table 4 into
English. Your translation will be evaluated in terms of 1) how accurate your choice of English
words and grammar is, and 2) how much of the original Japanese meaning is preserved.
Japanese A sample of translation
彼はローマに行ってたくさんの古い建物を見た。 He went to Rome, where he saw a lot of old buildings.
彼女は約束を破ったといって彼を責めた。 She accused him of having broken his word.
この本はかつてはベストセラーだったが、今は絶版になっ
ている。

This book, which was once a best seller, is now out of print.

紫のじゅうたんはこの赤いカーテンと調和しないだろう。A purple carpet will not go with this red curtain.
誰かが間違って私のかさを持っていったに違いない。 Someone must have taken my umbrella by mistake.

Table 4: Japanese sentences of Problem 3

5.2 Scoring

We prepared two identically structured problem sets with different contents, and also divided
the subjects into two groups with their TOEIC average scores as closer as possible. We asked
the former group to solve Problem Set 1 with the system and Problem Set 2 without the system.
This order is inverted for the latter group, i.e., they solve Problem Set 1 without the system and
Problem Set 2 with the system, to cancel out the learning effect. We also measured the time taken
to complete each problem set.

After completion of the test, we asked two native speakers of English to grade the subjects’
composition. The grading was based on two measures, fluency and adequacy, which is done for
each problem (each sentence for Problem 3), based on the following rubric:

Fluency How grammatically accurate the sentence is as English (in terms of grammar, word
choice, etc.) (This only looks at grammaticality. For example, writing “how are you?” to de-
scribe a picture does not make any sense, but it is completely grammatical, so Fluency will be
5.)
RatingDescription
5 fluent (native-speakers can write this kind of sentences, possibly with some unnaturalness or awkwardness)
4 completely acceptable (the meaning is understandable with few errors; non-nativeness can be suspected)
3 acceptable (the meaning is understandable, the structure follows basic English grammar, with some non-critical errors

e.g., spelling errors, articles, prepositions, word choices etc.)
2 unacceptable (have some (possibly partial) serious errors which may make comprehension difficult

e.g., non-existent words, basic word order, etc.)
1 completely unacceptable (the form of the sentence has serious flaws which may make comprehension impossible)

Table 5: Criterion of rating fluency

Adequacy How much of the original intention is conveyed. (This only looks information. For
example, writing “on floor cat” is not grammatical at all, but it might be enough to convert the
meaning “there’s a cat on the floor.” In this case, some insignificant information is dropped, like
number and tense, so adequacy will be 4)

The final fluency/adequacy score is calculated as the weighted average of each score, with Prob-
lem 1 being weighted by a coefficient of 2.0 and Problem 2 by 5.0. Finally, we also asked the
subjects for any feedback and comments on the system usability.
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RatingDescription
5 full information conveyed (80%-100% of the original information is conveyed.

The originally intended sentence can be reconstructed by simple paraphrasing)
4 most information conveyed (60%-80%)
3 half of information conveyed (40%-60%, including opposite meaning, e.g., dropped ‘not’ etc.)
2 some information conveyed (20%-40%)
1 almost no information conveyed (0%-20%)

Table 6: Criterion of rating adequacy
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5.3 Results

Figure 7 compares the time taken to finish each problem set when the system is used (“System”)
and not used (“Baseline”). The result is mixed, where it took a far more amount of time for Problem
Set 1 when the system is used, while it shows little difference for Problem Set 2. In particular, we
observed a few subjects find difficulties getting used to using the phloat system, doubling the time
taken to complete the test. This shows that, although the system is designed to be as intuitive as
possible, the familiarity with the system greatly affects one’s writing efficiency, and this leaves us
some room for improvements in terms of both user interface and word/phrase search relevancy.

Figure 8 and 9 compare the overall fluency and adequacy scores for both System and Baseline.
Again, the result is mixed, where System is scoring higher for Problem Set 1 while Baseline is
scoring higher for Set 2.

Some subjects claimed that it reduced their burden that they can easily look up some unfamiliar
word such as ぶち buchi (spotted, tabby) using the system, which obviously reduced the time
and/or helped increase the fluency.

On the other hand, after analyzing the result in detail, we found that there is one particular
problem which scored badly on average for System, which is to translate the following sentence
into English: “彼女は約束を破ったといって彼を責めた。” (She accused him of having broken his
word.) The answers which the System subjects wrote for this problem include: “ ∗ She pilloried him
to break faith with her.” and “ ∗ She berate him to break faith with her.” Both “pillory somebody
for ...” and “berate someone for ...” come up as the search result for a query “semeru” (accuse),
even though they are somewhat rare expressions to describe the original intention. Apparently, the
users without enough English proficiency had no clues to decide which candidates are the most
appropriate ones, resulting in non-optimal word choices. This phenomenon was also seen for a
problem where subjects are required to translate “屈する” kussuru (be beaten, submit to). Some
chose inappropriate word “bow” which came up as the first result. Notice that this problem can also
happen when learners consult general dictionaries, and the fact that the phloat system facilitates
the dictionary look-up made the issue even worse.
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5.4 Advantages of the System

From the evaluation of the system by the ESL learners, we found several examples where the
system was very helpful.

Change the time of meeting to X o’clock This phrase can be found in the phrase candidates when
the user search “kaigi (meeting)” and “henkou (change)”. This problem made one of the biggest
differences between the results by the subjects who used the tool and the results by the subjects
who did not use the tool. 4 out of 5 subjects who used the tool wrote this or similar phrases,
whereas the subjects who did not use the tool wrote the followings: “change the meeting from
11am” (does not say “time of the meeting”), “alter the starting time to 11am”, or expressed in very
awkward structure although we can capture the meaning. It is evident that people had difficult time
to construct the sentences without suggestions. This proves that if the system shows the phrases
which exactly matches the intent, the tool is quite useful.

Wasteful expenses/spendings by the government This phrase and its variant are used by three
subjects who used the tool. It is one of the phrase candidates when you search “shishutu (expense)”
and “muda (waste)”. This phrase also seems a difficult one to make by the subjects without the
tool, maybe because it is a terminology in a special domain.

Comply with the advice We believe this phrase is not very easy for Japanese subjects to come
up with, but the system suggests it when you search “shitagau (comply)” and “chukoku (advice)”.
Most subjects without the tool wrote “follow the advice”, which is perfectly OK, but it is an in-
teresting discovery for us that the tool could be useful to extend one’s vocabulary by suggesting
unfamiliar words.

6 Future Work

6.1 Flexible Match

In the current system, nothing is shown when the system cannot find any phrases which match
input queries. It is mainly because the current system requires an exact match, not because the
coverage of the Eijiro is limited. Even word variations, such as plural, past-tense and so on are
not handled. It could increase the number of matched phrases by including word variance match,
and we believe a proper ranking system is needed if it causes a problem. When there is no match,
we may want to try fuzzy matching. It is very likely that the ESL learners may not remember
the spelling correctly, the fuzzy matching can be helpful. In order to increase the number of the
prepared phrases, adding sentences generated by machine translation may also be useful. However,
it requires us to judge the accuracy of the candidates. Related research on interactive translation is
conducted by (Kim et al., 2008; Tatsumi et al., 2012).

6.2 Fine Grained Selection

The subtle nuances of phrases are very difficult for ESL learners. Examples include “home” and
“house,” “at last” and “finally,” and “must” and “have to.” It may be difficult for the system to solve
it by the context. One idea to solve the problem is that the system asks the author by showing some
examples which use such phrases.
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6.3 Smarter Suggestion using Contexts

The current system only looks at the keywords up to two words, and more context aware mech-
anism might be helpful to make smarter suggestions.

For example, a proper part-of-the-speech can be guessed based on the context. For queries after
a verb such as “I stopped okuru nimotsu (send package)”, noun phrases should be more likely than
verb phrases. Or following “have” or auxiliary verb, past participle or basic forms of verbs are
most suitable, respectively.

The choice of prepositions is very difficult task for ESL learners, because the choice is depending
on the context (type of verbs and the role of fillers), and influenced by the L1 of the user. For
example, the phrase “is covered” should be followed by “by” if the sentence is “the accident is
covered by insurance”, but by “with” if the sentence is “the mountain is covered with snow”, even
though the Japanese particles in both cases are the same.

Sometimes, we have to take into account collocations of phrases. For example, a Japanese word
“ookii” can be translated into “large,” “many” or “big,” and the appropriate choice of the word must
be done by considering the modified noun. For instance, large is the best modifier for population
than theres. In order to suggest the right adjective, the system needs to consider the collocation.

6.4 Better Ranking Algorithm

The order of candidates in the suggestion list is very important, as the users,look at it from the
top of the list. The current system gives ranks words and phrases based on the language model
scores or frequencies of the candidates themselves (without sense or context into consideration).

For a Japanese word “Umi” (the main sense is “sea”), the dictionary lists “blue” as one of its
senses (very minor usage in Japanese). However, because the frequency of “blue” in the English
corpus is larger than that of “sea”, the current system suggest “blue” at the highest rank. In order
to avoid the problem, we need to have knowledge of major or minor senses for each word.

Conclusion
In this paper, we proposed an integrated writing tool for ESL learners, called phloat (PHrase

LOokup Assistant Tool). It helps users who are not necessarily good at writing English with look-
ing up words and phrases in a dictionary. Presenting appropriate phrases while the author is writing
prevents from making serious mistakes which can’t be fixed at post processing.

Our main contributions are the followings.

First, phrase suggestion is incorporated. These phrases can be searched by either English or
Romanized Japanese, by one or more keywords. The users can easily find popular phrases, which
are accompanied with the translation in their native language. In addition, it subsequently suggests
candidates to fill the slots of the phrases. These suggestions enable users to complete a sentence
just by choosing a phrase and fillers of the slots.

Second, we proposed clustering of suggested candidates with semantic groups. L1-based input
sometimes results in a large number of phrase candidates. This helps users to find related phrases
very easily.

