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Preface to SP-SEM-MRL 2012

Morphologically Rich Languages (MRLs) are languages in which grammatical relations such as
Subject, Predicate, and Object, are largely indicated morphologically (e.g., through inflection)
instead of positionally. This poses serious challenges for current (English-centric) syntactic and
semantic processing. Furthermore, since grammatical relations provide the interface to compositional
semantics, morpho-syntactic phenomena may significantly complicate processing the syntax–semantics
interface. In statistical parsing, English parsing performance has reached a high plateau in certain
genres. Semantic processing of English has similarly seen much progress in recent years. MRL
processing presents new challenges, such as optimal morphological representation, non position-centric
algorithms, or different semantic distance measures.

These challenges lurk in areas where parses may be used as input, such as semantic role labeling,
distributional semantics, paraphrasing and textual entailment; inadequate representation or pre-
processing of morphological variation is likely to hurt parsing and semantic tasks alike.
This joint workshop aims to build upon the first and second SPMRL workshops (at NAACL-HLT 2010
and IWPT 2011, respectively) while extending the overall scope to include semantic processing. We
aim to encourage cross-fertilization among researchers working on different languages and among those
working on different levels of processing.
The syntax track received 11 papers of which 7 were accepted for publication. This year’s collection
of papers describe work on Korean, Basque, French, Spanish, Portuguese and Tamil (the latter three
are a first for SPMRL), and encompass several different parsing approaches and combinations thereof,
including dependency parsing, PCFG-LA parsing, rule-based parsing and precision-grammar-based
parsing.
A trend of this year’s papers is the problem of data sparsity in statistical parsing of MRLs: Candito et
al. present a technique that involves the use of word clusters, lemmas and Wordnet synsets to alleviate
the problem of OOV words in statistical parsing with the French Treebank; Silva and Branca investigate
whether dependency information can be used to assign lexical types to OOV words in a HPSG precision
grammar approach to Portuguese parsing; Le Roux et al. investigate the problem of data sparsity in the
context of Spanish constituency parsing and show that optimising the processes of lemmatisation and
part-of-speech tagging can lead to improved parsing performance; Green et al. tackle the problem of
small training sets by applying ensemble parsing models trained on subsets of the entire training set.
(They test their approach on the Tamil language but suggest that it is applicable to any language with
minimal treebank resources).
We are also happy to present parsing papers that describe general parsing techniques that are applicable
to any language, but which have been tested on MRLs: Goenaga et al. explore an approach which
involves the combination of rule-based and data-driven parsing, and test this combined approach on the
Basque language; Le Roux et al. present a reranking technique in which the n-best trees produced by a
constituency parser are then converted to dependency trees and reranked using dependency information.
(The approach is tested on a language with scant morphology, English, and a language with a richer
inflectional system, French); Finally, Choi et al. present work which aims to reduce ambiguity in
statistical parsing of Korean by transforming eojeol-based trees into entity-based trees. Their work is
relevant to all languages where the word is not the natural unit of syntactic analysis.

Five papers, of seven submissions, were accepted for the Semantic Track of SP-SEM-MRL 2012. The
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selected papers reflect a healthy diversity of semantic models and the fertile breadth of applications
for semantics in morphologically rich languages: Versley applies supervised learning to the task of
classifying German noun-verb semantic relations. The experiments evaluate a wide range of corpus-
and lexicon-based features for representing the noun-verb pairs; Lorenzo and Cerisara present a
Bayesian model for unsupervised Semantic Role Labeling for English and French, with promising
results; Hawwari, Bar, and Diab propose a method for creating a resource of Arabic multi-word
expressions. The method handles MWEs with gaps, which can be problematic for Arabic; Versley and
Henrich describe an approach to word sense discrimination based on the hypothesis that an ambiguous
word is unambiguous when embedded in the context of a compound word. Their findings support the
utility of the hypothesis.
In research which combines both syntactic and semantic processing, Acedański, Slaski, and
Przepiórkowski introduce a procedure for extracting dependency information from chunked data. Given
the output of a chunker without prepositional phrase attachment information, their procedure is able to
make attachment decisions using lexical, morphosyntactic, lexico-semantic, and association features.

It is our hope that the rich programme of SP-Sem-MRL 2012 will foster interactions and collaborations
between the syntax and the semantics community on the topic of Morphologically Rich Languages
processing. Our aim is to help to bring ideas (and solutions) to the fore and promote a more rapid
advance of the state-of-the-art in the field.

We thank our authors and the Program Committee for making SP-Sem-MRL 2012 a success.

Marianna Apidianaki, Ido Daga, Katryn Erk, Jennifer Foster, Yuval Marton, Ines Rehbein, Djamé
Seddah, Reut Tsarfaty and Peter Turney
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Iakes Goenaga, Koldobika Gojenola, Marı́a Jesús Aranzabe, Arantza Dı́az de Ilarraza and Kepa

Bengoetxea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Statistical Parsing of Spanish and Data Driven Lemmatization
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Kepa Bengoetxea

15:15–15:30 Statistical Parsing of Spanish and Data Driven Lemmatization
Joseph Le Roux, Benoit Sagot and Djamé Seddah
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16:40–17:05 Korean Treebank Transformation for Parser Training
DongHyun Choi, Jungyeul Park and Key-Sun Choi

17:05–17:30 Generative Constituent Parsing and Discriminative Dependency Reranking: Experiments
on English and French
Joseph Le Roux, Benoit Favre, Alexis Nasr and Seyed Abolghasem Mirroshandel

17:30-17:40 Short Break

x



Thursday, July 12, 2012 (continued)

Session 6: (17:40-18:20) Closing Session

17:40-18:10 Panel: Disclosing the SPMRL 2013 Shared Task

18:10-18:20 Concluding Remarks by Reut Tsarfaty

xi





Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 1–11,
Jeju, Republic of Korea, 12 July 2012. c©2012 Association for Computational Linguistics

Probabilistic Lexical Generalization for French Dependency Parsing

Enrique Henestroza Anguiano and Marie Candito
Alpage (Universit́e Paris Diderot / INRIA)

Paris, France
enrique.henestroza anguiano@inria.fr, marie.candito@linguist.jussieu.fr

Abstract

This paper investigates the impact on French
dependency parsing of lexical generalization
methods beyond lemmatization and morpho-
logical analysis. A distributional thesaurus
is created from a large text corpus and used
for distributional clustering and WordNet au-
tomatic sense ranking. The standard approach
for lexical generalization in parsing is to map
a word to a single generalized class, either re-
placing the word with the class or adding a
new feature for the class. We use a richer
framework that allows for probabilistic gener-
alization, with a word represented as a prob-
ability distribution over a space of general-
ized classes: lemmas, clusters, or synsets.
Probabilistic lexical information is introduced
into parser feature vectors by modifying the
weights of lexical features. We obtain im-
provements in parsing accuracy with some
lexical generalization configurations in exper-
iments run on the French Treebank and two
out-of-domain treebanks, with slightly better
performance for the probabilistic lexical gen-
eralization approach compared to the standard
single-mapping approach.

1 Introduction

In statistical, data-driven approaches to natural lan-
guage syntactic parsing, a central problem is that of
accurately modeling lexical relationships from po-
tentially sparse counts within a training corpus. Our
particular interests are centered on reducing lexical
data sparseness for linear classification approaches
for dependency parsing. In these approaches, linear

models operate over feature vectors that generally
represent syntactic structure within a sentence, and
feature templates are defined in part over the word
forms of one or more tokens in a sentence. Because
treebanks used for training are often small, lexical
features may appear relatively infrequently during
training, especially for languages with richer mor-
phology than English. This may, in turn, impede the
parsing model’s ability to generalize well outside of
its training set with respect to lexical features.

Past approaches for achieving lexical generaliza-
tion in dependency parsing have used WordNet se-
mantic senses in parsing experiments for English
(Agirre et al., 2011), and word clustering over large
corpora in parsing experiments for English (Koo
et al., 2008) as well as for French (Candito et al.,
2010b). These approaches map each word to a sin-
gle corresponding generalized class (synset or clus-
ter), and integrate generalized classes into parsing
models in one of two ways: (i) thereplacement
strategy, where each word form is simply replaced
with a corresponding generalized class; (ii) a strat-
egy where an additional feature is created for the
corresponding generalized class.

Our contribution in this paper is applyingprob-
abilistic lexical generalization, a richer framework
for lexical generalization, to dependency parsing.
Each word form is represented as a categorical dis-
tribution over alexical target spaceof generalized
classes, for which we consider the spaces of lemmas,
synsets, and clusters. The standard single-mapping
approach from previous work can be seen as a sub-
case: each categorical distribution assigns a proba-
bility of 1 to a single generalized class. The method
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we use for introducing probabilistic information into
a feature vector is based on that used by Bunescu
(2008), who tested the use of probabilistic part-of-
speech (POS) tags through an NLP pipeline.

