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Abstract 

In this paper we present the SDOIrmi text 

graph-based semi-supervised algorithm for 

the task for relation mention identification 

when the underlying concept mentions 

have already been identified and linked to 

an ontology. To overcome the lack of 

annotated data, we propose a labelling 

heuristic based on information extracted 

from the ontology. We evaluated the 

algorithm on the kdd09cma1 dataset using 

a leave-one-document-out framework and 

demonstrated an increase in F1 in 

performance over a co-occurrence based 

AllTrue baseline algorithm. An extrinsic 

evaluation of the predictions suggests a 

worthwhile precision on the more 

confidently predicted additions to the 

ontology. 

1 Introduction 

The growing availability of text documents and of 

ontologies will significantly increase in value once 

these two resources become deeply interlinked 

such that all of the concepts and relationships 

mentioned in each document link to their formal 

definitions. This type of semantic information can 

be used, for example, to aid information retrieval, 

textual entailment, text summarization, and 

ontology engineering (Staab & Studer, 2009; 

Buitelaar et al, 2009). An obstacle to this vision of 

semantically grounded documents however is the 

significant amount of effort required of domain 

experts to semantically annotate the text (Erdmann 

et al, 2000; Uren et al, 2006). Some automation of 

the annotation task is a precondition to the 

envisioned future of deeply interlinked 

information. Fortunately, the task of linking 

concept mentions to their referent in an ontology 

has matured (Milne & Witten, 2008; Melli & Ester, 

2010). Far less progress has been made on the task 

of linking of relation mentions to the referent 

relation in a knowledge base. In part, we believe, 

this is because current approaches attempt to both 

identify mentions of relations between two or more 

concepts and to classify the type of the relation, 

such as one of: IsA(); HeadquarteredIn(); 

SubcecullarLocalization(), and ComposerOf() 

 

In this paper, we present a weakly-supervised 

algorithm for the task of relation mention 

identification, SDOI
1

RMI. Given a corpus of 

documents whose concept mentions have been 

identified and linked to an ontology, the algorithm 

trains a binary classification model that predicts 

the relations mentioned within a document that 

should be (and possibly already are) in an 

ontology. To overcome the lack of explicit 

annotation of relation mentions, we propose the 

use of a data labelling heuristic that assigns a 

TRUE or FALSE label if the candidate mention 

refers to a link that exists or does not exist in the 

ontology. SDOIRMI.is related to proposals by 

(Riedel et al, 2010) and (Mintz et al, 2009) except 

that their proposal attempt to both identify and to 

classify relation mentions. By only tackling the 

first (identification) portion of the task our 

                                                           
1 SDOI is for Supervised Document to Ontology Interlinking 
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algorithm can identify relation mentions of types 

that are not yet present (or are poorly represented) 

in the ontology. An extrinsic evaluation of the 

usability of identified relation mentions to update 

an ontology provides evidence that SDOIRMI’s 

performance levels can contribute to a real-world 

setting. 

 

Our envisioned real-world application is to assist a 

knowledge engineer to process a new set of 

documents by receiving a ranked list of candidate 

relation mentions not yet in the ontology. With 

such a list, the knowledge engineer could dedicate 

more attention to comprehending the meaning of 

the passages that (very likely) contain high-quality 

relation mention candidates.  

 

The paper is structured as follows: we first define 

our proposed algorithm: SDOIrmi,, and conclude 

with an empirical analysis of its performance. 

2 Algorithm Overview 

For the task of relation mention identification, we 

propose a semi-supervised algorithm inspired by 

the TeGRR text graph-based relation recognition 

algorithm proposed in (Melli & al, 2007). The 

algorithm first applies a labelling heuristic to 

unlabeled candidate relation mentions, and then 

trains a binary classification model. We were 

motivated to follow this approach used by TeGRR 

for the following reasons:  

1) It is based on relation recognition approaches, 

such as (Jiang & Zhai, 2007), that achieve 

state-of-the-art performance (e.g. on 

benchmark tasks such as ACE
2
). 

2) It is designed to recognize relation mentions 

that span beyond a single sentence (by the use 

of a text graph representation)  

3) It exposes an extensible feature space (that 

can be extended with information drawn from 

our task’s ontology). 

4) It provides a natural path for the future 

support of tasks with labelled training data – 

possibly even labelled with the actual relation 

type. 