Lastly, we evaluated the system asking subjects to write English sentences with or without the
tool. It proved that the tool is quite useful when the system shows the phrases which exactly
matches the intent and helpful to extend one’s vocabulary by suggesting unfamiliar words.
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ABSTRACT 

Current mobile devices do not support Bangla (or Bengali) Input method. Due to this many 

Bangla language speakers have to write Bangla in mobile phone using English alphabets. During 

this time they used to write English foreign words using English spelling. This tendency also 

exists when writing in computer using phonetically input methods, which cause many typing 

mistakes. In this scenario, computer transliteration input method need to correct the foreign 

words written using English spelling. In this paper, we proposed a transliteration input method 

for Bangla language. For English foreign words, the system used International-Phonetic-

Alphabet(IPA)-based transliteration method for Bangla language. Our proposed approach 

improved the quality of Bangla transliteration input method by 14 points. 

KEYWORDS : Foreign Words, Bangla Transliteration, Bangla Input Method 

1 Introduction 

Bengali or Bangla is the official language of Bangladesh. Currently Bangladesh has 72.963 

million mobile phone users. It is important to have Bengali input method for this huge number of 

Bengali language speakers. Although Bangladesh government declared standard keyboard layout 

for both computer and mobile device, currently there is no national standard for transliteration 

using English alphabets. Due to this there are many ambiguities in mapping 50 Bengali letters 

using 26 English letters. Different people have different assumptions on phonetic input system 

for Bengali language using English letters. These ambiguities effect the human communication, 

using mobile or emails, where people had no other choice except using English letters to write 

Bengali messages.   

In this kind of scenario most people used to write English foreign words using English 

spelling. These ambiguities effect the human communication using SMS or email.  In this kind of 

scenario most people used to write English foreign words using English spelling. To understand 

this kind of message needs a sophisticated phonetic input method for mobile devices. Bengali 

also needs a standard transliteration mechanism considering these issues. Such a transliteration 

scheme should be simple rule-base to minimize the computational resources. 

In this paper, we propose a phonetic Bengali input method for computer and mobile devices. 

Our approach is a pattern-based transliteration mechanism. For handling foreign words, we used 

International-Phonetic-Alphabet(IPA)-based transliteration. Proposed system first tries to find if 

the word exists in English IPA diction-ary. If the word is not available in the English dictionary it 

uses the mechanism as proposed with Akkhor Bangla Software and a Bengali lexicon database to 

transliterate meaningful words. Our proposed approach improved the quality of Bangla 

transliteration input method by 14 points. 
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2 Related Works  

There were several attempts in building Bengali transliteration systems. The first available free 

transliteration system from Bangladesh was Akkhor Bangla Software1. Akkhor was first released 

on 2003 which became very popular among computer users.  

Zaman et. al. (2006) presented a phonetics based transliteration system for English to Bangla 

which produces intermediate code strings that facilitate matching pronunciations of input and 

desired output. They have used table-driven direct mapping techniques between the English 

alphabet and the Bangla alphabet, and a phonetic lexicon–enabled mapping. However they did 

not consider about transliterating foreign words. Most of the foreign words cannot be mapped 

using their mechanism. 

Rahman et. al. (2007) compared different phonetic input methods for Bengali. Following Akkhor, 

many other software started offering Bengali transliteration. But none of these works considered 

about transliterating foreign words using IPA based approach. 

Amitava Das et. Al. (2010) proposed a comprehensive transliteration method for Indic languages 

including Bengali. They also reported IPA based approach improved the performance for Bengali 

language. 

3 Transliteration Architecture 

In this paper, we propose a transliteration input method for Bangla language with 
special handling of foreign words. For transliterating we considered only English 
foreign words and simple rule-base mechanism. For foreign words, we used 
International-Phonetic-Alphabet (IPA) based transliteration.  
 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1. Proposed Transliteration Architecture 

 

                                                           
1http://www.akkhorbangla.com/ 
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Figure 1 shows the Bengali transliteration process in a flow chart. Proposed system 
first tries to find if the word exists in English IPA dictionary to detect foreign 
words. For these foreign words, it uses IPA based transliteration. If the word is not 
available in the English dictionary, it uses Akkhor transliteration mechanism.   
As Bengali language accepts many English foreign words, transliterating the 
English word into Bengali alphabet makes that a Bengali foreign word. In our 
assumption, when writing Bengali message people write English foreign words 
using English spelling. To identify such input words, the system first checks for a 
word for foreign (English) origin by looking up at the English IPA dictionary. If the 
word is not available in the English IPA dictionary, the system uses the 
transliteration mechanism as proposed with Akkhor Bangla Software and a Bengali 
lexicon database to transliterate Bengali words.  

4 IPA Based Transliteration 

From English IPA dictionary the system can obtain the English words pronunciations in IPA 

format. Output for this step is the Bengali word transliterated from the IPA of the English word. 

In this step, we use following English-Bengali Transliteration map to transliterate the IPA into 

Bengali alphabet.  

Mouth  

narrower  

vertically 

[iː] ই / ি  

sleep /sliːp/ 

[I]  ই / ি  

slip /slIp/ 

[ʊ] উ /    

book /bʊk/ 

[uː]উ/    

boot /buːt/ 

  
[e] এ / ে  

ten /ten/ 

[ə] আ /    

after /aːftə/ 

[ɜː] আ /    bird 

/bɜːd/ 

[ɔː]  র্ 

bored /bɔːd/ 

Mouth  

wider  

vertically 

[æ]এ্য / ্য  

cat /kæt/ 

[^] আ /   

cup / k^p/ 

[ɑː] আ /    

car  / cɑːr/ 

[ɒ] অ 

hot /hɒt/ 

Table 1. English-Bengali IPA chart for vowels 

[Iə] ইয়া/ি য়  

beer /bIər/ 

[eI] এই/ ে ই 

say /seI/ 
  

[ʊə] উয়া/   য়   
fewer /fjʊər/ 

[ɔI] অয়/য় 

boy /bɔI/ 

[ə ʊ] ও / ে   

no /nəʊ/  

eə ঈয়া/   য়  

bear /beər/ 

[aI]   ই / আই 

high /haI/ 

[aʊ] আউ /  উ 

cow /kaʊ/  

Table 2. English-Bengali IPA chart for diphthongs 
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[p] প 

pan /pæn/ 

[b] ব  

ban /bæn/ 

[t] ট 

tan /tæn/ 

[d] ড 

day /deI/ 

[ʧ] চ  

chat /ʧæt/ 

[ʤ] জ 

judge /ʤ^ʤ/ 

[k] ক 

key /kiː/ 

[g] গ 

get /get/ 

[f] ফ 

fan /fæn/ 

[v] ভ 

van / væn/ 

[θ] থ 

thin /θIn/ 

[ð] দ 

than /ðæn/ 

[s] স 

sip /sIp/ 

[z] জ 

zip / zIp/ 

[∫] শ 

ship /∫Ip/ 

[ʒ] স 

vision /vIʒ^n/ 

[m] ম  

might 

/maIt/ 

[n] ন 

night 

/naIt/ 

[ŋ]  /ঙ 

thing /θIŋ/ 

[h] হ 

height /haIt/ 

[l] ল 

light /laIt/ 

[r] র 

right /raIt/ 

[w] য় 

white 

/hwaIt/ 

[j]ইয়য় 

yes /jes/ 

Table 3. English-Bengali IPA chart for consonants 

Table 1, 2 and 3 shows our proposed English-Bengali IPA chart for vowels, diphthongs and 

consonants. Using rule-base we transliterate the English IPA into Bangla alphabets. The 
above IPA charts leaves out many IPA as we are considering about translating from 
English only. To translate from other language such as Japanese to Banglawe need to 
create Japanese specific IPA transliteration chart. Using the above English-Bangla IPA 
chart we produced transliteration from the English IPA dictionary. For examples: 
pan(pæn): পযান; ban(bæn): বযান; might(maIt): মাইট . 

5 Akkhor Transliteration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Akkhor phonetic mapping for Bengali alphabets 
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Akkhor Bangla Software first implemented Bangla phonetic input method for computers. As a 

result this phonetic mapping become very popular among Bangladeshi computer users. However 

initially Akkhor did not consider about using Bangla Lexicon database. In this research we used 

Akkhor phonetic mapping with Bangla Lexicon database. Table 4 shows the phonetic mapping 

for Bengali alphabets. 

Because of the ambiguities in mapping 50 Bengali letters using 26 English letters, any fixed 

Bengali Phonetic mapping is debatable. As a result different people have different assumptions 

on phonetic input system for Bengali language using English letters. To overcome this problem 

we used Bengali Lexicon which includes the IPA for each Bengali words. The system produces 

the Bengali transliteration by ranking the words using IPA string edit distance. 

5.1 IPA String Edit Distance  

IPA string edit distance assign a score to a sequence of acoustic observations X for a 

hypothesized string of phones P, but rely on different distributions for P (Droppo et. al. 2010). 

From these IPA string edit distance scores, we choose the highest scored transliteration and show 

the word candidates in descending order. 

6 Experiment 

Based on the above method we implemented the phonetic Bengali input method for computer and 

mobile devices. We evaluated the produced transliteration for our test-set including 200 words. 

This test-set mainly covered the foreign words from different domains. We have taken these 

words by averaging across multiple users’ behaviour.  

Table 5 shows our evaluation result, where we compared our proposed phonetic input method 

with the Akkhor Baseline. We manually checked the produced transliteration quality and 

assigned each test-set entry as wrong (W), correct (C) or neutral (N). Neutral refers to such words 

which can be correct in different context and it depends on the user intention. For example, ban 

can refer to both Bengali word বান and বযান. Therefore, we assign such ambiguous words as 

neutral or N. In our experiment, our proposed approach improved the quality of Bangla 

transliteration input method by 14 points. The proposed phonetic input method could correclt 

transliterate 68% of the test-set words. 

Transliteration 

Quality 
Akkhor 

Baseline 

Proposed Phonetic 

Input Method 

Correct (C) 
54% 68% 

Wrong (W) 
39% 22% 

Neutral (N) 
7% 10% 

Total  100%       100% 

Table 5. Comparison between Akkhor transliteration and proposed phonetic input method 

For example, Table 6 shows 3 sample transliterations produced by Akkhor Baseline and our 

proposed Phonetic Input Method. As we can see for first two examples Akkhor produced wrong 

(W) transliteration and our proposed phonetic input method produced correct (C) transliteration. 
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In third case, both are marked as neutral (N), because both words is correct in different context 

and it depends on the user intention. 