In this paper, we perform experiments for French
that use the replacement strategy for integrating
generalized classes into parsing models, comparing
the single-mapping approach for lexical generaliza-
tion with our probabilistic lexical generalization ap-
proach. In doing so, we provide first results on the
application to French parsing of WordNet automatic
sense ranking (ASR), using the method of McCarthy
et al. (2004). For clustering we deviate from most
previous work, which has integrated Brown clusters
(Brown et al., 1992) into parsing models, and instead
use distributional lexical semantics to create both a
distributional thesaurus - for probabilistic general-
ization in the lemma space and ASR calculation -
and to perform hierarchical agglomerative clustering
(HAC). Though unlexicalized syntactic HAC clus-
tering has been used to improve English dependency
parsing (Sagae and Gordon, 2009), we provide first
results on using distributional lexical semantics for
French parsing. We also include an out-of-domain
evaluation on medical and parliamentary text in ad-
dition to an in-domain evaluation.

In Section 2 we describe the lexical target spaces
used in this paper, as well as the method of integrat-
ing probabilistic lexical information into a feature
vector for classification. In Section 3 we discuss de-
pendency structure and transition-based parsing. In
Section 4 we present the experimental setup, which
includes our parser implementation, the construction
of our probabilistic lexical resources, and evaluation
settings. We report parsing results both in-domain
and out-of-domain in Section 5, we provide a sum-
mary of related work in Section 6, and we conclude
in Section 7.

2 Probabilistic Lexical Target Spaces

Using terms from probability theory, we define alex-
ical target spaceas a sample spaceΩ over which
a categorical distribution is defined for each lexi-
cal item in a givensource vocabulary. Because we
are working with French, a language with relatively
rich morphology, we use lemmas as the base lexi-
cal items in our source vocabulary. The outcomes

contained in a sample space represent generalized
classes in atarget vocabulary. In this paper we con-
sider three possible target vocabularies, with cor-
responding sample spaces:Ωl for lemmas,Ωs for
synsets, andΩc for clusters.

2.1 Ωl Lemma Space

In the case of the lemma space, the source and tar-
get vocabularies are the same. To define an ap-
propriate categorical distribution for each lemma,
one where the possible outcomes also correspond to
lemmas, we use adistributional thesaurusthat pro-
vides similarity scores for pairs of lemmas. Such
a thesaurus can be viewed as a similarity function
D(x, y), wherex, y ∈ V andV is the vocabulary
for both the source and target spaces.

The simplest way to define a categorical distribu-
tion overΩl, for a lemmax ∈ V , would be to use
the following probability mass functionpx:

px(y) =
D(x, y)

∑

y′∈V

D(x, y′)
(1)

One complication is the identity similarityD(x, x):
although it can be set equal to 1 (or the similar-
ity given by the thesaurus, if one is provided), we
choose to assign a pre-specified probability massm

to the identity lemma, with the remaining mass used
for generalization across other lemmas. Addition-
ally, in order to account for noise in the thesaurus,
we restrict each categorical distribution to a lemma’s
k-nearest neighbors. The probability mass function
px over the spaceΩl that we use in this paper is fi-
nally as follows:

px(y) =







































m, if y = x

(1−m)D(x, y)
∑

y′∈Nx(k)

D(x, y′)
, if y ∈ Nx(k)

0, otherwise

(2)

2.2 Ωs Synset Space

In the case of the synset space, the target vacabulary
contains synsets from the Princeton WordNet sense
hierarchy (Fellbaum, 1998). To define an appro-
priate categorical distribution over synsets for each
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lemmax in our source vocabulary, we first use the
WordNet resource to identify the setSx of different
senses ofx. We then use a distributional thesaurus to
perform ASR, which determines the prevalence with
respect tox of each senses ∈ Sx, following the
approach of McCarthy et al. (2004). Representing
the thesaurus as a similarity functionD(x, y), let-
ting Nx(k) be the set ofk-nearest neighbors forx,
and lettingW (s1, s2) be a similarity function over
synsets in WordNet, we define a prevalence function
Rx(s) as follows:

Rx(s) =
∑

y∈Nx(k)

D(x, y)

max
s′ ∈ Sy

W (s, s′)

∑

t∈Sx

max
s′ ∈ Sy

W (t, s′)
(3)

This function essentially weights the semantic con-
tribution that each distributionally-similar neighbor
adds to a given sense forx. With the prevalence
scores of each sense forx having been calculated,
we use the following probability mass functionpx
over the spaceΩs, whereSx(k) is the set ofk-most
prevalent senses forx:

px(s) =























Rx(s)
∑

s′∈Sx(k)

Rx(s
′)
, if s ∈ Sx(k)

0, otherwise

(4)

Note that the first-sense ASR approach to using
WordNet synsets for parsing, which has been previ-
ously explored in the literature (Agirre et al., 2011),
corresponds to settingk=1 in Equation 4.

2.3 Ωc Cluster Space

In the case of the cluster space, any approach for
word clustering may be used to create a reduced tar-
get vocabulary of clusters. Defining a categorical
distribution over clusters would be interesting in the
case ofsoft clusteringof lemmas, in which a lemma
can participate in more than one cluster, but we have
not yet explored this clustering approach.

In this paper we limit ourselves to the simpler
hard clusteringHAC method, which uses a distri-
butional thesaurus and iteratively joins two clusters
together based on the similarities between lemmas
in each cluster. We end up with a simple probability

mass functionpx over the spaceΩc for a lemmax
with corresponding clustercx:

px(c) =

{

1, if c = cx
0, otherwise

(5)

2.4 Probabilistic Feature Generalization

In a typical classifier-based machine learning setting
in NLP, feature vectors are constructed using indi-
cator functions that encode categorical information,
such as POS tags, word forms or lemmas.

In this section we will use a running example
wherea and b are token positions of interest to a
classifier, and for which feature vectors are created.
If we let t stand for POS tag andl stand for lemma,
a feature templatefor this pair of tokens might then
be [talb]. Feature templates are instantiated as ac-
tual features in a vector space depending on the cat-
egorical values they can take on. One possible in-
stantiation of the template [talb] would then be the
feature [ta=verb∧lb=avocat], which indicates thata
is a verb andb is the lemmaavocat (“avocado” or
“lawyer”), with the following indicator function:

f =

{

1, if ta=verb ∧ lb=avocat
0, otherwise

(6)

To perform probabilistic feature generalization, we
replace the indicator function, which represents a
single original feature, with a collection of weighted
functions representing a set of derived features. Sup-
pose the French lemmaavocat is in our source vo-
cabulary and has multiple senses inΩs (s1 for the
“avocado” sense,s2 for the “lawyer” sense, etc.),
as well as a probability mass functionpav. We
discard the old feature [ta=verb∧lb=avocat] and
add, for eachsi, a derived feature of the form
[ta=verb∧xb=si], wherex represents a target space
generalized class, with the following weighted indi-
cator function:

f(i) =

{

pav(si), if ta=verb ∧ lb=avocat
0, otherwise

(7)

This process extends easily to generalizing multiple
categorical variables. Consider the bilexical feature
[la=manger∧lb=avocat], which indicates thata
is the lemmamanger (“eat”) and b is the lemma
avocat. If both lemmasmanger andavocat appear

3



ouvrit

Elle porte

la

avec

clé

la

Figure 1: An unlabeled dependency tree for “Elle ouvrit
la porte avec la clé” (“She opened the door with the key”).

in our source vocabulary and have multiple senses
in Ωs, with probability mass functionspma andpav,
then for each pairi, j we derive a feature of the
form [xa=si∧xb=sj ], with the following weighted
indicator function:

f(i,j)=

{

pma(si)pav(sj), if la=manger∧lb=avocat
0, otherwise

(8)

3 Dependency Parsing

Dependency syntax involves the representation of
syntactic information for a sentence in the form of
a directed graph, whose edges encode word-to-word
relationships. An edge from agovernor to a de-
pendentindicates, roughly, that the presence of the
dependent is syntactically legitimated by the gover-
nor. An important property of dependency syntax is
that each word, except for the root of the sentence,
has exactly one governor; dependency syntax is thus
represented by trees. Figure 1 shows an example
of an unlabeled dependency tree.1 For languages
like English or French, most sentences can be rep-
resented with aprojectivedependency tree: for any
edge from wordg to wordd, g dominates any inter-
vening word betweeng andd.

Dependency trees are appealing syntactic repre-
sentations, closer than constituency trees to the se-
mantic representations useful for NLP applications.
This is true even with the projectivity requirement,
which occasionally creates syntax-semantics mis-
matches. Dependency trees have recently seen a
surge of interest, particularly with the introduction
of supervised models for dependency parsing using
linear classifiers.

1Our experiments involve labeled parsing, with edges addi-
tionally labeled with the surface grammatical function that the
dependent bears with respect to its governor.