One of the distinctive aspects of TeGRR is its 

representation of a document into a graph-based 

                                                           
2 ACE Relation Detection Recognition (RDR) task 

http://projects.ldc.upenn.edu/ace/annotation/  

representation, where each concept mention or 

token in the text is mapped to an ‘external’ node in 

a graph, and which represents other syntactic and 

structural features of the text as internal nodes and 

edges between nodes. In Section 3 we define the 

text graph representation and its effect on the 

algorithm definition. 

Given a document’s text-graph, we can proceed to 

define a feature space for each relation mention 

candidate. Table 1 illustrates the structure of the 

training data and its feature space that we propose 

for SDOIrmi. We divide the feature space into three 

information sources. An initial feature source is 

based on the shortest path between the concepts 

mentions, all of which have been proposed for 

TeGRR in (Melli & al, 2007). We also propose to 

inherit the concept mention linking features 

defined in (Melli & al, 2010) for each of the two 

concept mentions associated to a relation mention 

candidate. Finally, we also propose features that 

draw on information from the ontology. 

 

doc d m i m j

T

F  e  a  t  u  r  e     S  p  a  c  e F

…

TeGRR

Text-Graph based
Ontology based

l
a

b
e
l

Relation 

Mention

Concept Mention 

(CM) Linking based

CMa CMb

 
Table 1 – A high-level representation of training 

examples of a document’s unique concept 

mention pairs (relation mention candidates). 

The label assignment procedure and the feature 

definitions are presented in the two coming 

subsections. 

2.1 Label Assignment 

Annotating relations in text is a time consuming 

process – more so than annotating entities. To 

overcome the lack of annotated relation mention 

data, we propose to use the ontology for the 

labeling decision. For each combination of concept 

mention pairs the heuristic automatically assign 

labels according to the following rule. If the 

concepts in the ontology associated with the 

relation mention share a direct internal link in the 

ontology in either direction then the training 

example is marked as true; otherwise it is labeled 

as False. 
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This approach to labeling is similar to the one used 

by relation mention recognition task such as (Melli 

& al, 2007). Our proposal in this paper however 

extends this automatic labeling approach for False 

example labeling to also automatically label true 

relation mentions. This approach is more likely to 

lead to erroneously mislabeled candidates. In many 

cases, the passages associated with a candidate 

relation mention that happens to refer to directly 

linked concepts in the ontology do not substantiate 

a direct semantic relation. In these cases, after 

reading the passage, an expert would instead 

conclude that a direct relation is not implied by the 

passage and would label the candidate relation 

mention as False. Alternatively, the heuristic 

would label some relation mention candidates as 

False simply because the relation did not yet exist 

in the ontology; while, upon manual inspection of 

the passage, the annotator would label the relation 

as a True candidate. 

Despite this appreciation of noise in the generated 

labels, we hypothesize that this heuristic labeling 

approach provides a sufficient signal for the 

supervised classification algorithm to detect many 

direct relation mentions with sufficient accuracy to 

be useful in some real-world tasks, such as 

ontological engineering. 

3 Text Graph Representation 

The TeGRR feature space is based on a graph 

representation of the document under 

consideration. The text graph representation is 

composed of the three types of edges: 1) Intra-

sentential edges; 2) Sentence-to-sentence edges; 

and 3) Co-reference edges.  

 

Figure 1  - An illustration of SDOIRMI’s text 

graph to create feature vectors. The highlighted 

nodes and path represent the information used 

for a specific candidate pair assessment. 
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Intra-sentential edges in a text-graph represent 

edges between nodes associated with tokens from 

the same sentence. These edges can vary from 

being: word-to-word edges, shallow parsing edges, 

dependency parse tree edges, and phrase-structure 

parse tree edges. We propose the use the phrase-

structure parse tree as the source of intrasentential 

edges for two reasons. The choice of this data 

source over the others is the analysis by (Jiang & 

Zhai, 2007) that suggests that the phrase-structure 

parse tree is the best single source of information 

for relation detection. Secondly, all other proposed 

intra-sentential edge types can be derived, or 

approximated, from phrase-structure parse trees by 

means of transformations. 

A phrase-structure parse tree is composed of two 

types of nodes: leaf nodes and internal nodes. Leaf 

nodes (which map to our external nodes) are 

labelled with the text token (or concept mention), 

and with the part-of-speech role. Internal nodes 

contain the syntactic phrase-structure label. 

 

The text graph in Figure 1 contains 26 

intrasentential edges connecting 12 internal nodes 

and 19 leaf nodes. 