# Input 
Akkhor Baseline 

Proposed Phonetic Input Method 

1.  
School স্চ ল (W) স্ক ল (C) 

2.  
University ঊিিেেরিিতয় (W) ইউিিে িিিিি (C) 

3.  
ban ব ি (N) বযান (N) 

Table 6. Sample Transliterations produced by Akkhor baseline and proposed method 

7 Conclusion 

We proposed a phonetic Bengali input method which is useful for computer and mobile devices 

by transliteration mechanism. Our proposed solution is effective especially for mobile devices 

due to low computational resources. For English foreign words, the system used International-

Phonetic-Alphabet(IPA)-based transliteration method for Bangla language. Our proposed 

approach improved the quality of Bangla transliteration input method by 14 points. In future, this 

method can be expanded to consider about handling foreign words in other Indian languages.  
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Abstract
LuitPad is a stand-alone, fully Unicode compliant software designed for rapid typing of
Assamese words and characters. There are two main typing options; one which is based on
approximate sound of words and the other based on the sound of characters, both of which
are efficient and user-friendly, even for a first-time user. In addition, LuitPad comes with
an online spell-checker; on “right-clock” over a misspelt word, presents the user with a list
of relevant appropriate corrections for replacements. Assamese is an Indic language, spoken
throughout North-Eastern parts of India by approximately 30 million people. There is a
severe lack of user-friendly software available for typing Assamese text. This is perhaps the
underlying reason for the miniscule presence of Assamese based information storage and
retrieval systems, both off-line and on-line. With LuitPad, the user can retrieve Assamese
characters and words using an English alphabet based keyboard in an effective and intuitive
way. LuitPad is compatible with Windows, Mac and Linux with a GUI. The software can
store the contents in LuitPad file format (“.pad” extension) that can store images and text.
In addition, .pad files can be easily exported to pdf and html files.

Keywords: LuitPad, Assamese language, Unicode, text input.
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1 Introduction
Assamese is one of the commonly spoken languages in the North-Eastern parts of India.
Approximately 30 million people speak Assamese, and it is the regional official language in
the state of Assam. Although Unicode points have been assigned for the Assamese alpha-
bets Assamese texts on the Internet or in digitized format is almost non-existent. There are
several hundred commonly used glyphs related to Assamese characters. At present, there is
no text editing software to write Assamese texts in an effective manner. The most popular
software, commonly used in desktop publishing shops and newspaper printing houses, is
a non-Unicode based software. The software uses non-Unicode proprietary font files and
reuses the ASCII code points to render non-English glyphs. In order to circumvent the
limitation of just 127 ASCII codes, a set of segmented strokes are represented using ASCII
codes in a font file. For example, in an ordinary font file the glyph at the hexadecimal code
0x41 is the shape for the letter “A” but in the custom designed font file it may look like
something very different. Most of the characters are rendered by juxtaposing 2-3 of these
strokes. In order to accommodate bold, italic and Assamese numerals there are other sepa-
rate font files. Hence, an ASCII code can correspond to several different glyphs depending
on the font file. As a result, typing characters involves pressing complex key combinations.
This also confines inputting of Assamese texts on computers only to highly trained profes-
sionals. Due to the above mentioned difficulties and lack of effective Assamese text editing
software Assamese text on the Internet, or any other digitized form, is very rare. Among
the very few websites that use Assamese texts, mostly daily newspapers, the overwhelm-
ing majority presents their contents in the form of images of pages. This prohibits text
searching and mining in Assamese documents.

LuitPad is developed to address the above difficulties of Assamese text editing on com-
puters. It is designed to be able to edit Assamese text in Unicode by novice users with
minimal effort and training. The Unicode complaint nature of LuitPad allows the user to
copy Assamese text from the LuitPad editor to any email in the Unicode format, and view
it elsewhere, with commonly used web-browsers (e.g. FireFox, Google Chrome, Internet
Explorer, Safari, etc). In addition, approximate pronunciation based mode in the software
prevents the user from making potential spelling mistakes by presenting a list of possible
words. The interactively presented words are retrieved from an internal dictionary, with
more than 60,000 Assamese words, which also includes proper nouns. Most Assamese dic-
tionaries list about 30,000-40,000 words. The efficient retrieval of words is done by using
elegant rapid searching data-structures and morphological trimming algorithms developed
by the authors. In addition, the approximate pronunciation based search algorithms in
LuitPad are tailored to commonly used Assamese.

The rest of the paper is organized as follows. In section 2 we describe previous work related
to Assamese script and writing tools. Section 3 explains the features of LuitPad software;
Section 4 discusses the experimental tests of the software; and finally, Section 5 concludes
the paper.

2 Background on Assamese writing and previous work
Very few studies have been reported on the computational linguistic approaches of the
Assamese language (Saharia et al., 2010, 2012; Sharma et al., 2002, 2008) and Assamese
writing systems (Hinkle et al., 2010).
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Brief description of the Assamese script Assamese writing has evolved from the
ancient Indian script, Brahmi. Brahmi had various classes, and Assamese originated from
Gupta Brahmi Script. The history of Assamese script and language can be divided into
three main era, ancient, medieval and modern script. During each era, the language went
though significant changes in terms of script, language and literature. The oldest Assamese
inscriptions were found in the state of Assam are 5th century rock inscriptions at Umachal
in Guwahati1 and the Nagajuri Khanikargaon inscription, in Golaghat district. These two
samples of inscription are in Sanskrit (Brahmi script). The Kanai Barasi Bowa rock in-
scription at Rajaduar in north Guwahati, dating back to 1205-06 AD, marks the first stage
of evolution of the Assamese alphabet and deviation from Brahmi script. Assamese alpha-
bets consist of 11 vowels, 41 consonants, 143-174 two-phoneme and 21-27 three-phoneme
clusters of conjunct letters. Table 1 tabulates Assamese consonant and vowels and Table 2
shows digits, example of a consonant with example usage of vowel modifiers and a few
instances of multiple cluster letters.

Consonants
ক খ গ ঘ ঙ
চ ছ জ ঝ ঞ
ট ঠ ড ঢ ণ
ত থ দ ধ ন
প ফ ব ভ ম
য ৰ ল ৱ
শ ষ স হ
ক্ষ ড় ঢ় য়
ৎ ◌ং ◌ঃ ◌ঁ

Vowels
অ আ ই ঈ
উ ঊ ঋ
এ ঐ ও ঔ

Table 1: Assamese consonants and vow-
els

Digits
০ ১ ২ ৩ ৪ ৫ ৬
৭ ৮ ৯
Consonant ক with vowel modifiers
ক কা িক কী কু কূ কৃ
েক ৈক েকা েকৗ

Some two cluster letters
ক্ক ক্ল ক্ত ক্ম ক্স ম্ম প্ত
স্ক ষ্ক স্ত ঙ্গ ন্ত ত্ত ন্ন
ল্ল ষ্ণ শ্ত হ্ল স্ন ষ্ট প্প

Some three cluster letters
ত্তব্ ন্ধৰ্ স্তৰ্ জ্জব্ ম্ভৰ্ ন্ধ�

Table 2: Digits, consonants with vowel
modifiers and, examples of 2 & 3 letter
clusters.

Brief description of previously used techniques When we discuss text inputting
software, usually the focus is on the soft-keyboards and other methods/techniques such
as auto-completion, character/word prediction, handling morphology and word list etc.
Due to the large (in the order of several hundreds) set of letters and conjunct letters
(cluster letters), in comparison to the English alphabets, writing Assamese with an En-
glish keyboard is extremely inefficient, The Bureau of Indian Standards adopted ISCII2

to represent text in Indian languages. After that, Unicode3 adopted the ISCII with some
modifications. Among the Indian languages Hindi, Bengali and Telugu are explored more

1The capital of the state of Assam and the gateway of North-Eastern India
2Indian Standard Code for Information Interchange (ISCII) is an 8-bit character encoding, for Indian

languages originate from Brahmi script. ISCII is adopted as a standard by Bureau of Indian Standards
(BIS) in 1991.

3An UNIversal enCODEing system, was initiated in January 1991, under the name Unicode, Inc., to
promote a common encoding system to process text of all languages. Currently, Unicode is in version 6.1.0.
It provides three different encoding formats: UTF-8, UTF-16 and UTF-32.
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than other Indian languages. For soft-keyboards, only one Assamese specific work has been
reported in (Hinkle et al., 2010). They proposed an efficient and adaptable soft keyboard
for Assamese, using simple genetic algorithms. They also reported techniques for creating
optimal language independent soft-keyboards. The product is not yet available in the mar-
ket. Google(iGoogle) has a predictive soft-keyboard for Assamese. In this static keyboard,
alphabets are arranged in the boundary of the input box. It has lesser number of keys
since both the vowels and phonetic variant buttons are missing from the layout.

During our literature survey we found only a few tools available for Assamese text writ-
ing. Among them Ramdhenu4, an ASCII based Windows tool is more popular in desktop
printing businesses and new-papers. It is a hooking application that interfaces with the
active application (for example MS Office, Notepad etc.) and change the font mapping to
its own font Geetanjali. In the Geetanjali, the ASCII codes are assigned some carefully
chosen strokes and segments in a way that the glyph for each character can be created
by collating these segments. The main disadvantage of this tool is it is ASCII based, and
difficult to input Assamese digits and cluster characters. It requires (Ctrl + Shift) key
press combinations to input numerals. The user has to change font face in order to ren-
der italic or bold text. On the other hand, Avro (OmicronLab, 2012), Baraha (Baraha,
2012), Lipikaar (Lipikaar, 2012) and Sabdalipii (Sabdalipi, 2012) are Unicode based writing
tools, the first three are for all Indian languages and final one is specifically for Assamese.
Avro and Baraha supports phonetics based writing but requires quite a large number of
key strokes. Baraha, Sabdalipi and Lipikaar have integrated text editors. Google and
Wikipedia have developed soft keyboards for Brahmic scripts, but these are not opti-
mized(Hinkle et al., 2010), and therefore, inefficient to use.