3.1 Transition-Based Parsing

In this paper we focus on transition-based pars-
ing, whose seminal works are that of Yamada and
Matsumoto (2003) and Nivre (2003). The parsing
process applies a sequence of incremental actions,
which typically manipulate a buffer position in the
sentence and a stack for built sub-structures. In the
arc-eagerapproach introduced by Nivre et al. (2006)
the possible actions are as follows, withs0 being the
token on top of the stack andn0 being the next token
in the buffer:

− SHIFT: Pushn0 onto the stack.

− REDUCE: Pops0 from the stack.

− RIGHT-ARC(r): Add an arc labeledr from s0
to n0; pushn0 onto the stack.

− LEFT-ARC(r): Add an arc labeledr from n0

to s0; pops0 from the stack.

The parser uses a greedy approach, where the ac-
tion selected at each step is the best-scoring action
according to a classifier, which is trained on a de-
pendency treebank converted into sequences of ac-
tions. The major strength of this framework is its
O(n) time complexity, which allows for very fast
parsing when compared to more complex global op-
timization approaches.

4 Experimental Setup

We now discuss the treebanks used for training and
evaluation, the parser implementation and baseline
settings, the construction of the probabilistic lexical
resources, and the parameter tuning and evaluation
settings.

4.1 Treebanks

The treebank we use for training and in-domain
evaluation is the French Treebank (FTB) (Abeillé
and Barrier, 2004), consisting of 12,351 sentences
from theLe Mondenewspaper, converted to projec-
tive2 dependency trees (Candito et al., 2010a). For
our experiments we use the usual split of 9,881 train-
ing, 1,235 development, and 1,235 test sentences.

2The projectivity constraint is linguistically valid for most
French parses: the authors report< 2% non-projective edges in
a hand-corrected subset of the converted FTB.
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Moving beyond the journalistic domain, we use
two additional treebank resources for out-of-domain
parsing evaluations. These treebanks are part of
the Sequoia corpus (Candito and Seddah, 2012),
and consist of text from two non-journalistic do-
mains annotated using the FTB annotation scheme:
a medical domain treebank containing 574 develop-
ment and 544 test sentences of public assessment
reports of medicine from the European Medicines
Agency (EMEA) originally collected in the OPUS
project (Tiedemann, 2009), and a parliamentary do-
main treebank containing 561 test sentences from
the Europarl3 corpus.

4.2 Parser and Baseline Settings

We use our own Python implementation of the arc-
eager algorithm for transition-based parsing, based
on the arc-eager setting of MaltParser (Nivre et al.,
2007), and we train using the standard FTB training
set. Our baseline feature templates and general set-
tings correspond to those obtained in a benchmark-
ing of parsers for French (Candito et al., 2010b),
under the setting which combined lemmas and mor-
phological features.4 Automatic POS-tagging is per-
formed using MElt (Denis and Sagot, 2009), and
lemmatization and morphological analysis are per-
formed using the Lefff lexicon (Sagot, 2010). Ta-
ble 1 lists our baseline parser’s feature templates.

4.3 Lexical Resource Construction

We now describe the construction of our probabilis-
tic lexical target space resources, whose prerequi-
sites include the automatic parsing of a large corpus,
the construction of a distributional thesaurus, the use
of ASR on WordNet synsets, and the use of HAC
clustering.

4.3.1 Automatically-Parsed Corpus

The text corpus we use consists of 125 mil-
lion words from theL’Est Republicainnewspa-
per5, 125 million words of dispatches from the
Agence France-Presse, and 225 million words from
a French Wikipedia backup dump6. The corpus is

3http://www.statmt.org/europarl/
4That work tested the use of Brown clusters, but obtained no

improvement compared to a setting without clusters. Thus, we
do not evaluate Brown clustering in this paper.

5http://www.cnrtl.fr/corpus/estrepublicain/
6http://dumps.wikimedia.org/

Feature Templates
Unigram tn0

; ln0
; cn0

; wn0
; ts0 ; ls0 ; cs0 ; ws0 ; ds0 ;

tn1
; ln1

; tn2
; tn3

; ts1 ; ts2 ; tn0l
; ln0l

; dn0l
;

ds0l ; ds0r ; ls0h ; {mi
n0

: i ∈ |M |};
{mi

s0
: i ∈ |M |}

Bigram ts0tn0
; ts0 ln0

; ls0 ln0
; ln0

tn1
; tn0

tn0l
;

tn0
dn0l

; {mi
s0
mj

n0
: i; j ∈ |M |};

{tn0
mi

n0
: i ∈ |M |}; {ts0m

i
s0

: i ∈ |M |}

Trigram ts2ts1 ts0 ; ts1ts0 tn0
; ts0 tn0

tn1
; tn0

tn1
tn2

;
tn1

tn2
tn3

; ts0ds0lds0r

Table 1: Arc-eager parser feature templates.c = coarse
POS tag,t = fine POS tag,w = inflected word form,l =
lemma,d = dependency label,mi = morphological fea-
ture from setM . For tokens,ni = ith token in the buffer,
si = ith token on the stack. The token subscriptsl, r, and
h denote partially-constructed syntactic left-most depen-
dent, right-most dependent, and head, respectively.

preprocessed using the Bonsai tool7, and parsed us-
ing our baseline parser.

4.3.2 Distributional Thesaurus

We build separate distributional thesauri for
nouns and for verbs,8 using straightforward meth-
ods in distributional lexical semantics based primar-
ily on work by Lin (1998) and Curran (2004). We
use the FreDist tool (Henestroza Anguiano and De-
nis, 2011) for thesaurus creation.

First, syntactic contextsfor each lemma are ex-
tracted from the corpus. We use all syntactic de-
pendencies in which the secondary token has an
open-class POS tag, with labels included in the con-
texts and two-edge dependencies used in the case of
prepositional-phrase attachment and coordination.
Example contexts are shown in Figure 2. For verb
lemmas we limit contexts to dependencies in which
the verb is governor, and we add unlexicalized ver-
sions of contexts to account for subcategorization.
For noun lemmas, we use all dependencies in which
the noun participates, and all contexts are lexical-
ized. The vocabulary is limited to lemmas with at
least 1,000 context occurrences, resulting in 8,171
nouns and 2,865 verbs.

Each pair of lemmax and contextc is sub-
sequently weighted by mutual informativeness us-
ing the point-wise mutual information metric, with

7http://alpage.inria.fr/statgram/frdep/fr_
stat_dep_parsing.html

8We additionally considered adjectives and adverbs, but our
initial tests yielded no parsing improvements.
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· One-Edge Context: –obj→ N |avocat

· One-Edge Context: –obj→ N

(unlexicalized)

· Two-Edge Context: –mod→ P |avec –obj→ N |avocat

· Two-Edge Context: –mod→ P |avec –obj→ N

(unlexicalized)

Figure 2: Example dependency contexts for the verb
lemmamanger. The one-edge contexts corresponds to
the phrase “manger un avocat” (“eat an avocado”), and
the two-edge contexts corresponds to the phrase “manger
avec un avocat” (“eat with a lawyer”).

probabilities estimated using frequency counts:

I(x, c) = log

(

p(x, c)

p(x)p(c)

)

(9)

Finally, we use the cosine metric to calculate the dis-
tributional similarity between pairs of lemmasx, y:

D(x, y) =

∑

c

I(x, c)I(y, c)

√

(

∑

c

I(x, c)2
)

×

(

∑

c

I(y, c)2
)

(10)

4.3.3 WordNet ASR

For WordNet synset experiments we use the
French EuroWordNet9 (FREWN). A WordNet
synset mapping10 allows us to convert synsets in the
FREWN to Princeton WordNet version 3.0, and af-
ter discarding a small number of synsets that are
not covered by the mapping we retain entries for
9,833 nouns and 2,220 verbs. We use NLTK, the
Natural Language Toolkit (Bird et al., 2009), to cal-
culate similarity between synsets. As explained in
Section 2.2, ASR is performed using the method of
McCarthy et al. (2004). We usek=8 for the distri-
butional nearest-neighbors to consider when ranking
the senses for a lemma, and we use the synset sim-
ilarity function of Jiang and Conrath (1997), with
default information content counts from NLTK cal-
culated over the British National Corpus11.

9http://www.illc.uva.nl/EuroWordNet/
10http://nlp.lsi.upc.edu/tools/download-map.

php
11http://www.natcorp.ox.ac.uk/

Source Evaluation Set
Vocabulary FTB Eval EMEA Eval Europarl

Nouns
FTB train 95.35 62.87 94.69
Thesaurus 96.25 79.00 97.83
FREWN 80.51 73.09 87.06

Verbs
FTB train 96.54 94.56 97.76
Thesaurus 98.33 97.82 99.54
FREWN 88.32 91.48 91.98

Table 2: Lexical occurrence coverage (%) of source
vocabularies over evaluation sets. FTB Eval contains
both the FTB development and test sets, while EMEA
Eval contains both the EMEA development and test sets.
Proper nouns are excluded from the analysis.