 

Edges in a text graph can also cross sentence 

boundaries. The first type of inter-sentential edge 

to be considered is the “sentence-to-sentence” edge 

that simply joins an end-of-sentence punctuation 

node with the first word of the sentence that 

follows. The intuition for this edge type is that a 

concept that is mentioned in one sentence can be in 

a semantic relation with a concept mention in the 

adjacent sentence, and that the likelihood of it 

being a relation increases as you reduce the 

number of sentences between the two entities. The 

text graph in Figure 1 contains two sentence-to-

sentence edges. 

Co-reference Edges 

The other source of inter-sentential edges to be 

considered, also taken from (Melli & al, 2007), are 

based on concept mentions in the same document 

that are linked to (co-refer to) the same concept in 

the ontology. For example if “hidden-Markov 

models” is mentioned in one sentence, “HMMs” is 

mentioned in a subsequent one, and the pronoun 

“they” is used to refer to the concept further on in 

the document, then coreference edges would exist 

between “hidden-Markov models” and “HMMs”, 

and between “HMM” and “they” (via the Hidden 

Markov Models concept). The intuition for this 

edge type is that concept mentions in separate 

sentences but that are near some coreferent concept 

mention are more likely to be in a semantic 

relation than if that co-referent mention did not 

exist. The text graph in Figure 1  contains a 

coreference edge between the mentions of to the 

Conjoint Analysis Algorithm that were identified 

by the concept mention identifier and 

disambiguator described in (Melli & Ester, 2010). 

 

Text-Graph Properties 

We describe properties of a text graph used to 

define SDOIrmi’s text-graph related features: 

1) A text-graph is a connected graph: for every 

pair of nodes n and v there is a walk from n 

to v 

2) A text-graph can be a cyclic graph, and such 

cycles must involve co-reference edges. 

3) A text-graph has at least one shortest path 

between any two nodes, n and v, and the 

number of edges between them is their 

distance. 

4) A concept mention mi is in a p-shortest path 

with concept mention mj if there are only p-1 

other concept mentions in a shorter shortest-

path relation with mi. The value of p can be 

interpreted as the rank of the proximity 

between the two concept mentions, e.g. 1
st
 

nearest, 2
nd

 nearest, etc. If two alternate 

mention pairs are in equal p-shortest path 

relation then both are True for the relation. 

5) A path-enclosed subtree is the portion of the 

syntactic tree enclosed by the shortest-path 

between two leaf-nodes. This inner portion 

of a syntactic tree is predictive in relation 

extraction tasks (Jiang & Zhai, 2007). 

4 Relation Mention Identification Features 

We begin the definition of the feature space with 

the text-graph based features that we retain from 

(Melli & al, 2007). We then proceed to describe 

the ontology-based features, and conclude with the 

concept linking features inherited from the 

previous (concept linking) task. 
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4.1 Text-Graph based Features 

This section describes the features that we directly 

inherit from TeGRR. We first describe the 

underlying text graph representation that is then 

used to define the associated features. 

 

Path-Enclosed Shortest Path Features 

From the path-enclosed shortest-path subgraph we 

identify all distinct subtrees with up to e edges as 

proposed in (Jiang & Zhai, 2007) to replicate the 

convolution-kernel approach of (Haussler, 1999). 

A feature is created for each possible 

neighborhood in the subgraph, where a 

neighborhood is defined by a subtrees with e 

edges, where e ranges from zero through to some 

upper limit on edges: e  [0, emax]. We retain the e 

proposed in (Jiang & Zhai, 2007) of emax=2. 

Subtree-based features associated to the subtrees of 

size zero (e=0) simply summarize the number of 

nodes of a certain content type in either the entire 

relation mention graph, or one of its pairings. For 

example, one feature would count the number of 

NP (Noun Phrase) nodes in the relation mention 

graph, while another feature would count the 

number of times that the word “required” is 

present. Subtree-based features associated to the 

subtrees of size e>0 represent the number of times 

that a subgraph with e edges appears within the 

subgraph. For example, one feature would count 

the number of times that the triple IN – PP – NP 

appears in the graph. 

 

Sentence Count: 

This feature informs the classifier about the 

number of sentences that intervene between 

concept mentions. For example, the number of 

intervening sentences between the “case study” 

and “logistic regression” mention in the relation 

mention in Figure 1 is two (2) sentences. This 

information will help the classifier adjust its 

predictions based on the separation. Nearer 

mentions are more likely to be in a relation.  