3 Description of LuitPad
LuitPad is designed to make inputting of Assamese text efficient in the Unicode format,
by lay users and professional typists. LuitPad achieves this by allowing the user to retrieve
Assamese characters and words, with English alphabet based keyboards, in an effective
and intuitive way. This helps the user to use LuitPad effectively, with less than 20 minutes
of training. In addition, it prevents the user from making potential spelling mistakes by
utilizing an internal dictionary of more than 60,000 Assamese words including proper nouns.
In the remainder of the article, by “character” we mean Assamese characters and when
we refer to English or Roman alphabets we do so explicitly. All the keys and keyboards
we refer to are based on the Roman or English alphabet. Following are the fundamental
features of LuitPad that are pertinent to text inputting.

1. LuitPad has two primary modes of input: character mode, where characters are
entered one at a time; and the word mode, where user can input Assamese words by
typing an “approximate” phoneme of the Assamese word, in Roman alphabets.

2. In the character mode, each Assamese alphabet is mapped from a prefix string of
Roman alphabets (usually, 1-3 characters long). The mapping is customizable by
the user to suit her preferred way of pronouncing Assamese characters, using Roman
alphabets. Multiple users can store, retrieve and change their mapping in their
personalized profiles, in the same installation of LuitPad.

4Ramdhenu Inc.
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Figure 1: The front end GUI of LuitPad, in the Windows version, with a editor window
showing a few lines of Assamese text and an image.

3. In the character mode, most of the Assamese words can be retrieved on the text
editor by just typing the first few characters and pressing the Ctrl key. This brings
up a list of words from an internal built-in Assamese dictionary. Apart from not
having to type the entire word, this also reduces the possibility of making spelling
mistakes.

4. LuitPad is also equipped with a spell checker for Assamese words and prompts a list
of relevant corrections for spelling mistakes.

5. LuitPad text editor allows inserting, positioning and resizing of images.

6. Documents edited using LuitPad can be saved as a .pad file; and also can be edited
later using LuitPad. The .pad file format is designed specifically for LuitPad.

7. Files created with the LuitPad text editor can be saved in PDF and HTML format
for printing or other official works.

8. New words can be added to the built-in dictionary, while writing, simply by right
clicking the mouse and choosing the “Add to dictionary” option; and similarly, already
added words can be deleted by using the “Delete from dictionary”. The added words
can also be recalled using the Ctrl key as described above.

9. Any document written in the Geetanjali (a popular non-Unicode format for As-
samese) font can be seamlessly converted to and fro to Unicode format by copy/paste.

10. LuitPad is a stand software, 100% Unicode compliant, and runs on Windows, Linux
and Mac computers.

3.1 Input modes in more detail
LuitPad has the text input modes: character and word modes. The selected texts are
always entered at the cursor. Below we describe these two modes in more detail.
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(a) (b) (c) (d)

Figure 2: (a) In character mode a pop-up presents the set of possible characters to choose
from. (b) A vowel modifier list pop-ups, if the “Automatic Matra” option is turned on,
in the character mode after non-vowel character. (c) Prefix based recalling of dictionary
words in character mode. (d) In word mode, recalling dictionary words with approximate
pronunciation in Roman alphabets.

Character mode: In this mode, each character in the Assamese alphabet, just consonants,
vowels and vowel modifiers but not conjuncts, is mapped to a short string of Roman
alphabets (usually, 1-4 characters but there is no length limit and they are customizable
by the user). For example, the characters ক, খ and ক্ষ are mapped by ka, kha and khya,
respectively. The digits 0-9 on the keyboard are mapped to the corresponding Assamese
digits. When a user types any prefix of the mapped strings, in Roman alphabets, all the
corresponding Assamese characters are presented on a tool-tip pop-up window, for the
user to choose from. The left (←) and right (→) keys can be used, followed by <Enter>,
to choose the desired character. The chosen character is inserted into the text editor.
For example, consider the mapping, mentioned above, for the characters ক, খ and ক্ষ and
suppose these are the only characters that have mapped strings beginning with the Roman
alphabet “k”. Upon typing “k” the the tool-tip window shows ক, খ and ক্ষ If “h” is pressed
next, the characters খ and ক্ষ corresponding to the prefixes “kha” and “khya” will appear
in the tool-tip window. Therefore, as the user progressively types out a possible mapped
prefix the choices get narrower. If the user types out a possible mapping string which is
not mapped to any character then the tool-tip window stops appearing. If “Automatic
Character Fill” option, under the “Settings” menu is on and the prefix corresponds to only
one possible character, then the character is automatically inserted, without requiring the
<Enter> key-press. In addition, if the “Automatic Matra” option, in the “Settings” menu,
is on and if the entered character is a consonant, a tool-tip window with the possible vowel
modifiers is shown. If the user does not want to select a vowel modifier, she can continue
entering the next character. In order to reduce typing, an entire word can be retrieved by
typing the first few characters followed by a Ctrl key press. This will bring up a drop down
list of words containing the prefix to choose from. Conjuncts can be created by pressing
<Escape>, with the cursor at the end of a juxtaposition of the consonants.

Word mode: In the word mode entire Assamese words can be inserted just by typing an
approximate phoneme for the Assamese word. The “approximate” phoneme helps accom-
modate different phonetic sounds for the same word, by different users. For example, the
phonemes “karma”, “korma”, “kormo” and “karmo” might be used by different users to re-
trieve same word কমর্. A dynamically changing drop down list helps the user to navigate to
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(a) (b) (c)

Figure 3: The stages of typing a word with morphological inflections. (a) Root word, (b)
first inflection and (c) second inflection

the correct word, to deal with possible ambiguity. The list is updated with the completion
of each key stroke. Once the user selects a word from the list, using the up(↑)/down(↓)
keys, the selected word is inserted at the cursor. After the user enters a word then if the
user presses <Space> bar then the process of inserting a separate word starts. However, if
the user continues typing, without pressing <Space> bar, then the key strokes are inter-
preted to a get list of closest matching morphological inflections. It is worth mentioning
here that Assamese is a highly inflectional language, and a root word may have up to 1500
inflectional forms. Consider the word িশক্ষকসকলৈল which can be broken into the root word,
followed by morphological inflections as, িশক্ষকসকলৈল → িশক্ষক (root word) + সকল (inflec-
tion) + ৈল (inflection). The sequence of selections leading to the entering of the entire word
িশক্ষকসকলৈল is shown in Figure 3. In practice, we observed a substantial improvement in
the efficiency of Assamese text typing by common users. The users could type up to 15-20
words per minute in LuitPad as opposed to 5-8 words per minute using other available
software.

Spell checker LuitPad has a spell checker for Assamese words. Based on its internal
dictionary the words with incorrect spellings are flagged with a red under line. The user
can choose to ignore any spelling error marks by clicking the ignore tab. The list of
words, deemed spelling errors, are ignored in the document and does not affect other
documents. This ignore list is stored as a part of the data-structure of the “.pad” file.
However, in order to add a word to the ignore list to all documents the the unrecognized
word should be added to the dictionary. The basic mechanism of the spell checking feature
is done by computing the Levenshtein distance between a word and the words in the
dictionary. Note this pairwise distance computation can introduce a perceptible delay in
the distance computation. Therefore, we have created an algorithm and a data-structure
that avoids such pair wise but rather does a directed search in the dictionary. Although, a
morphologically inflected form of a word may not be in the dictionary we use a stemming
algorithm to compute the list of root words, at most 4-5, to do the search.

3.2 Algorithms and data curation
The most commonly used algorithms, in the software, are various forms of basic tree based
algorithms commonly presented in any data-structure text book. The Levenshtein distance,
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Figure 4: The LuitPad spell checker, with its presented correct choices, for a misspelt word.
In the above case the top choice is the correct choice. The figure shows only the top five
choices.

between two words, calculations are done using dynamic programming algorithms, imple-
mentation by the authors. The penalty matrix for the distance computation algorithms
are based on linguistic proximity of the characters. For example, two similar sounding
vowels are assigned a lower penalty value. The internal dictionary used, in its current form
is only a list of Assamese words. Some of the words are with morphological inflections.
The list of words are collected for a variety of sources, such as online dictionaries, bloggins
sites. The gathered words are first programatically filtered for basic inconsistencies and
later curated one by one. At its current state there are slightly more than 75,000 entries
in the dictionary.

4 Experiments with users
Since its inception, LuitPad has been designed, and often redesigned, based on the feedback
from various users. Some features were added based on the average users’ preferences and
others were deleted. We also conducted a quantitative test on the software. The authors
are not aware of any benchmarking text dataset, designed for evaluation of typing speed,
for the Assamese language. We evaluated the words per minute typing speed, for a group
of 14 users by letting them type from commonly printed text. Half of the users do not
write Assamese text language on a regular basis, but they can read very well The mean
reciprocal rank(MRR), for the retrieval of list of words in the phonetic mode, is computed
as the average of the reciprocals of 100 word searches from a popular magazine. Words that
did not show up in among the, mostly proper nouns, were ranked infinity, the reciprocal
of which is taken as zero. The accuracy of the spell checker is computed based on the
percentage of appearance of the correctly spelt word, among the list of suggestions (a
maximum of 10 suggestions are presented by the software).

#Users Words per min Spell checker accuracy MRR
14 8-22 93% 0.76

Table 3: Results of the experiments on accuracy and speed of LuitPad.
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5 Conclusion
In this paper we described a software, LuitPad, developed for Assamese text writing, in
an efficient way. Future work will involve including it to other Indic languages, such as,
Oriya, Bengali, Manipuri, Hindi, Marathi, etc. This because these languages have a similar
origin and overlapping features in terms of character, conjuncts and vowel modifiers. In
most of the cases in order to support one of the above Indian languages, the major changes
would be to update the list of Unicodes for their glyphs, phonetic sound of alphabets and
a reasonable dictionary. In addition, the internal parameters of the search algorithms used
will be calibrated automatically to the user.
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ABSTRACT 

In the early 1990’s, online communication was restricted to ASCII (English) only environments. 