4.3.4 HAC Clustering

For the HAC clustering experiments in this paper,
we use the CLUTO package12. The distributional
thesauri described above are taken as input, and the
UPGMA setting is used for cluster agglomeration.
We test varying levels of clustering, with a parame-
ter z which determines the proportion of cluster vo-
cabulary size with respect to the original vocabulary
size (8,171 for nouns and 2,865 for verbs).

4.3.5 Resource Coverage

The coverage of our lexical resources over the
FTB and two out-of-domain evaluation sets, at the
level of token occurrences of verbs and common
nouns, is described in Table 2. We can see that
the FTB training set vocabulary provides better cov-
erage than the FREWN for both nouns and verbs,
while the coverage of the thesauri (and derived clus-
ters) is the highest overall.

4.4 Tuning and Evaluation

We evaluate four lexical target space configurations
against the baseline of lemmatization, tuning pa-
rameters using ten-fold cross-validation on the FTB
training set. The feature templates are the same as
those in Table 1, with the difference that features
involving lemmas are modified by the probabilistic
feature generalization technique described in Sec-
tion 2.4, using the appropriate categorical distribu-
tions. In all configurations, we exclude the French
auxiliary verbsêtre andavoir from participation in
lexical generalization, and we replace proper nouns

12http://glaros.dtc.umn.edu/gkhome/cluto/
cluto/download
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with a special lemma13. Below we describe the
tuned parameters for each configuration.

− RC: Replacement with cluster inΩc

For clusters and the parameterz (cf. Section
4.3.4), we settled on relative cluster vocabulary
sizez=0.6 for nouns andz=0.7 for verbs. We
also generalized lemmas not appearing in the
distributional thesaurus into a single unknown
class.

− PKNL: Probabilistic k-nearest lemmas inΩl

For the parametersk andm (cf. Section 2.1),
we settled onk=4 andm=0.5 for both nouns
and verbs. We also use the unknown class for
low-frequency lemmas, as in the RC configura-
tion.

− RS: Replacement with first-sense (k=1) in Ωs

Since the FREWN has a lower-coverage vo-
cabulary, we did not use an unknown class for
out-of-vocabulary lemmas; instead, we mapped
them to unique senses. In addition, we did not
perform lexical generalization for verbs, due to
low cross-validation performance.

− PKPS: Probabilistic k-prevalent senses inΩs

For this setting we decided to not place any
limit on k, due to the large variation in the
number of senses for different lemmas. As
in the RS configuration, we mapped out-of-
vocabulary lemmas to unique senses and did
not perform lexical generalization for verbs.

5 Results

Table 3 shows labeled attachment score (LAS) re-
sults for our baseline parser (Lemmas) and four lex-
ical generalization configurations. For comparison,
we also include results for a setting that only uses
word forms (Forms), which was the baseline for pre-
vious work on French dependency parsing (Candito
et al., 2010b). Punctuation tokens are not scored,
and significance is calculated using Dan Bikel’s ran-
domized parsing evaluation comparator14, at signif-
icance levelp=0.05.

13Proper nouns tend to have sparse counts, but for computa-
tional reasons we did not include them in our distributional the-
saurus construction. We thus chose to simply generalize them

Parse Evaluation Set LAS
Configuration FTB Test EMEA Dev EMEA Test Europarl

Forms 86.85 84.08 85.41 86.01

Lemmas 87.30 84.34 85.41 86.26

RC 87.32 84.28 85.71* 86.28
PKNL 87.46 84.63* 85.82* 86.26

RS 87.34 84.48 85.54 86.34
PKPS 87.41 84.63* 85.68* 86.22

Table 3: Labeled attachment score (LAS) on in-domain
(FTB) and out-of-domain (EMEA, Europarl) evaluation
sets for the baseline (Lemmas) and four lexical general-
ization configurations (RC, PKNL, RS, PKPS). Signif-
icant improvements over the baseline are starred. For
comparison, we also include a simpler setting (Forms),
which does not use lemmas or morphological features.

5.1 In-Domain Results

Our in-domain evaluation yields slight improve-
ments in LAS for some lexical generalization con-
figurations, with PKNL performing the best. How-
ever, the improvements are not statistically signifi-
cant. A potential explanation for this disappointing
result is that the FTB training set vocabulary cov-
ers the FTB test set at high rates for both nouns
(95.25%) and verbs (96.54%), meaning that lexi-
cal data sparseness is perhaps not a big problem
for in-domain dependency parsing. While WordNet
synsets could be expected to provide the added ben-
efit of taking word sense into account, sense ambi-
guity is not really treated due to ASR not providing
word sense disambiguation in context.

5.2 Out-Of-Domain Results

Our evaluation on the medical domain yields statisti-
cally significant improvements in LAS, particularly
for the two probabilistic target space approaches.
PKNL and PKPS improve parsing for both the
EMEA dev and test sets, while RC improves pars-
ing for only the EMEA test set and RS does not sig-
nificantly improve parsing for either set. As in our
in-domain evaluation, PKNL performs the best over-
all, though not significantly better than other lexi-
cal generalization settings. One explanation for the
improvement in the medical domain is the substan-
tial increase in coverage of nouns in EMEA afforded

into a single class.
14http://www.cis.upenn.edu/ ˜ dbikel/software.

html
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by the distributional thesaurus (+26%) and FREWN
(+16%) over the base coverage afforded by the FTB
training set.

Our evaluation on the parliamentary domain
yields no improvement in LAS across the different
lexical generalization configurations. Interestingly,
Candito and Seddah (2012) note that while Europarl
is rather different from FTB in its syntax, its vocabu-
lary is surprisingly similar. From Table 2 we can see
that the FTB training set vocabulary has about the
same high level of coverage over Europarl (94.69%
for nouns and 97.76% for verbs) as it does over the
FTB evaluation sets (95.35% for nouns and 96.54%
for verbs). Thus, we can use the same reasoning as
in our in-domain evaluation to explain the lack of
improvement for lexical generalization methods in
the parliamentary domain.

5.3 Lexical Feature Use During Parsing

Since lexical generalization modifies the lexical fea-
ture space in different ways, we also provide an anal-
ysis of the extent to which each parsing model’s lex-
ical features are used during in-domain and out-of-
domain parsing. Table 4 describes, for each config-
uration, the number of lexical features stored in the
parsing model along with theaverage lexical fea-
ture use(ALFU) of classification instances (each in-
stance represents a parse transition) during training
and parsing.15

Lexical feature use naturally decreases when
moving from the training set to the evaluation sets,
due to holes in lexical coverage outside of a parsing
model’s training set. The single-mapping configura-
tions (RC, RS) do not increase the number of lexical
features in a classification instance, which explains
the fact that their ALFU on the FTB training set (6.0)
is the same as that of the baseline. However, the de-
crease in ALFU when parsing the evaluation sets is
less severe for these configurations than for the base-
line: when parsing EMEA Dev with the RC configu-
ration, where we obtain a significant LAS improve-
ment over the baseline, the reduction in ALFU is
only 13% compared to 22% for the baseline parser.
For the probabilistic generalization configurations,
we also see decreases in ALFU when parsing the

15We define the lexical feature use of a classification instance
to be the number of lexical features in the parsing model that
receive non-zero values in the instance’s feature vector.

Parse Lexical Feats Average Lexical Feature Use
Configuration In Model FTB Train FTB Dev EMEA Dev

Lemmas 294k 6.0 5.5 4.7

RC 150k 6.0 5.8 5.2
PKNL 853k 15.7 14.8 12.0

RS 253k 6.0 5.6 4.9
PKPS 500k 9.2 8.6 7.0

Table 4: Parsing model lexical features (rounded to near-
est thousand) and average lexical feature use in classifi-
cation instances across different training and evaluation
sets, for the baseline (Lemmas) and four lexical general-
ization configurations (PKNL, RC, PKPS, and RS).

evaluation sets, though their higher absolute ALFU
may help explain the strong medical domain parsing
performance for these configurations.

5.4 Impact on Running Time

Another factor to note when evaluating lexical gen-
eralization is the effect that it has on running time.
Compared to the baseline, the single-mapping con-
figurations (RC, RS) speed up feature extraction and
prediction time, due to reduced dimensionality of
the feature space. On the other hand, the proba-
bilistic generalization configurations (PKNL, PKPS)
slow down feature extraction and prediction time,
due to an increased dimensionality of the feature
space and a higher ALFU. Running time is there-
fore a factor that favors the single-mapping approach
over our proposed probabilistic approach.