 

Intervening Concept Mentions:  

This set of features informs the classifier about the 

number of concept mentions that intervene 

between two concept mention pairs. For example, 

in Figure 1 “conjoint analysis” is counted as one 

intervening concept mention between “case study” 

and “logistic regression”. This information will 

help the classifier adjust its predictions based on 

how many other concept mention candidates exist; 

the greater then number of intervening concept 

mentions the less likely that a semantic relation 

between the two concept mentions is being stated. 

4.1.1 Concept Mention Linking-based Features 

A second source of features that we propose is to 

include the pair of feature sets for each concept 

mention defined for concept mention linking 

(Melli & Ester, 2010). We concatenate the two 

feature vectors in the following order: the concept 

mention that appears first in the text, followed by 

the other concept mention. These features provide 

signals of the context of each mention, such as 

even simply what sentence it is locate on. In Figure 

1 for example, the “case study” concept mention is 

located on the first sentence and the closer a 

mention is to the first sentence may affect the 

importance of the mention. 

4.2 Ontology-based Features 

We further propose four features based on 

information from the ontology – that differ from 

the ones inherited from the concept-mention 

linking task. These four features capture 

information signals from their pairing in the 

ontology: Shared_Outlinks, Shared_Inlinks, 

Shortest_gt1-Edge_Distance, and TF-

IDF_Concepts_Similarity. 

 

Shared_Outlinks Feature 

The Shared_Outlinks feature counts the number of 

shared concept outlinks. The intuition for this 

feature is that two concepts that reference many of 

the same other concepts in the ontology are more 

likely to be themselves in a direct relation. 

 

Shared_Inlinks Feature 

The Shared_Inlinks feature counts the number of 

shared concept inlinks. The intuition for this 

feature is that two concepts that are referenced by 

many of the same other concepts in the ontology 

are more likely to be themselves in a direct 

relation. 

 

Shortest1-Edge_Distance Feature 

The Shortest1-Edge_Distance feature reports the 

shortest distance (in the ontology) that is greater 

than one counts the number of edges that separate 
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the two concepts. This feature is the one that 

introduces the risk of giving away the presence of 

a direct link between the two concepts in the 

candidate. An edge distance of one (1) versus any 

other edge distance would be a perfect predictor of 

the label. However, information about the distance 

of alternate paths can provide a signal that the two 

concepts should be (or are) linked.  

 

TF-IDF_Concepts_Similarity Feature 

The TF-IDF_Concepts_Similarity feature reports 

the tf-idf bag-of-words similarity between the two 

concept descriptions in the ontology. The intuition 

is similar to that of the “Shared Outlinks” feature: 

two concepts that reference many of the same 

words are more likely to be themselves in a 

relation. Unlike the “Shared Outlinks” feature 

however, this feature normalizes for very common 

and uncommon words. 

Corpus-based Features 

A final source of information for features that we 

propose is the training corpus itself. As with the 

corpus-based features for concept linking (Melli & 

Ester, 2010), the use of cross-validation for 

performance estimation requires that the document 

associated with the training record does not inform 

these features. For this feature, the count is on 

“other” documents. 

4.3 Relation_Mention_Other_Doc_Count 

Feature 

The Relation_Mention_Other_Doc_Count feature 

counts the number of other documents in the 

corpus that contain the pair of linked concept 

mentions. For example, if one other document 

contains the two linked concept mentions (and thus 

contains the same candidate relation mention) this 

feature is set to one (1).  

5 Empirical Evaluation of Relation 

Mention Identification 

In this section, we empirically evaluate the 

performance of the proposed relation-mention 

identification algorithm: SDOIrmi. For this 

evaluation, we again used the SVMlight
3
 package 

with its default parameter settings, as the 

underlying supervised classification algorithm. For 

                                                           
3 http://svmlight.joachims.org/  

the syntactic parse trees, we use Charniak’s 

parser
4
. 

 

Evaluation Setup 

Similar to evaluation of SDOI’s two other 

component algorithms for concept mention 

identification and linking, we use a leave-one-

document-out method on the kdd09cma1 corpus 

(Melli, 2010). For each unseen document, we 

predict which of its binary relation mention 

candidates (with linked concept mentions) already 

exist in the ontology. Those relations that do not 

exist in the ontology are proposed candidates for 

addition to the ontology.  

 

A challenge associated with this task, as found in 

the concept-mention linking task, is the highly 

skewed distribution of the labels. In this case, we 

do not propose a filtering heuristic to change the 

training data. Instead, we propose an algorithmic 

change by tuning SVMlight’s cost-factor 

parameter that multiplies the training error penalty 

for misclassification of positive examples. We set 

aside three documents to tune the parameter, and 

based on an analysis to optimize F1 we set the 

cost-factor to 8. 
 