A convention evolved for typing Arabic in Roman characters, this scripting took various names 

including: Franco Arabic, Romanized Arabic, Arabizi, Arabish, etc… The convention was 

widely adopted and today, romanized Arabic (RAr) is everywhere: In instant messaging, forums, 

blog postings, product and movie ads, on mobile phones and on TV! The problem is that the 

majority of Arab users are more used to the English keyboard layout, and while romanized 

Arabic is easier to type, Arabic is significantly easier to read, the obvious solution was automatic 

conversion of romanized Arabic to Arabic script, which would also lead to increasing the amount 

and quality of authored Arabic online content. The main challenges are that no standard 

convention of Romanized Arabic (many  1 mappings) is available and there are no parallel data 

available. We present here a hybrid approach that we devised and implemented to build a 

romanized Arabic transliteration engine that was later on scaled to cover other scripts. Our 

approach leverages the work done by Sherif and Kondrak’s  (2007b) and Cherry and Suzuki 

(2009), and is heavily inspired by the basic phrase-based statistical machine translation approach 

devised by (Och, 2003). 
 

KEYWORDS : Transliteration, Romanized Arabic, Franco-Arab, Maren, Arabic IME  

1 Introduction 

Transliteration automates the conversion from a source text into the corresponding target text, 

where usually both source and target texts are written suing different scripts. Both texts might 

belong to the same language as in the case of “Roman-script Arabic” to “Arabic-script Arabic” or 

to two different languages as in the case where the source text is English written in Roman script 

and the target one is Arabic written in Arabic script. 

Our initial implementation was targeting the transliteration of colloquial Arabic, written in roman 

script, into colloquial Arabic written in Arabic script. Later on the same engine has been used to 

transliterate English text written in roman characters into Arabic written in Arabic script and 

visa-versa, then it was scaled to cover other scripts such as Farsi, Hebrew, Urdu and many others. 

The engine was integrated into a multitude of applications, the first one being a TSF (Text 

Service Framework) component. TSF provides a simple and scalable framework for the delivery 

of advanced text input and natural language technologies. It can be enabled in applications, or as 

a text service. TSF services provide multilingual support and deliver text services such as 

keyboard processors, handwriting recognition, and speech recognition. 
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In this design, TSF was used to provide a candidate list for what the user types-in across 

Windows applications, and the service is easily discoverable through the language bar. The user 

will be able to get the transliteration functionality in any TSF-Aware control (e.g. RichEdit). 

The second target application is Machine Translation, where transliteration will be called to 

address out-of-vocabulary words, mostly named entities.  

Having the above target applications in mind, the design should be devised in a way to account 

for all relevant requirements and expectations in terms of scalability, accuracy, functionality, 

robustness and performance. 

The first section of this paper presents the architecture that we devised to implement our 

transliteration engine initially targeting romanized Arabic conversion. In the second section, we 

present an innovative technique for extracting training data out of parallel sentences, for training 

a “named entity” transliterator. In the third section we present our scoring mechanism, and in 

section 4, we present our evaluation and results. 

 

2 Challenges 

One of the key challenges we faced was to collect data to build the colloquial Arabic corpus. The 

biggest portion of this data was generated through the “Blog Muncher”, an in-house crawling tool 

that scraps predefined public blog sites on a regular basis. 

Figure 1 below shows a breakdown of the different sources and sizes of the data we were able to 

collect: 

 

FIGURE 1 – Sources of the colloquial Arabic corpus. 

 

 

Another challenge was the collection of parallel romanized Arabic  data. We had to build this 

parallel data manually, using the vocabulary of the monolingual RAr corpus, amounting 35K 

words and had them human-translated. And while the monolingual corpus was used to train the 

target language models, the parallel data was used to train the transliteration model. 
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3 Architecture 

3.1 Design Criteria 

The design of the transliteration engine fulfills the following major criteria: 

 Independent of the language-pair processed so that the same engine would process 

different language pairs.  

 Independent of the calling application, where the initial applications under consideration 

are: Text Windows service, Machine Translation and on-line transliteration. 

 Independent of the way the different models have been generated. Currently both rule-

based and alignment-based transliterations are considered. 

 Supports integration with C++, C# Applications and ASP pages 

 Supports remote calls through the cloud, Web Services. 

 The candidates should be ranked in context. 

 Response time should be real-time. 

3.2 Design 

Our Transliteration architecture is based on a hybrid approach that combines both rule-based 

techniques and SMT-like techniques, as shown in Figure 2, consisting of the following modules: 

 Candidate Generator: The module that will generate all possible candidates based on 

the Translation Model 

 Scorer/Ranker: The module that computes scores for candidates based on different 

models. 

 Translation Model: The data object carrying the possible segment mappings between 

source and target along with the corresponding probabilities. 

 Word Language Model: Target Language Model carrying probabilities of word 

unigrams, extensible to bigrams and trigrams probabilities in later versions. 

 Character Language Model: Target Language Model carrying probabilities of 

characters unigrams, bigrams and trigrams. 

 Configuration data: The configuration data file specifying language pair-specific 

information including the location of related data models. 

 Transliteration Workbench: The application developed in-house to generate various 

language models, used also to test and evaluate the engine. 

The transliteration process is done in 2 phases. In the first phase, the candidate generator module 

generates all possible hypotheses. It is driven by the transliteration model which is composed of 

the mapping rules, and their probabilities. The rules could be either (i) handcrafted by a linguist 

through a rules editor, assisted by the source language corpus. In that case the rules probabilities 

are learned through a parallel corpus, or (ii) if the training data is big enough, the transliteration 

model could be learned automatically through automatic alignment. 

In the second phase, the generated hypotheses are scored and ranked based on a log-linear 

combination of 3 different models: the original transliteration model, the target language word 

model, and the character-level model. Both target language models are generated using MSR LM 

toolkit, trained through the target language corpus. 
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The system parameters are tuned for Mean Reciprocal Ranking score, using the evaluator. The 

individual tools were integrated in a pipeline environment that we called “Transliterator 

Workbench”. 

 

 

FIGURE 2 – Hybrid architecture of the transliteration engine. 

 

3.3 Pruning Candidate paths 

In order to optimize speed and space, pruning the candidates is crucial. In our approach, we 

applied pruning at each character position while dynamically computing incremental score based 

on both the transliteration model and character models. We then computed the accuracy loss in 

coordination with the pruning factor, and selected the default pruning factor as the one that would 

account for an accuracy loss <= 1% of the best produced accuracy. 

To guarantee real-time response in the worst case scenario, we have set a predefined time limit 

for triggering aggressive pruning that is also dependent of the target task. We dynamically 

increase pruning when predefined time limit has been reached at different character positions, till 

first-best. 

As shown in Figure 3 below, initial pruning results show a loss of 0.1% in accuracy at 100-best, 

with a translation table (rule set) of 1300 entries. Where Acc-BF is the accuracy using Breadth-

first strategy, Acc-DF is the accuracy using Depth-first strategy, and MRR is the mean reciprocal 

rank accuracy.  
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FIGURE 3 –MRR Accuracy vs. pruning thresholds. 

 

3.4 Stemming 

In many cases, especially with long input strings, the required performance could not be met, so 

we resorted to stemming the input strings. This would improve performance, and increase recall 

to account for such cases where all generated hypotheses were not found in the language model, 

and where the input word contains potential affixes. The affixes list is predefined with their 

corresponding transliterations. 

Whenever the stripping of a given suffix, prefix or prefix-suffix combination leads to candidates 

seen in the target LM, the affixes’ transliterations are concatenated to the generated candidates. 

There are 2 strategies to be considered here: 

1. Exhaust all possible affixes. 

2. Exit on first success, in which case the affixes lists need to be prioritized. 

Both strategies have been experimented, and decision was made based on the accuracy/speed 

results. We also used large enough dictionary (10K+) which enabled us to stem the input word 

and match it against the dictionary prior to calling the candidate generator, and resulted in a 

sensible impact on the system performance. 

 

4 Scoring 

Ranking the generated hypotheses is based on the individual candidates’ score. Inspired by the 

linear models used in SMT (Och,2003), we can discriminatively weight the components of the 

generative model,  and compute each candidate score based on a weighted log-linear combination 

of 3 models, as per the formula below: 

λT log PT(s|t) + λC log PC (t) + λW log PW(t) 

 
Where emission information is provided by PT(s|t), estimated by maximum likelihood on the 

operations observed in our training derivations. PC (t) provides transition information through a 

target character language model, estimated on the target corpus. In our implementation, we use a 
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KN-smoothed trigram model (Kneser and Ney, 1995). PW(t) is a unigram target word model, 

estimated from the same target corpus used to build our character language model. 

Since each model’s contribution is different than the other, we need to estimate weights values 

(λT, λC, λW) that would maximize system’s accuracy. We used 10% of the parallel data for λ-

training, and isolated another 10% as a test set. 

 

5 Evaluation 

We have adopted two evaluation metrics, namely the mean reciprocal rank (MRR) and Topmost 

candidate, both techniques are on the word-level: 

Mean reciprocal rank is a measure for evaluating any process that produces a list of possible 

responses to an input, ordered by probability of correctness. The reciprocal rank of a given input 

is the multiplicative inverse of the rank of the first correct answer. The mean reciprocal rank is 

the average of the reciprocal ranks of results for a sample of input strings. 

In the Topmost technique, only the first (topmost) candidate, i.e the one with the highest 

probability of correctness is considered during evaluation. The evaluation is done on the word-

level, by comparing the generated candidate with the reference. 

 To account for applications where no further selection could be allowed, the Top 

candidates only were evaluated against the gold standard. 

 And for other applications where further selection was allowed,  we evaluate the MRR 

for the n-best candidates, in our case, we considered the 5-best candidates: 

 

o Linear scoring: assign (1-i)/n for the i
th

 candidate in an n-best scheme 

o MRR : assign 1/(i+1) for the i
th

 candidate in an n-best scheme 

 

Metric Value 

Top Candidate Ratio 

Linear Scoring 

MRR 

85 % 

95% 

90% 

 

TABLE 1 – Evaluation Results for the RAr transliterator 

 

 

Table 1 above shows the results of the hybrid system for the different metrics using a test set of 

5K words. We were able to achieve 90% accuracy on the MRR metric considering the 5-best 

candidates, and 85% considering only the top candidate only. 
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6 Scaling to Other Languages 

To overcome the lack of training data, we have used a generative model constrained with the 

target language to extract parallel named entities out of parallel sentences, as depicted in the 

diagram shown in Figure 4 below: 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4 –Extraction of Parallel NE from Parallel sentences. 

 

Starting with a very crude mapping of letters, we can build an initial shallow set of rules, and use 

it to bootstrap a primitive transliterator.  