Taking a larger view on our findings, we hy-
pothesize that in order for lexical generalization
to improve parsing, an approach needs to achieve
two objectives: (i) generalize sufficiently to ensure
that lemmas not appearing in the training set are
nonetheless associated with lexical features in the
learned parsing model; (ii) substantially increase
lexical coverage over what the training set can pro-
vide. The first of these objectives seems to be ful-
filled through our lexical generalization methods, as
indicated in Table 4. The second objective, how-
ever, seems difficult to attain when parsing text in-
domain, or even out-of-domain if the domains have
a high lexical overlap (as is the case for Europarl).
Only for our parsing experiments in the medical do-
main do both objectives appear to be fulfilled, as
evidenced by our LAS improvements when parsing
EMEA with lexical generalization.
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6 Related Work

We now discuss previous work concerning the use of
lexical generalization for parsing, both in the classic
in-domain setting and in the more recently popular
out-of-domain setting.

6.1 Results in Constituency-Based Parsing

The use of word classes for parsing dates back to the
first works on generative constituency-based pars-
ing, whether using semantic classes obtained from
hand-built resources or less-informed classes cre-
ated automatically. Bikel (2000) tried incorporat-
ing WordNet-based word sense disambiguation into
a parser, but failed to obtain an improvement. Xiong
et al. (2005) generalized bilexical dependencies in
a generative parsing model using Chinese semantic
resources (CiLin and HowNet), obtaining improve-
ments for Chinese parsing. More recently, Agirre
et al. (2008) show that replacing words with Word-
Net semantic classes improves English generative
parsing. Lin et al. (2009) use the HowNet resource
within the split-merge PCFG framework (Petrov et
al., 2006) for Chinese parsing: they use the first-
sense heuristic to append the most general hyper-
nym to the POS of a token, obtaining a semantically-
informed symbol refinement, and then guide further
symbol splits using the HowNet hierarchy. Other
work has used less-informed classes, notably unsu-
pervised word clusters. Candito and Crabbé (2009)
use Brown clusters to replace words in a generative
PCFG-LA framework, obtaining substantial parsing
improvements for French.

6.2 Results in Dependency Parsing

In dependency parsing, word classes are integrated
as features in underlying linear models. In a seminal
work, Koo et al. (2008) use Brown clusters as fea-
tures in a graph-based parser, improving parsing for
both English and Czech. However, attempts to use
this technique for French have lead to no improve-
ment when compared to the use of lemmatization
and morphological analysis (Candito et al., 2010b).
Sagae and Gordon (2009) augment a transition-
based English parser with clusters using unlexical-
ized syntactic distributional similarity: each word is
represented as a vector of counts of emanating un-
lexicalized syntactic paths, with counts taken from

a corpus of auto-parsed phrase-structure trees, and
HAC clustering is performed using cosine similarity.
For semantic word classes, (Agirre et al., 2011) inte-
grate WordNet senses into a transition-based parser
for English, reporting small but significant improve-
ments in LAS (+0.26% with synsets and +0.36%
with semantic files) on the full Penn Treebank with
first-sense information from Semcor.

We build on previous work by attempting to
reproduce, for French, past improvements for in-
domain English dependency parsing with general-
ized lexical classes. Unfortunately, our results for
French do not replicate the improvements for En-
glish using semantic sense information (Agirre et al.,
2011) or word clustering (Sagae and Gordon, 2009).
The primary difference between our paper and previ-
ous work, though, is our evaluation of a novel prob-
abilistic approach for lexical generalization.

6.3 Out-Of-Domain Parsing

Concerning techniques for improving out-of-
domain parsing, a related approach has been to use
self-training with auto-parsed out-of-domain data,
as McClosky and Charniak (2008) do for English
constituency parsing, though in that approach
lexical generalization is not explicitly performed.
Candito et al. (2011) use word clustering for do-
main adaptation of a PCFG-LA parser for French,
deriving clusters from a corpus containing text
from both thesourceand target domains, and they
obtain parsing improvements in both domains.
We are not aware of previous work on the use of
lexical generalization for improving out-of-domain
dependency parsing.

7 Conclusion

We have investigated the use of probabilistic lexi-
cal target spaces for reducing lexical data sparse-
ness in a transition-based dependency parser for
French. We built a distributional thesaurus from an
automatically-parsed large text corpus, using it to
generate word clusters and perform WordNet ASR.
We tested a standard approach to lexical gener-
alization for parsing that has been previously ex-
plored, where a word is mapped to a single cluster
or synset. We also introduced a novel probabilis-
tic lexical generalization approach, where a lemma
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is represented by a categorical distribution over the
space of lemmas, clusters, or synsets. Probabilities
for the lemma space were calculated using the dis-
tributional thesaurus, and probabilities for the Word-
Net synset space were calculated using ASR sense
prevalence scores, with probabilistic clusters left for
future work.

Our experiments with an arc-eager transition-
based dependency parser resulted in modest but sig-
nificant improvements in LAS over the baseline
when parsing out-of-domain medical text. However,
we did not see statistically significant improvements
over the baseline when parsing in-domain text or
out-of-domain parliamentary text. An explanation
for this result is that the French Treebank training set
vocabulary has a very high lexical coverage over the
evaluation sets in these domains, suggesting that lex-
ical generalization does not provide much additional
benefit. Comparing the standard single-mapping ap-
proach to the probabilistic generalization approach,
we found a slightly (though not significantly) better
performance for probabilistic generalization across
different parsing configurations and evaluation sets.
However, the probabilistic approach also has the
downside of a slower running time.

Based on the findings in this paper, our focus
for future work on lexical generalization for de-
pendency parsing is to continue improving parsing
performance on out-of-domain text, specifically for
those domains where lexical variation is high with
respect to the training set. One possibility is to
experiment with building a distributional thesaurus
that uses text from both the source and target do-
mains, similar to what Candito et al. (2011) did
with Brown clustering, which may lead to a stronger
bridgingeffect across domains for probabilistic lex-
ical generalization methods.
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Abstract

In the last decade, substantial progress has
been made in the induction of semantic rela-
tions from raw text, especially of hypernymy
and meronymy in the English language and
in the classification of noun-noun relations in
compounds or other contexts. We investigate
the question of learning qualia-like semantic
relations that cross part-of-speech boundaries
for German, by first introducing a hand-tagged
dataset of associated noun-verb pairs for this
task, and then provide classification results us-
ing a general framework for supervised classi-
fication of lexical relations.

1 Introduction

Ever since the introduction of wordnets (Miller
and Fellbaum, 1991) or more generally machine-
readable dictionaries containing semantic relations,
researchers have investigated ways to learn such ex-
amples automatically from large text corpora, or
generalize them from existing instances. Substan-
tial research exists on the learning of hyperonymy
relations (Hearst, 1992; Snow et al., 2005; Tjong
Kim Sang and Hofmann, 2009), meronymy relations
(Hearst, 1998; Berland and Charniak, 1999; Girju
et al., 2003) and selectional preferences (Erk et al.,
2010; Bergsma et al., 2008; Ó Séaghdha, 2010).

Both lexicographic research (Chaffin and Her-
rmann, 1987; Morris and Hirst, 2004) and research
in cognitive psychology (Vigliocco et al., 2004;
McRae et al., 2005), argue that it is important to
consider relations beyond the classical inventory

of hyperonymy and meronymy relations; further-
more psychological research on priming (Hare et al.,
2009) suggests different processing for different re-
lations, which would entail that cognitively plau-
sible modeling of human language should model
these relations explicitly rather than simply record-
ing untyped associations between concepts (as in the
‘evocation’ relation proposed for WordNet by Boyd-
Graber et al., 2006).

One set of suggestions for an extended inventory
of relations can be found in the telic and agentive
qualia relations of Pustejovsky (1991) which have
been shown to be useful in recognizing discourse re-
lations (Wellner et al., 2006), or metonymy/coercion
phenomena (Verspoor, 1997; Rüd and Zarcone,
2011), and have the property of linking different
parts-of-speech groups, unlike meronymy and hy-
peronymy/troponymy.

The work we present in this paper consists of a
dataset of noun-verb associations for German con-
crete nouns, which we present in more detail in sec-
tion 3, and a state-of-the-art approach to the super-
vised classification of such cross-part-of-speech re-
lations using informative features from large collec-
tions of unannotated text, which we present in sec-
tion 4. Experimental results are discussed in section
6.

2 Related Work

Most of earlier work on discovering novel instances
of semantic relations was based on surface pattern
matching, as presented by Hearst (1998). In the do-
main of finding qualia relations, Cimiano and Wen-
deroth (2005) propose patterns such as “. . . purpose
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of X is . . . ” or “. . . X is used to . . . ”, whereas they
argue that agentive qualia are best chosen from a
small, fixed inventory of verbs (e.g., make, bake,
create . . . ). Katrenko and Adriaans (2008a) addi-
tionally propose “to Y a (new|complete) X” and “a
(new|complete) X has been Y’d” as patterns for agen-
tive qualia.