 

Table 2 presents some of the key statistics for the 

kdd09cma1 from the perspective of relation 

mention candidates. The corpus contains 44,896 

relation mention candidates. Of these, which 

quantifies the task’s data skew, only 3.55% of the 

mention candidates are found in the ontology.  

 

Table 2 – Key statistics of the number of binary 

relation mentions in the kdd09cma1 corpus, per 

abstract and for entire corpus. The final row 

reports the total number of concept pairings 

where, at the document-level, pairs to the same 

two concepts are consolidated. 

                                                           
4 ftp://ftp.cs.brown.edu/pub/nlparser/  

Binary Relation 

Mention Candidates Positive Candidates Proportion

Minimum (per abstract)                                   42.0                                    1.0 0.88%

Average (per abstract)                                322.1                                 11.5 3.86%

Maximum (per abstract)                             1,582.0                                    4.3 12.50%

Entire corpus                          44,896.0                           1,593.0 3.55%

Entire corpus (only distinct relations)                          34,181.0                           1,080.0 3.16%
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Baseline Algorithm(s) 

The baseline algorithm that we compare SDOIrml’s 

performance against on the relation-mention 

identification task is an unsupervised co-

occurrence-based algorithm that predicts all 

permutations of linked concept mention pairs 

regardless of distance between them. This is the 

baseline algorithm compared against in (Melli & 

al, 2007, and Shi & al, 2007). We refer to this 

algorithm as AllTrue.  

We also include as a baseline a version of SDOIrml 

with a restricted feature space that contains the 

features originally proposed for TeGRR. 

 

Intrinsic Performance Analysis 

Table 3 presents the results of the leave-one out 

performance analysis. SDOIrml outperforms the 

baseline algorithm in terms of precision and F1. 

The proposed feature space for SDOI also 

outperforms the original feature space proposed for 

TeGRR. 

 

Algorithm Feature Space Precision Recall F1

All 18.2% 24.3% 20.8%

TeGRR 7.7% 41.8% 13.0%

3.7% 100.0% 7.1%

SDOI

AllTrue  
Table 3 – Leave-one-out performance results on 

the relation mention identification task on the 

kdd09cma1 corpus (excluding the three tuning 

abstracts) by SDOI, SDOI with its feature space 

restricted to those originally proposed for 

TeGRR, and the AllTrue baseline. 

 

Extrinsic Performance Analysis 

We analyze the performance on a real-world usage 

scenario where an ontology engineer receives the 

generated list of relation mention candidates 

predicted as True for being a direct link, which 

upon inspection of the ontology does not exist. We 

manually analyzed the top 40 predicted relation 

mention candidates proposed for insertion into the 

kddo1 ontology ranked on their likelihood score
5
. 

Table 4 reports a snapshot of these relation 

candidates. Of the 40 candidates 31 (77.5%) were 

                                                           
5 We used SVMlight’s real-number predictions, and did not 

boost the selection based on whether more than two 

documents resulted in predictions for the concept pair. 

deemed candidates for insertion into the ontology
6
. 

Given the high proportion of relation candidates 

worthy of insertion, this result illustrates some 

benefit to the ontology engineer. 

 

Boostrapping Experiment 

In practice, a common method of applying self-

labelled learning is to treat the labelling heuristic 

as a means to seed a bootstrapped process where 

subsequent rounds of labelling are based on the 

most confident predictions by the newly trained 

model (Chapelle & al, 2006). Generally, 

evaluations of this approach have assumed high-

accuracy seed labels - either from a small manually 

curated training set, such as in (Agichtein & 

Gravano, 2000), or with high-accuracy labelling 

patterns, such as in (Yarowsky, 1995). Each 

iteration sacrifices some precision for additional 

recall performance. In our case a bootstrapped 

process does not begin with high precision to 

sacrifice, because of our labelling heuristic does 

not start with high-precision predictions. 