Then using that shallow transliterator and a corpus of parallel sentences, used to train Machine 

Translation, we transliterate the source sentences. Leveraging the fact that the transliteration of 

proper names is usually very similar, if not equal, to its translation, we use similarity matching, 

based on a combination of minimum edit distance and cosine similarity, to spot corresponding 

named entities in both the source and target sentences and come up with a list of parallel Names. 

Then using monotonic alignment, we can augment the rule set in an iterative way. 

Using this methodology, we were able to scale our transliteration framework to other languages 

and develop both the Hebrew-to-English and the Farsi-to-English transliterators. 

 

Conclusion 

The hybrid architecture proved to be quite efficient, since for those languages where human 

expertise was available, and the amount of parallel training data was very little, the number of 

segment alignments was relatively tiny as compared to the size learned from parallel data, 

resulting in an increased performance. On the other hand, whenever human expertise was absent, 

and enough training data was available, the framework was still able to produce models for other 
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languages and scripts. Leveraging the generative model to extract parallel Named Entities out of 

parallel sentences has opened new doors enabling easy scalability to many other languages, 

especially those for which MT parallel training data is available. 
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ABSTRACT 

In this paper we present an automatic Dzongkha text to Braille forward transliteration system. 

Dzongkha is the national language of Bhutan. The system is aimed at providing low cost efficient 

access mechanisms for blind people. It also addresses the problem of scarcity of having 

automatic Braille transliteration systems in language slime Dzongkha. The present system can be 

configured to take Dzongkha text document as input and based on some transliteration rules it 

generates the corresponding Braille output. We further extended the system to support an Audio 

QWERTY editor which allows a blind person to read and write Dzongkha texts or its equivalent 

Braille through a computer. The editor also contains Dzongkha voice feedbacks to further ease 

the use. 

KEYWORDS: Braille, Forward Transliteration, Dzongkha, Audio QWERTY  

97



1 Introduction 

The Braille encoding system is one of the primary means of representing textual documents in a 

readable format for the Blind persons (Loaber, 1976; Weller and Klema, 1965; Basu et al,, 1998; 

Lahiri et al., 2005). However, due to the scarcity of Braille compatible reading materials, blind 

people face difficulty in fulfilling necessities like education and employment. The unavailability 

of low-cost technical supports worsens the situation further. For them, the inability to 

communicate via the traditional writing system leads to complications at official places where the 

primary mode is still through writing. In order to bridge between the written text systems 

generally aimed at sighted persons and access mechanisms through which blind people can 

communicate with ease and efficiency, developments of systems such as automatic Braille 

transliteration and screen readers are highly needed. 

Several works have been done on building automatic, bi-directional text to Braille transliteration 

system and speech enabled interfaces for the Blind community (Blenkhorn, 1995; Pennington 

and McCoy, 1998; Raman, 1996). However, all the present systems suffer from the central 

limitation of language dependency. A Braille transliteration system requires certain rules, based 

on which the system automatically transliterate a given text document into Braille. The rules are 

very specific to the input language. Therefore, system for a particular language cannot be 

extended to the others. 

Dzongkha is the national language of Bhutan
1
. It has been found that more than 4% of the 

children in Bhutan suffer from early blindness. Therefore, it is essential to develop tools and 

technologies in such a country that will facilitate blind persons to access information from written 

text documents. The existing text on Braille transliteration systems cannot be directly applied to 

Dzongkha, mainly due to the following reasons: 

1. Most of the systems are based on foreign languages like English, French, Germany, 

Spanish, Portuguese, and Swedish (winbraille, 2012; Duxbury, 2000; indexbraille, 2012; 

NFBTRANS, 2004). As Bhutanese scripts are quite different from these languages, 

separate rules are applied to transliterate from Dzongkha to Braille. 

2. Foreign systems like, Duxbury (2004) and JAWS (2008) are costly and a large segment 

of the blind population is from poor economic background. 

In order to overcome the limitations of the existing systems, we have developed a Dzongkha 

language text to Braille transliteration (DLBT) system. The system comprises of the following 

two key features: 

i. A generic framework for the transliteration of Dzongkha texts to Braille. 

ii. An audio QWERTY editor that provides pre-recorded voice feedback to any key-press 

operation performed by a blind user.  

Apart from creating Braille encoded textbooks, such system will also assist blind people to create 

their own electronic text documents. 

The rest of the paper is organized as follows: section 2 briefly discusses about the state of the art 

in text to Braille transliteration systems; in section 3 we have discussed about the Dzongkha 

                                                           
1 http://en.wikipedia.org/wiki/Languages_of_Bhutan 
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Braille encoding system; in section 4 we have described the architecture of our proposed system 

and its the key components; we have discussed the Audio QWERTY editor in section 5 and 

finally concluded the paper in section 6. 

2 Related Works 

A number of texts to Braille transliteration tools are present for different languages. In English, 

systems like, Duxbury (2000), JAWS (2008), and WinBraille (2012) are popularly used. 

However, the problem of transliterating English text to Braille is relatively simpler than south-

east Asian languages like, Indian or Bhutanese languages. It has been observed that due to the 

similarity in the scripts of these languages, rules to transliterate Dzongkha texts to Braille are 

very similar to that of the Indian language texts. The Sparsha Text to Braille Transliteration 

toolset (Lahiri et al., 2005; Dasgupta and Basu, 2009) is the only system encountered by us so far 

that can transliterate Indian language texts to Braille. The system provides some unique features 

like transliteration of mathematical symbols and tactile graphics to Braille. Apart from computer 

based transliterations of Braille, a Braille writing tutor system has been developed by Kalra et al. 

(2007). The prototype tutor system uses an e-slate device to capture a student’s action and tries to 

develop the Braille writing skills. 

3 The Dzongkha Braille Encoding System  

The Dzongkha Braille system is the standard technique of representing Dzongkha texts into 

Braille (Tibetan, 2004; Dzongkha, 2005). The system uses 6 dot cells to represent each Dzongkha 

character. The combination of these 6 dots can represent a total of 2
6
-1 i.e., 63 different Braille 

characters. However, as described later, Dzongkha has more than 63 characters. This issue is 

handled by assigning multiple Braille characters for a single source language character. This is 

illustrated in the third row of table 1. Although Braille encoding for all languages share the same 

Braille font, different languages have different Braille representation rule, thus a single Braille 

character may be interpreted differently in the context of different languages. Table 1 contains 

the mapping of same Braille codes to different characters of three different languages: English, 

Hindi, and Dzongkha. 

Braille English Hindi Dzongkha 

k  k क ཀ  
T . त ཐ  

" R  " R ऋ ར 
TABLE 1- Mapping of Braille codes to characters of English, Hindi and Bangla  

The Dzongkha script, which is also known as the Bhutanese script, is used to write Dzongkha. 

The Dzongkha script has 30 consonants and 4 basic vowels. The 30 consonants can occur in three 

different positions: twice in nominal position and once in orthographic subjoined position 

(Bhutan, 2004; Tibetan, 2009; Dzongkha, 2005). This leads to a total of 30*3=90 consonants, 4 
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vowels and 1 extra character, i.e., 95 alphabets in Dzongkha. Therefore, Dzongkha scripts can be 

written either from top to bottom or from left to right (Bhutan, 2004) (refer to figure 1(b)). 

 

  

As in other languages, two or more consonants can combine to form a conjugate Dzongkha 

character. However, these consonants are not separated by any special symbols (as in the case of 

Indian languages where the consonants within the conjugate are separated by a special symbol 

called halant). The consonant clustering in Dzongkha takes place between the consonant at the 

nominal position and consonant at the orthographic subjoined position. This is illustrated in Fig. 

1(a). It can be observed from table 2 below that the conjugate characters, as constructed by 

clustering of consonants and vowels, may have an entirely different visual representation. 

However, the corresponding transliterated Braille is represented by a sequence of Braille cells for 

each of the characters. 

Rule Example Braille 

CC ང +  ྐ = ང  @+K  

CCV ང +  ྐ +  ྐ = ལ  GK o 

CCC  ས +  ྐ +  ྐ = སྐྱ @S @T R  

CCCV ས +  ྐ +  ྐ +  ྐ = སྐྱ  @S @T R 9  

TABLE 2- Conjugate construction rules with examples taken from Dzongkha language 

(C=Consonant, V=Vowel) 

Unlike any Indian language texts, there exists no inter-word separation in Dzongkha. Each of the 

Dzongkha words are composed of single or multiple syllables. The syllables are separated by a 

special symbol called tsheg. Each of the syllables contains a root letter, and may additionally 

contain a prefix, suffix, vowel and post-suffix. Figure 2 illustrates this phenomenon with an 

example. 

ང +  ྐ = ང  

ས +  ྐ +  ྐ +  ྐ = སྐྱ  
FIGURE 1(A) - Construction of 

Dzongkha conjugates 

FIGURE 1(B) - Dzongkha chracters 

arranged from top to bottom  
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FIGURE 2- Construction of a Dzongkha syllable  

4 The System Architecture 

The architecture of our proposed Dzongkha text to Braille transliteration (DLBT) system is 

shown in figure 3. The diagram presents the essential components of the system. The details are 

discussed in the subsequent sections. 

 

 

 

 

 

 

 

 

 

 

FIGURE 3 - The proposed system architecture 

4.1 The Input and Output of the System 

The input to the system can either be a Unicode (Hudson, 2000) supported Dzongkha text 

document written in any popular word processor, or Dzongkha texts entered through a keyboard. 

Based on the user’s requirements, the system can transliterate the given text to Braille. The 

Braille output is then provided to the Blind user by printing the Braille texts on a large variety of 

commercially available Braille embossers (Taylor, 2000; Brailler). The current system has been 

evaluated on the Braille embossers like, Index Basic-S, Index Basic-D, Index 4X4 PRO, Romeo 

and Juliet Pro. 

4.2 Forward Transliteration 

Based on the information discussed in section 3, we have constructed distinct forward 

transliteration rules for Dzongkha text to Braille. The transliteration engine consists of a code 

table which is nothing but a collection of the transliteration rules. An example of the code table 

structure is shown in figure 4.  