Some of the more recent work starts out from
matches extracted by means of such a pattern, but
use supervised training data to learn semantic con-
straints that improve the precision by filtering the
extracted examples. Berland and Charniak (1999)
use some handcrafted rules to exclude abstract ob-
jects from the part-of relations they extract from a
corpus, and additionally rank pattern extractions by
collocation strength. Girju et al. (2003) propose an
iterative refinement scheme based on taxonomic in-
formation from WordNet: In this learning approach,
general constraints using top-level semantic classes
(entity, abstraction, causal-agent) are passed to a de-
cision tree learner and iteratively refined until the se-
mantic constraints induced from the classes are no
longer ambiguous.

Katrenko and Adriaans (2008b, 2010) present ap-
proaches to learn semantic constraints for the use in
recognizing semantic relations between word tokens
(SemEval 2007 shared task, see Girju et al., 2009),
either in a graph-based generalization of Girju’s it-
erative refinement approach that is able to handle
sense ambiguities more gracefully, or by clustering
pairs of words by the joint similarity of both relation
arguments.

A complementary aspect is to improving recall
beyond the possibilities of a few hand-selected pat-
terns. Following Hearst (1998), Girju et al. (2003)
show that it is possible to find usable patterns by
exploiting known positive examples and looking for
co-occurrences of these relation arguments in a cor-
pus. However, these patterns usually have low preci-
sion and/or very limited recall, meaning that a more
elaborate approach (such as Girju et al.’s induction
of semantic constraints) is needed to make the best
use of them.

Yamada and Baldwin (2004) propose to use a
combination of templates typical of telic and agen-
tive qualia relations (X is worth Y ing, X deserves
Y ing, a well-Y ed X) and a statistical ranking com-
bining association and a classifier learned on pos-

itive and negative examples for that role. They
find that the combination of association statistic and
classification worked somewhat better than the tem-
plates alone.

One approach targeted at exploiting a greater
number of patterns for hyperonymy relations can be
found in the work of Snow et al. (2005): they ex-
tract patterns consisting of the shortest path in the
dependency graph plus an optional satellite and use
the set of all found paths as features in a linear clas-
sifier. The resulting classifier for hyperonymy re-
lations outperforms single patterns both in terms of
precision and in terms of recall; a further improve-
ment can be achieved if the frequency of pattern in-
stances is binned instead of just occurrence or non-
occurrence being recorded.

Tjong Kim Sang and Hofmann (2009) investigate
the question whether it is necessary to use syntac-
tic (rather than surface) patterns for the hyperonym
classification approach of Snow et al. They compare
a method of extracting features based on syntax as
in Snow et al.’s approach with a surface-based al-
ternative where the string between two words, plus
optionally one word to the left or right side of the
word, is extracted. Tjong Kim Sang and Hofmann
argue that the benefit of the parser (additional recall
due to the better generalization capability of the syn-
tactic patterns) is mostly negated by parsing errors:
In some informative contexts that the system based
on POS patterns is able to find without problems,
parsing errors lead to a parse tree that does not ex-
hibit the intended (dependency path) pattern.

Several researchers have applied such pattern
classification approaches to a larger set of relations,
and have demonstrated that extracting a pattern dis-
tribution between occurrences and performing su-
pervised classification based on this distribution is
a promising solution for semantic relations that go
beyond hyperonymy.

Ó Séaghdha and Copestake (2007) use a super-
vised classification approach for noun-noun com-
pounds combining context features for each of the
single words with features characterizing the joint
occurrences of the two nouns that are part of the tar-
get compound. In their experiments, they found that
linear classification using informative (bag-of-words
and bag-of-triples) features in conjunction with fea-
tures aimed at the similarity of each word of the tar-
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get pair yields good results. In particular, the results
of using a linear classifier with informative corpus-
based features that are quite close to those that can
be achieved using a (more accurate, but computa-
tionally quite expensive) string kernel or those that
Ó Séaghdha (2007) achieves using taxonomic infor-
mation from WordNet.

Turney (2008) presents a general approach for
classifying word pairs into semantic relations by ex-
tracting the strings occurring between the two words
of a pair (up to three words in-between, up to one
word on either side) and using a frequency-based
selection process to select sub-patterns where words
from the extracted context pattern may have been re-
placed by a wildcard. Using standard machine learn-
ing tools (a support vector machine with radial base
function kernel), he is able to reach results that are
close to those possible with previous more special-
ized approaches.

Similarly, Herdağdelen and Baroni (2009) tackle
a variety of problems in semantic relation classifi-
cation using a unified approach where frequent uni-
grams and bigrams are extracted from co-occurrence
contexts of the target word pair (in addition to fea-
tures extracted from general occurrence contexts of
each word). Herdağdelen and Baroni’s approach
uses a linear SVM (which is faster and better-suited
to large data sets in general than either kernelized
support vector machines or nearest-neighbour ap-
proaches) yet is able to reach competitive accuracy.

In contrast to approaches using generic machine
learning, Ó Séaghdha and Copestake (2009) and
Nakov and Kozareva (2011) model the similarities
between related word pairs more explicitly in terms
of distributional kernels (Ó Séaghdha and Copes-
take), or as a similarity metric between word pairs
(Nakov and Kozareva). Such approaches allow more
flexibility in the modeling of similarity and the com-
bination of lexical and relational similarity mea-
sures, but are less well-suited for scaling up to more
training data.1

Because of the need for sufficient training data,
purely supervised approaches to learning relations

1Ó Séaghdha and Copestake (2009) reports training times
of slightly more than one day for their most efficient method
whereas a ten-fold crossvalidation run using SVMperf – see the
presentation on p. 6 – takes under an hour, i.e., using linear
classification is more efficient by a factor of about 100.

in morphologically-rich languages are often lim-
ited to the classical relations found in wordnets.
Tjong Kim Sang and Hofmann (2009) use a Dutch
corpus and hyperonymy relations from the Dutch
Cornetto wordnet and mention relatively few dif-
ferences to approaches on English such as Snow
et al. (2005). Kurc and Piasecki (2008) apply
the semi-supervised approach of Pantel and Pen-
nachiotti (2006) for learning hyperonymy relations,
but modify the patterns used to enforce morphosyn-
tactic agreement and accommodate a more flexi-
ble word order. Versley (2007) uses Web pattern
queries for finding hyperonymy relations and men-
tions the fact that greater morphological richness
and the smaller size of the German Web make the
use of Web queries more complex than for English.

Outside the realm of hyperonymy, Regneri (2006)
uses Web-based pattern search to classify verb-verb
associations into the semantic classes proposed for
English by Chklovski and Pantel (2004). Rüd and
Zarcone (2011) perform a corpus study of patterns
indicative of telic and agentive qualia relations in a
German Web corpus, but perform no automatic clas-
sification.

In summary, the research of Tjong Kim Sang and
Hofmann (2009) seems to indicate that at least hy-
peronymy relations can be found using a shallow
pattern approach despite greater word order flex-
ibility of languages such as Dutch and German.
For cross-part-of-speech relations, such as telic and
agentive qualia, such a question has been unad-
dressed as of yet, which prompted us to create a
dataset that is suitable for such an investigation.

3 Material

In order to investigate general-domain Noun-Verb
relations in German, we first had to create an ap-
propriate dataset that captures a realistic notion of
the relationships that humans infer in a text. Exist-
ing datasets that explore this space (most of them
for English) use a variety of approaches: One ap-
proach starts from examples (such as the popular
analogy dataset for English introduced by Turney
and Littman, 2003); other approaches such as the
data collection for the SemEval task on identifying
relations between nominals (Girju et al., 2009; Hen-
drickx et al., 2010) start from common semantic re-
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lations and use patterns to gather positive and nega-
tive examples by Web queries.

In our case, we started from noun-verb associa-
tions found in a sample of human-produced asso-
ciations to concrete noun stimuli (Melinger et al.,
2006); starting from the original association data, we
excluded items that were produced by less than three
subjects and used the part-of-speech information at-
tached to the data to retrieve only the verb associates.

The classification scheme was motivated by exist-
ing generative lexicon research (Pustejovsky, 1991;
Lenci et al., 2003), but was modeled to achieve a
good fit to the associations present in the data rather
than to force a good fit to any particular theory.

• agentive relations exist between an artifact and
an event that creates or procures it (e.g. bread-
bake)

• the telic relations exist between an entity and
an event that is related to its purpose or (actual
or intended) role:

– telic-artifact holds between an artifact and
its intended usage (e.g. plane-fly)

– telic-role holds between a role (i.e., a pro-
fession, organizational position etc.) and
activities related to that role (e.g. cowboy-
ride)

– telic-bodypart holds between a body part
and its intended uses (e.g. eye-see)

• the behaviour group of relations hold between
an entity and events that are caused by it, but
are not necessarily intentional or related to a
role that it fulfills:

– behaviour-animate are typical activities
performed by animate entities that are un-
related to the role that they fulfill for hu-
mans (e.g., dog-bark)

– behaviour-artifact relates artifacts to (usu-
ally) unintended behaviour associated
with them (e.g., moped-rattle)

– behaviour-environment relates elements
of the environment to events that go on
around them (e.g., sun-shine)

• location relations hold between elements of the
environment and activities typically performed
in or at them (e.g., mountain-climb)

• grooming relations hold between artifacts and
activities that contribute to the readiness of an
artifact (or body part) for its intended use but
are not directly related to it (e.g., plant-water,
hair-dye)

In comparison to standard schemes such as SIM-
PLE (Lenci et al., 2003), we have extended the set of
telic and agentive qualia from the original generative
lexicon approach by supplementing it with relations
that describe the affordances of objects or guides the
interpretative linking of objects and events, namely
location for affordances of elements of the environ-
ment and grooming for object-related actions that
may not be necessary for a differently-built object
with that same function, and finally behaviour de-
scribes events that co-occur with objects but are usu-
ally not part of a human agent’s action plan.