 

Concept A Concept B

20.873 Computing System Algorithm doi:10.1145/1557019.1557112

… … … …

15.975 Computing System Algorithm doi:10.1145/1557019.1557144

23.584 Conditional Probability Marginal Probabilty doi:10.1145/1557019.1557130

22.345 Conjoint Analysis User Preference doi:10.1145/1557019.1557138

22.075 Optimization Task Gradient Descent Algorithm doi:10.1145/1557019.1557129

20.349 Optimization Task Gradient Descent Algorithm doi:10.1145/1557019.1557100

21.788 Set Pattern doi:10.1145/1557019.1557071

19.849 Set Pattern doi:10.1145/1557019.1557077

21.047 Training Dataset Performance Measure doi:10.1145/1557019.1557144

Score

Binary Relation

Document

 
Table 4 – A sample of candidate relations (and 

their source document) with high likelihood 

score predicted by SDOI as candidates for 

addition to the kddo1 ontology. The table 

groups candidates that refer to the same 

concept pairs. 

 

However, we performed a bootstrap experiment by 

iteratively selecting the 10% of relation mentions 

that were predicted to be True with the highest 

likelihood score, and then labelled these candidates 

as True in the subsequent iteration (even if no 

                                                           
6 This task-based result is likely dependent on the maturity of 

the ontology. 
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direct link existed in the ontology for the 

corresponding concept pair). 

 

F1 performance dropped with each iteration. Some 

analysis can show that this deterioration in 

performance is unavoidably built into the process: 

with each iteration the supervised classifier trained 

models that were based on the increasingly false 

assumption that True labelled training data were 

representative of direct links in the ontology. 

Ensuing models would begin to predict links that 

were by definition not in the ontology and would 

thus be evaluated as false positives. 

Thus, we again manually inspected the top 40 

predicted relations for the first two iterations. The 

precision dropped after each iteration. After the 

first iteration, 29 (72.5%) candidates were correct, 

and after the second iteration, 21 (52.5%) 

candidates were correct. During the manual 

review, we observed that predictions in subsequent 

iterations began to include some of the more 

common False pairings listed in Error! Reference 

source not found.. Bootstrapping of SDOIrml does 

not improve the precision of the reported 

predictions, on the kdd09cma1 benchmark task. 

 

Observations and Conclusion 

We conclude with some observations based on the 

predictions reported in Table 4 of the leave-one-

out evaluation on the kdd09cma1 corpus The table 

includes some promising candidates for addition to 

the ontology. For example, because of this 

experiment we noted that the obvious missing 

direct relation between a Computing System and 

an Algorithm
7
. The table also includes a more 

nuanced missing direct relation missing in the 

ontology between Conditional Probability and 

Marginal Probability
8
.  

 

Next, we observe that suggested relation mention 

candidates whose concept pairs are predicted 

within more than one document, such as 

Computing System + Algorithm, may be more 

                                                           
7 The direct relation can naturally added in both directions “an 

ALGORITHM can be implemented into a COMPUTING SYSTEM” 

and “a COMPUTING SYSTEM can implement an ALGORITHM.” 
8 Based on passage “…assumption made by existing 

approaches, that the marginal and conditional probabilities 

are directly related....” From 10.1145/1557019.1557130 

and due to the fact that the two concept descriptions are 

briefly described in kddo1. 

indicative that the direct relation is indeed missing 

from the ontology than when only supported by a 

single document. However, as counter-evidence, 

some of the repeated pairs in Table 4 appear to be 

listed simply due to their frequent occurrence in 

the corpus. For example, the candidate relation 

between the concepts of Set and of Pattern may 

simply be due to documents (abstracts) that often 

mention “sets of patterns”. We would not expect 

the Set concept to be directly linked to every 

concept in the ontology that can be grouped into a 

set. This example however does suggest that 

Pattern + Set may be a common and important 

concept in the data mining domain to deserve the 

addition of a Pattern Set concept into the ontology. 

We note further that very frequent candidates, such 

as Research Paper + Algorithm, were not 

predicted; likely because the algorithm recognized 

that if such a commonplace relation is always false 

then it likely will be false in a new/unseen 

document. Thus, there is some evidence that the 

number of repetitions can indeed signify a more 

likely candidate. As future work, it would be 

worthwhile to attempt to train a second classifier 

that can use the number of referring documents as 

a feature. 

 

A separate challenge that we observe from the 

predictions in Table 4 is illustrated by the 

Optimization Task + Gradient Descent Algorithm 

entry. While this seems like a reasonable candidate 

for addition at first glance, these two concepts are 

more likely indirectly related via the Optimization 

Algorithm concept (an optimization task can be 

solved by an optimization algorithm; a grandient 

descent algorithm is an optimization algorithm.). 

The resolution of these situations could require 

additional background knowledge from the 

ontology, such as relation types, to inform the 

classifier that in some situations when the parent is 

linked to the concept then the child is not directly 

linked to it. 
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