Audio 

Feedback 
Dzongkha Unicode Text 

Transliteration 

Engine 

Audio QWERTY 

Editor 

Forward 

Transliteration 

Rules 

Braille 

Embosser Output Braille 

101



 

 

 

 

 

FIGURE 4- Code Table Structure of Forward Transliteration Engine. 

Most of the transliteration rules are very similar to Indian language text to Braille transliteration 

(Lahiri et al., 2005; Dasgupta and Basu, 2009). However, there are few exceptional cases like, 

handling of some special conjugates in Dzongkha script, where the transliteration rules changes. 

For example, Braille representation of certain Dzongkha characters like ―ra‖, ―la‖ and ―sa‖ 

depends upon the occurrence of the character that follows it. This process is represented by the 

following rule in figure 5: 

The rule says, if the head letter of a Dzongkha conjugate begins with U+0f62, U+0f63 or 

U+0f66 and the root latter belongs to U+0f90, U+0F92, or U+0F94 then the Braille 

representation of the head characters will changed to ―53‖,  ―59‖ or ―57‖. Figure 6 illustrates the 

above rule with an example; figure 7 shows a screenshot of the working of the Dzongkha text to 

Braille transliteration system.  

 

FIGURE 6- Illustration of the context dependent forward transliteration rules in Dzongkha 

The Dzongkha Braille transliteration tool allows 38 characters per line and 25 lines per page. 

However, the system allows the user to change the configuration if needed. As mentioned above 

Dzongkha script does not allow any inter word space. However, the syllables and sentences are 

separated by the special symbols: tsheg and she. An interesting feature found in Dzongkha 

Braille formatting is that, each line of a Braille document must end with either tsheg or she. This 

issue is handled by an inbuilt auto formatting module of the transliteration system. The module 

first analyses the transliterated Braille output and puts 38 Braille characters per line at the 

preview window. If the last character of a line is not a tsheg or she then the module starts 

accumulating the previous characters into an array till it gets a tsheg or she. The array elements 

are then printed into the next line of the preview window. This results into the fact that after 

transliteration is over all the lines in the Braille output does not contain 38 characters. 

CONJ {PREFIX {U+0f62|U+0f63|U+0f66, U+0f90|U+0F92|U+0F94}} 

 PutBraille (53|59|57) 

 

0981 0027 

0982 003B 

0983 002C 

0985 0041 

Dzongkha Unicode 

Character Code 

Corresponding Braille 

Transliteration Code 

FIGURE 5- Context dependent text to Braille conversion rule in Dzongkha 
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5  Dzongkha Text and Braille Audio QWERTY Editor 

The primary goal of the audio QWERTY editor is to allow Blind people to create Dzongkha 

Text/Braille documents (see figure 8). This requires an interface for accepting the regional 

language text entered through the keyboard and performing different operations on it, like 

formatting, printing and saving the text. The creation of a new editor interface was not warranted 

as it would put additional burden on the user to learn the new system. Hence, we have chosen to 

use some already existing standard editor with the required capabilities. Our investigations have 

proved that Microsoft Word can be configured to accept text in regional languages including 

Dzongkha. Although the Audio QWERTY editor plug-in can be integrated to any other Unicode 

enabled text editors like, Notepad, and WordPad, the reasons for choosing Microsoft Word are: 

1. Support for Unicode– ensures the use of multi-language text documents 

2. Rendering of Fonts –uses proper rendering engines for correct rendering of regional 

language fonts including glyph shaping and repositioning (Rolfe, 2001). 

3.  Well documented object model – the editor exposes a comprehensive set of objects for 

interacting with it, this simplifies the task of programming. 

4. Ease of Use – the existing popularity of this editor predicts a low learning curve for the 

proposed system. Further, the editor provides a large number of keyboard-shortcuts.

FIGURE 7: WORKING OF THE DZONGKHA TEXT TO BRAILLE TRANSLITERATION SYSTEM 
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FIGURE 8- The Dzongkha Braille Audio QWERTY Editor. For any key press operation, the Blind 

user will get audio based feedback. 

The audio QWERTY editor is integrated with the pre-recorded Dzongkha alphabet voices that 

make it different from other commercially available text editor; as a result, each of the keyboard 

operation performed through this editor is followed by a voice feedback in Dzongkha. This 

enhances its ease and efficiency for a Blind person to read and write Braille texts. 

Conclusion 

The Dzongkha text to Braille transliteration system is an attempt to develop low cost technology 

to assist blind people. The system will help a large segment of Blind population of Bhutan to 

access printed text book materials. The present version of the system can only perform the 

forward transliteration of Text to Braille. In future, we will try to incorporate the reverse 

transliteration approach where given a Braille document it can be transliterated back to its 

original Dzongkha font. Further, we will provide an online version of the system so that it can be 

accessed from different parts of the world. 
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ABSTRACT 

Transliteration has been one of the common methods for multilingual text input. Many earlier 

methods employed transliteration schemes for defining one to one mapping of input character 

combinations to output character combinations. Though such well defined mappings made it 

easier to write a transliteration program, the end user was burdened with learning the mappings. 

Further, though transliteration schemes try to map the character combinations phonetically, it is 

unavoidable to introduce non intuitive combinations into the scheme. An alternative is to use 

predictive transliteration, where user can input a word, by intuitively combining the input 

alphabet phonetically and the predictive transliteration system correctly converts it to the target 

language. This paper presents the challenges that must be addressed to build such a system, and 

describes how Quillpad can be trained for performing predictive transliteration between any two 

scripts.  

 

KEYWORDS : transliteration, predictive text input, multilingual text input, Quillpad, decision trees 

1 Introduction 

Predictive transliteration has proven to be an effective method for text input of Indian languages. 

This paper discusses general challenges involved in building a practical predictive transliteration 

system. Further, it describes the key aspects of Quillpad multilingual transliteration system that 

pioneered such an input method for Indian languages. Though the techniques employed in 

developing Quillpad system are illustrated in the context of English to Hindi transliteration, the 

system is generic and can be directly applied to train a system for transliterating between any two 

alphabet-based languages. Quillpad itself has been successfully trained for phonetic 

transliteration between Roman input and 16 Indian languages (including Urdu) and Arabic.      

The content of this paper will be organised as follows. Section 2 will talk about specific 

challenges to be addressed by a phonetic transliteration system. Section 3 will discuss the 

Quillpad system and describe the approaches behind its key modules. Section 4 will briefly 

discuss some of the issues that have not been addressed by current Quillpad system and can 

provide some topics for future work. 

This document assumes the input language as Roman alphabet and output language as Hindi. 

Other language examples are used wherever it is appropriate to highlight challenges that may be 

specific to those languages.  
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2 Predictive Transliteration Challenges 

Predictive transliteration systems should allow users to type in phonetically, by intuitively 

composing letters from an input alphabet. For the sake of illustration, consider transliterating 

from Roman alphabet to Hindi. This is an important use case as almost all computers shipped in 

India come with a Roman keyboard. Predictive transliteration enables users to type in their own 

language. The following sections highlight the challenges involved in building an effective 

transliteration solution.    

2.1 Phonetic Mapping Ambiguities 

Rigid transliteration schemes use upper case and lower case letters to represent similar but 

different sounds, which generally makes the typing interface cumbersome for the end users.  For 

better usability, the input should be assumed case insensitive. Given this design decision, there 

are 26 letters in Roman alphabet and 50+ different letters in Hindi. This naturally leads to 

ambiguous mappings. For example, letter ‘d’ will be used to represent both ‘द’ (this) , ‘ड‘(did) 

and ‘ड़’. Another example is the letter ‘n’. ‘n’ can be used by the user to write ‘ञ’ , ‘ण’ (used in 

Marathi), ‘न ’(not) and nasal markers like ‘ं ’ (bindu) and ‘ं ’ (chandrabindu). Phonetic 
transliteration system should correctly convert the input character to the corresponding Hindi 

character depending on the word that is being written. Other cases include different Roman 

letters mapping to a same Hindi character, cluster of Roman characters mapping to a single Hindi 

character etc.  

 

2.2 Loosely Phonetic Nature 

 Though Indian languages are generally phonetic, there are cases where one cannot assume strict 

phonetic nature. This problem is more evident in Hindi. For example, the word ‘बचपन’ is 

pronounced as ‘bachpan’(IPA: ‘bǝtʃpǝn’) and not as ‘bachapana’ which would be the 

pronunciation if the language were to be strictly phonetic. In Hindi, the final consonant is 

pronounced without the inherent schwa, though the consonant is written with the implicit vowel 

sound ‘ǝ’. South Indian languages like Kannada, Tamil, Telugu do not follow this rule. Though 

the rule for handling the final consonant is easy to specify, the challenge is in handling the case 

where vowel sound ‘ǝ’ is skipped in the middle of the word. In the above example, though the 

word is written as ‘ba cha pa na’ in Hindi, user would type the word as ‘bachpan’, as per the 

pronunciation of the word. In general, when two consonants come together, they should be 

combined into a conjunct ligature. However, in this case though ‘ch’ and ‘p’ are adjacent without 

any explicit vowel in the input, they should not be combined to form the conjunct ‘च्प’. If the 

Roman input, ‘bachpan’, is interpreted to be strictly phonetic, the output should have been 

‘बच्पन’ which is not what the user intends to write. This condition can’t be defined as the 

application of this rule is fairly complex and can appear at multiple locations in a given word. 

Other extreme cases of this loose phonetic nature can be observed in Arabic and Urdu, where in 

the output language the vowel sounds are optional in many cases. However, the vowels are 

explicitly written in the input word as the pronunciation of the word would have the vowel 

sounds. 
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2.3 Multiple Input Variants 

As a result of issues discussed in 2.1 and 2.2, and other scenarios discussed below, different users 

can type a given word with multiple variants of input spellings. This problem is compounded by 

local conventions for writing certain letters or syllables, influence of the native language of the 

input alphabet and the pronunciation differences due to user’s own native tongue influence. Some 

of these issues are briefly discussed here. 

2.3.1 Phonetic Variants 

These are generally due to the issues discussed in 2.1 and 2.2. For illustration, consider a 

Hindi word राष्ट्रपति (IPA: rɑ:ʃtrpǝt ɪ). Users can write any of the following Roman inputs for 

writing this word. ‘rashtrapati’, ‘rashtrapathi’, ‘raashtrapathy’, ‘raashtrpati’ etc. All these inputs 

should yield the correct Hindi word राष्ट्रपति.   