As a refinement, we subdivided the telic qualia
and behaviour relations, in particular specifying any
telic relation with the reason a concrete object may
be relevant for goal-directed processing – either by
teleological interpretation of body parts, by the cre-
ation of artifacts with a specific purpose, or the es-
tablishment of roles with social conventions sup-
porting certain types of actions.

Among the responses collected by Melinger et al.
(2006), we found relatively few instances that were
genuinely ambiguous (Drachen - fliegen, which may
either be interpreted as ‘kite/fly’, in which case it
would be a telic-artifact relation, or as ‘dragon/fly’,
in which case it would be a behaviour-animate rela-
tion), but found that domestic animals (cows, horses,
dogs) have affordances such as horse-ride or dog-
bark that indicate they are conceptualized as instru-
ments serving a particular goal (which means that
the relation should be labeled as telic-artifact rather
than as behaviour-animate).

In the associated word pairs, we also found re-
lations such as Zwiebel-schneiden (‘onion-cut’) or
Handtuch-duschen (‘towel-shower’) where the ac-
tion is related to a thing’s purpose but not identical
to it (towels are used to dry yourself after showering,
and people acquire onions to eat them after having
cut them). Our initial annotation included a com-
bination between the qualia-like relations presented
here and an additional event-semantic relation link-
ing the elicited event and the intended affordance of
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the object. However, the event relation was left out
of the dataset used in the experiments to avoid data
sparsity.

In our dataset with 641 items, the most fre-
quent relations are telic-artifact (425 instances),
behaviour-animate (94 instances), telic-role (35 in-
stances), telic-bodypart (24 instances). The other re-
lations have between 2 and 17 instances each (see
table 3). The relationship data is therefore heavily
skewed.

4 Classification Approach

Our classification approach is aimed at a practi-
cal toolkit for supervised classification of lexical-
semantic relations, similar in spirit to the BagPack
approach of Herdağdelen and Baroni (2009) but
adapted for the use in morphologically-rich lan-
guages, in particular German.

In addition to the surface-based unigram and bi-
gram features, we use features based on dependency
syntax, which is more robust against variation in
word order, and allows to reattach separable verb
prefixes.

4.1 Preprocessing

To see why a very shallow approach may be less use-
ful for German, let us consider a simple direct (ac-
cusative) object relation such as between aufessen
(eat up) and Kuchen (cake): this relation could be
realized in a variety of ways depending on clause
type and constituent order, as illustrated in example
(1).

(1) a. Peter isst den Kuchen auf.
Peter eats the cake up.
“Peter eats up the cake”.

b. Den Kuchen hat Peter aufgegessen.
The cakeacc has Peter eaten-up.
“Peter has eaten up the cake”.

c. . . . dass Peter den Kuchen aufisst.
. . . that Peter the cake up-eat.
“. . . that Peter eats up the cake”.

In German, clause type decides whether the verb
is in verb-second position (1a) or at the end of the
clause (1b,1c); additionally, as in (1a), prefixes of
verbs may be stranded at the end of a clause with the
verb in verb-second position.

In addition to morphological analysis, hence, reat-
tachment is necessary in such cases as (1a), and
parsing is necessary to reattach prefix and verb. In
cases such as (1b), word order variation also needs
to be taken into account in order to recover the direct
object relation, unlike in languages with less-flexible
word order.

As a text collection that furnishes contexts for the
words or word pairs that interest us, we use the web-
news corpus, a collection of online news articles col-
lected by Versley and Panchenko (2012). For the
processing of this 1.7 billion word corpus, we use
a pipeline that relies on deterministic dependency
parsing to provide complete dependency parses at a
speed that is suitable for the processing of Web-scale
corpora.

The parsing model is based on MALTParser, a
transition-based parser, and uses part-of-speech and
morphological information as input. Morphological
information is annotated using RFTagger (Schmid
and Laws, 2008), a state-of-the-art morphological
tagger based on decision trees and a large con-
text window (which allows it to model morpho-
logical agreement more accurately than a normal
trigram-based sequence tagger). While transition-
based parsers are quite fast in general, an SVM clas-
sifier (which is used in MALTParser by default) be-
comes slower with increasing training set. In con-
trast, using the MALTParser interface to LibLinear
by Cassel (2009), we were able to reach a much
larger speed of 55 sentences per second (against 0.4
sentences per second for a more feature-rich SVM-
based model that reaches state of the art perfor-
mance).

For lemmatization, we use the syntax-based
TüBa-D/Z lemmatizer (Versley et al., 2010), which
uses a separate morphological analyzer and some
fallback heuristics. The SMOR morphology
(Schmid et al., 2004) serves to provide morpholog-
ical analyses for novel words, covering inflection,
derivation and composition processes. For unana-
lyzed novel words that are not covered by SMOR,
the lemmatizer falls back to surface-based guessing
heuristics. It uses morphological and syntactic in-
formation to provide more accurate lemmas; In ad-
dition to dependency structures, the morphological
tags from RFTagger as well as global frequency in-
formation are used.
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4.2 Classification

For classification, we use the following learning
methods:

• For the SVMperf classifier, the set of possible
labels is decomposed into binary problems us-
ing the one-vs-all scheme (for each possible la-
bel, a classifier is trained that receives the in-
stances of this label as positive instances and
the others as negative instances). SVMperf al-
lows the training of models that either optimize
(an upper bound for) the accuracy (SVMacc)
or the f-measure (SVMF) of positive instances
(Joachims, 2005).

• The Maximum Entropy (MaxEnt) classifier
directly learns the multiclass decision. Here,
we used the AMIS package by Miyao and Tsu-
jii (2002).

All experiments are run in a ten-fold crossvalidation
setup where the data is split ten portions and each
portion (fold) is tagged using a classifier trained on
the remaining nine folds. This setup leads to de-
creased variation

As noted in section 6, SVMperf using optimization
for accuracy (i.e., a standard linear kernel SVM with
hinge loss and a one-versus-all reduction to handle
the multiclass problem) performs best on the two ag-
gregate measures that we used (accuracy and macro-
averaged F). Hence, most results we report in the
later part only use the standard SVM learner.

4.3 Features

The first group of surface-based features uses
a similar technique to Herdağdelen and Baroni
(2009): given the co-occurrences of two words X
and Y with at most 4 words in-between, we extract
frequent unigrams and bigrams. Because we can
maintain the sparsity of the resulting feature vector
(see section 5), we can use a larger list of 10 000
each of the most frequent unigrams and bigrams
(w12) alternatively to a list with only 2 000 entries
each (w12:2k). The lem12 feature uses the same
approach, but uses lemmas instead.

A second group of features uses a path-based
representation based on a modified version of the de-
pendency parse (where the main verb, and not the

auxiliary verb is the head of a clause and is con-
nected to both the subject and its other arguments).

In the path-based representation, we can extract
the (shortest) path between the two target words in
the dependency graph. The rel feature records the
complete path (labeled dependency edges as well
as lemmas of intervening nodes) between the target
words. In contrast, the sat feature records labeled
dependency edges as well as lemmas of the depen-
dents of one of the target words.

Because the rel feature yields relatively large
(and therefore sparse) strings, we also decompose
the dependency path in triples consisting of labeled
dependency edge in the path and the two nodes ad-
jacent to it (with the endpoints replaced by “w1” and
“w2”, respectively) for the triples feature.

In order to emulate the feature extraction of Snow
et al. (2005), we introduce a relsat feature, which
pairs the path (as in the rel feature) with one de-
pendent of either target word. The relsat feature
would be able to model patterns such as “w1 and
other w2”, where a modifier (“other”) is not part of
the shortest dependency path between w1 and w2.

In addition, a feature based on GermaNet (Hen-
rich and Hinrichs, 2010) uses taxonomic informa-
tion: possible hypernyms of the noun and verb in
the pair are extracted, and are used by themselves
(e.g. “noun is a hyponym of ‘thing’ ”, or “verb is a
hyponym of ‘communicate’ ”) and in combinations
of up to two of these possible hypernym labels.