2.3.2 Native Language Influence 

The native language of the user plays a significant role in determining the phonetic spelling they 

come up with for writing a word in their language. For example, a Tamil speaking user wanting 

to write in Tamil is likely to type the input as ‘pirakash’ for writing ‘பிரகாஷ்’ (IPA: prǝkɑ:ʃ). 

Most other users would type ‘prakash’ as input. This is because of how the conjuncts are written 

in native Tamil words. There are many such local language influences that an effective 

transliteration system should allow to be incorporated into.    

2.3.3 Foreign Language Influence 

Users fluent in English may use some spelling conventions that are common in native English 

words. Such combinations are not phonetic, but many of those combinations are commonly used. 

For example the Hindi word हम(IPA: hǝm). Though the phonetic input for this word is ‘ham’, 

uses familiar with English might type in ‘hum’ as input. However, if ‘hum’ is interpreted 

phonetically, it would result in ‘हूम’, which is not the intended output. This is a simple example, 

but there are many more cases where native English spellings can influence user’s input. 

2.3.4 Conventional Spellings 

There are local conventions for representing certain sounds in regional languages. These 

conventions have been traditionally set in because of multiple reasons. One, when the local 

language character does not have any character in English that closely represents its sound. For 

example ‘zh’ in Tamil and Malayalam is used to represent sounds that are actually not 

pronounced as ‘z’(IPA).  Two, historically certain names are written with spellings that do not 

faithfully represent its phonetic form in the Indian languages. Consider the name ‘Krishnaiah’, 

which is actually represented as ‘Krishnayya’ in Indian languages.  One can find many such 

examples. 
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2.4 Multiple Output Words 

While previous sections discussed about the variants in inputs, it is also possible for a given input 

word to have multiple valid outputs. Transliteration system should be able to suggest all those 

possibilities. 

2.5 Transliteration of Foreign Words 

It is quite common for the users to type native English words in the middle of their Hindi 

sentences.  As the input alphabet they use is same as the alphabet used for English language, they 

would naturally enter native English spelling for the word. Most of these spellings firstly, are not 

phonetic, secondly, do not really represent any native Hindi words. A good transliteration system 

should allow the users to type native English spellings, and if detected as an English word, 

should convert it into regional language using English pronunciation of the word. This feature 

significantly improves user experience as it contributes to fluency in writing in local languages. 

However, it should be kept in mind that native English pronunciations when represented in 

Indian language scripts, do not capture the local pronunciation of those words. So, it is important 

for the transliteration system to convert the native English words into a pronunciation that is 

acceptable locally, and further use the language specific conventions for representing native 

English phones. 

  

3 Quillpad System Description 

Quillpad transliteration system effectively addresses most of the above mentioned challenges. 

The solution has been live on www.quillpad.in since 2006. This section briefly discusses the 

overall approach behind the Quillpad system.  

3.1 Overview of the Approach 

Quillpad has been designed by modelling the core transliteration task as a multi-class 

classification problem. It can be trained to transliterate between any two alphabet-based 

languages. The rough mappings between the alphabet code points of input and output languages 

is definable using a simple language definition file. Once that is done, rest of the pipeline is 

automatic. The learning and prediction modules do not assume anything specific to the language 

pair and almost all the language specific issues mentioned above are completely definable in the 

external language definition file. Once the definition file is ready, which normally takes  8-10 

hours to perfect, the predictive transliteration rules are learned given just the target language 

corpus, without requiring any sort of parallel transliteration corpus. The prediction itself is just a 

decision tree traversal for each of the input characters and the words are combined and ordered 

using a language model. Brief descriptions of these steps are given below. 

3.2 Alphabet Mapping Definition 

Language definition file that defines the mapping between input and output alphabet character is 

a simple, regular expression based set of rules to specify what English characters users are likely 

to use for a given Hindi character. By allowing regular expression models, these options can be 
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controlled and many language specific conventions and transliteration rules can be easily 

captured. The rules themselves are defined per target character, independent of any word the 

character would appear in. Thus, defining them does not require deep linguistic expertise and the 

mappings can be one to many, many to one, and many to many. It must be noted that language 

definition does not define any rule for actually determining which output character a given input 

character would be converted to. These are defined per character, and theoretically can be just a 

dump of all possible input alphabet combinations that a user may enter to type the given 

character. However, doing so increases the artificial training data exponentially. This point will 

be further clarified in the next section. Modelling the possible input characters for a given Hindi 

character, in a context-specific manner, will give the model expressive power to incorporate 

language specific nuances.  

3.3 Training Data Generation 

One of the important aspects of Quillpad transliteration system is that it doesn’t require a 

manually prepared transliteration parallel corpus. The alphabet mapping rules are used to 

generate several possible ways in which the user may type a Hindi word from the corpus. For 

each Hindi character, the language definition file defines possible English characters the user 

may use to type it. Such candidates for each Hindi character are combined together to produce 

multiple possible inputs for a given word. The context specific rules in the language definition 

model allows one to define rules that would select different candidate English character 

combinations for a given Hindi character depending on, say, whether that character appears at the 

beginning of the word, middle of the word, is followed by a particular consonant etc. This 

controls both the quality and the number of options generated for each corpus word. This 

significantly determines the quality. Using the English input options generated for every corpus 

word, one to one correspondence parallel training data is generated.  

3.4 Training 

Once the training data is generated, a different classifier is trained for each English character. 

Quillpad uses a decision tree based learning algorithm. The features can be as simple as checking 

if at a given relative position there is a particular English character. However, it significantly 

improves the generalisation accuracy of the system if higher level and richer features are used. 

Some of the higher level features like, if the previous character is a ‘consonant’, or ‘nasal’ will 

prevent the decision tree from splitting on every character as it can be split by checking a 

condition on a class of characters. For every Hindi character, arbitrary number of these special 

labels can be assigned in the language definition file. The learning algorithm automatically makes 

use of those labels to generate these higher level features. Another important aspect for designing 

the features is to make it invariant to the exact position of the feature in the input string. Quillpad 

learning algorithm generates such position invariant features, which are independent of any 

language. 

The actual training for a corpus with 5,00,000 unique Hindi words takes about 30-40 minutes. 

Once the training is complete, it can be used for prediction.  
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3.5 Prediction 

Prediction module takes the decision tree model for each of the input alphabet characters and 

applies them on every input character independently. The resulting class assignments for each of 

these characters are combined together to form candidate output words.  

3.6 Pre-Processing 

Some of the simple issues mentioned in section 2 can be easily handled by pre-processing the 

input string before passing the input to the prediction engine. Quillpad system makes provision 

for language specific pre-processing rules. Though this can be addressed by defining appropriate 

rules in the language definition file, in practice it is more efficient to deal with some of these 

cases at a pre-processing level.  

3.7 Post-Processing 

The generation of candidate words as described in 3.5 is restricted by using beam search. Beam 

search uses the log probabilities returned by the decision trees for determining the words to be 

trimmed off the list. By incorporating word frequency score during training, the decision tree also 

serves as a character level language model. This ensures that log probabilities from the trees can 

be used reliably in the beam search. The candidate lists are further ordered by using a word level 

language model to present multiple possible output options to the user. 

3.8 Dealing with Foreign Words 

Quillpad effectively deals with the challenge in handling native English words in the middle of 

Hindi text. A simple dictionary lookup is used to check if a given word is a valid English word. 

However, if the given input is also a valid representation of any word in the corpus, it is not 

considered as a foreign word. Since the phonetics of English and Indian languages are different, 

such a simple method works very well. Once the input is determined as an English word, a 

different prediction model, similar to the one used for Hindi prediction, is used to convert the 

input into its Hindi representation. A different set of decision trees are used for this purpose as 

mixing native English pronunciation rules significantly differ from those of Hindi prediction. 

Training them as separate models helps improve both prediction and generalisation accuracy.  

4 Conclusion & Future Scope 

Quillpad, multi-lingual predictive transliteration system that is described in this paper, is a 

generic system that can be trained to predictively transliterate between any two alphabet-based 

languages. Any new language can be supported within a matter of days. The addition of a new 

language involves defining the basic mappings between the input and the output language, which 

in theory can be as simple as specifying all the possible ways of representing an output character 

in input alphabet. However, context specific modelling is supported to have more control on 

incorporating language specific knowledge. The key idea here is to use thus defined simple 

language model to generate transliteration parallel corpus for training the prediction module. An 

AJAX based, rich text editor using the Quillpad technology is available for free use on 

www.quillpad.in .  
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Quillpad is the leading solution for Indian language input method online. However, there are a 

few open issues that are not handled at present by the Quillpad system. Though the current 

system is very good for most practical scenarios, it does not predict colloquial language well. 

Since Indian languages are generally phonetic, multiple different dialects and phonetically similar 

versions of a given word are accepted in written form. This, while rules out dictionary based 

approaches (See the blog entry for details: http://blog.tachyon.in/2012/03/02/does-quillpad-use-

dictionary-for-prediction/ ), also poses another challenge. Most of the available corpus does not 

contain the colloquial word forms. Thus, for such words the transliteration would depend only on 

the generalisation performance of the system. Since a model is not learned on such patterns, the 

prediction quality is affected. However, it is possible to design a better learning algorithm that 

can learn to predict the colloquial forms effectively as colloquial forms themselves are some 

variants of the dictionary form of the word. And the transformation seems to depend mostly on 

the constraints introduced by our speech production or psycho-acoustic factors. It would be an 

interesting research topic, though we haven’t felt the commercial need for it yet.  

Another problem that is not effectively addressed in current Quillpad system is that of 

transliteration of English words inflected with Indian language suffixes. In South Indian 

languages, it is quite common to use English words attached with Indian language suffixes. 

However, the current way of handing Indian language prediction and English word prediction 

separately, is not the right approach for addressing this issue. A better approach is needed. 

Finally, multiple words in Indian languages can be compounded into one word. This scenario is 

more common with South Indian languages. At the location where two words are joined, the 

consonants and vowels get replaced or skipped. These changes the local features used for 

predicting the class of certain characters. This might lead to error in predicted classes for those 

characters.    
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