In addition to taxonomic information from Ger-
maNet, we use distributional similarity features
for single words. For the nouns, we use distribu-
tional features based on the co-occurrence of pre-
modifying adjectives, which Versley and Panchenko
(2012) found to work better than other grammatical-
relation-based collocates (attr1), while we use
Padó and Lapata’s (2007) method of gathering and
weighting collocates based on distance in the depen-
dency graph for the verbs (pl2). Herdağdelen and
Baroni (2009) simply use a window-based approach
for gathering collocates, which we reimplemented as
a simpler way of capturing distributional similarity.
The resulting features are named w1 and w2.
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Seine Tante backt täglich leckeren Kuchen

DET NSUBJ ADV

OBJA

AMOD

His aunt bakes daily luscious cake
“his aunt bakes luscious cake every day”

w12 Seinew2,w1
Tantew2,w1 w2

täglichw1

lem12 seinw2,w1
Tantew2,w1 w2

täglichw1

rel ↑OBJA
sat w2ADV:täglich w1AMOD:lecker

w1NSUBJ:Tante
triples w1 ↑OBJAw2

relsat ↑OBJA/w2ADV:täglich
↑OBJA/w1AMOD:lecker
↑OBJA/w1NSUBJ:Tante

Due to the short path between w1 and w2, the triples and

rel features are not very different in the example. In case of

more complicated constructions, the triples approach would

yield multiple simpler features whereas rel would yield one

single complex string.

Figure 1: Kinds of features

5 Count Transformations

It is a well-known fact in distributional semantics
that raw observation counts for context items (be
they elements surrounding single word occurrences
or elements extracted from the occurences of two
words together) are incomparable for different target
words/target pairs (since their frequency can differ)
as well as for different context items. As a result, re-
searchers have proposed different approaches to pro-
duce transformed vectors using more sophisticated
association statistics (see Dumais, 1991, Weeds
et al., 2004, Turney and Pantel, 2010, inter alia).

In our case, we implemented L1 normalization
(which normalizes for target word frequency), a con-
servative estimate for pointwise mutual information
(which normalizes for the frequencies of both target
word and feature), and the G2 log-likelihood mea-
sure of Dunning (1993), which gives significance
scores (i.e., numbers that invariably grow both with
target and feature frequency, even if the association
strength – the relation between actual occurrences
and those that would be expected when assuming no
association – is constant). In both cases, very fre-

quent features would be emphasized in comparison
to medium- and low-frequency features.

In the realm of supervised learning, an additional
choice has to be made among learning methods that
can classify words or word pairs using large feature
vectors – most commonly using nearest-neighbour
classification (Nakov and Kozareva, 2011), us-
ing custom kernels in support vector classification
(Ó Séaghdha and Copestake, 2009; Turney, 2008),
or by using appropriate techniques to represent the
feature vectors in linear classification.

In comparison to the former methods, linear clas-
sification scales better with the number of exam-
ples (where nearest-neigbour and kernel-based tech-
niques both show strongly superlinear behaviour)
and would be the method of choice for large-scale
classification.

Herdağdelen and Baroni (2009) propose to map
the values computed by association statistics by
computing mean and standard deviation of each fea-
ture and mapping the range [µ−2σ, µ+2σ] of asso-
ciation scores for that feature (seen over the values
of that feature for all target pairs) to the range [0, 1]
in the input for the classifier, clamping values out-
side that range to 0 or 1, respectively.

Unfortunately, the approach proposed by
Herdağdelen and Baroni has the property that an
association score of 0 is mapped to a non-zero
feature value for the classifier, which means that
feature vectors are no longer sparse (i.e., instead of
only storing non-zero values for context items that
are informative, values for all context items have to
be processed).

To keep the sparsity of the transformed counts,
we always use 0 as the lower bound of the mapping
(such that zero values stay zero values). In addi-
tion to the Herdagdelen and Baroni’s mean/variance-
based threshold, we investigated the following pos-
sibilities for fixing the upper bound:

• MI scale: use a constant upper bound of 1 on (a
conservative estimate of) the pointwise mutual
information.2

2To yield a conservative MI estimate, we use the discounting
factor introduced by Pantel and Lin (2002). The pointwise mu-
tual information value normalizes the frequency of both words
of a pair, hence all mutual information values are on a common
scale. A threshold of 1 in this case corresponds to two items oc-
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baselines/single features Acc MacroF
random 0.463 0.090
telic-artifact 0.663 0.080
w12/L1-norm/AMIS 0.677 0.181
w12/L1-norm/SVMacc 0.715 0.212
w12/L1-norm/SVMF 0.674 0.120
w12/L1-norm 0.715 0.212
lem12/G2-quant 0.703 0.204
rel/L1-quant 0.722 0.154
sat/L1-norm 0.700 0.185
triples/L1-quant 0.741 0.192
triples/G2-norm 0.739 0.212
relsat/L1-quant 0.698 0.154
attr1+pl2/MI-thr 0.800 0.460
w1+w2/MI-thr 0.807 0.468
GermaNet, no combination 0.846 0.450
GermaNet, degree=2 0.851 0.516

Table 1: Trivial and single-feature baselines (using SVM-
acc unless noted otherwise)

• norm: use a value based on mean and standard
deviation of the occurring values for one given
feature (µ+ 2σ).

• quant: use a fixed quantile (99%) of all values
for a feature for the upper bound of the map-
ping interval.

In addition, to mapping feature values onto the
unit interval [0, 1], we investigated the usefulness of
making the features binary-valued by mapping all
values lower than the threshold to zero. While intu-
itively a continuous-valued feature should be more
informative, the high dimensionality of the feature
space may mean that noisy feature extraction ulti-
mately leads to a worse model in the continuous-
feature case.

6 Results and Discussion

Because of the skewed distribution, it is useful to
look not only at the overall accuracy (Acc) but also
at the macro-average of the F-measure of all rela-
tions (MacroF). The macro-averaged F-measure re-
flects the ability of the system to recognize all re-

curring together about exp(1) ≈ 2.7 times as often as would be
expected from the marginal distribution for that co-occurrence
relation.

combinations Acc MacroF
triples/G2-norm 0.739 0.212
triples+w12/G2-norm 0.733 0.206
triples+rel/G2-norm 0.725 0.190
triples+sat/G2-norm 0.738 0.200
triples+relsat/G2-norm 0.729 0.184
triples+w1+w2/MI-thr 0.816 0.469
triples+attr1+pl2/MI-thr 0.807 0.431
GermaNet 0.851 0.516
GermaNet+triples/G2-norm 0.853 0.482
GermaNet+triples/MI-thr 0.855 0.484
GermaNet+w12/G2-norm 0.855 0.496
GermaNet+w12/MI-thr 0.858 0.510
GWN+w12+triples/G2-norm 0.852 0.462
GWN+w12+triples/MI-thr 0.849 0.478
GermaNet+w1+w2/MI-thr 0.828 0.496

Table 2: Combination results (using SVMacc)

lations since it weighs all relation types equally, in-
stead of (implicitly) weighting by token count where
under-predicting rare relation types normally yields
a higher accuracy. As is evident from table 1, the
accuracy baseline for the most frequent label (telic-
artifact) is already quite high.

Looking at results with various scaling methods
and learners on single features (table 1), we found
that the SVMacc learner consistently yields better
accuracy and macro-averaged F-measure than the
other two learners. For the weighting functions, we
found that none of the measures was consistently
better than the others; results for the single features
in table 1 are reported for a weighting function that
works best for either accuracy or macro-averaged F-
measure using. (For space reasons, table 1 shows
numbers only for the w12 feature and L1-norm scal-
ing; other features and settings show a similar rela-
tion between the scores for different learners).

As in the investigation by Ó Séaghdha and Copes-
take (2007), dependency triples from the path be-
tween the two target words are the most effective
feature representation and yields both the great-
est accuracy value (with L1 scaling and quantile-
based setting of thresholds) and the greatest F-
measure macroaverage (with G2 scaling and setting
of thresholds based on average and standard devi-
ation). Combination of the triples feature with
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agentive beh-anim beh-artif beh-body beh-env grooming location telic-artif telic-body telic-role
count 14 94 13 2 5 17 12 425 24 35
w12 0.105 0.513 0.000 0.000 0.000 0.000 0.154 0.834 0.214 0.255
triples 0.125 0.601 0.000 0.000 0.000 0.000 0.153 0.853 0.153 0.238
attr1+pl2 0.333 0.826 0.258 0.000 0.000 0.500 0.421 0.874 0.636 0.754
w1+w2 0.385 0.834 0.222 0.000 0.000 0.400 0.571 0.877 0.619 0.767
GermaNet 0.480 0.859 0.190 0.000 0.000 0.451 0.636 0.909 0.773 0.857
GWN+w12 0.400 0.857 0.133 0.000 0.333 0.384 0.600 0.916 0.600 0.873

Table 3: Results by relation

other features based on paired co-occurrences does
not lead to further improvements, especially with
those features that also express information from the
dependency path (rel,relsat).

In comparison, the accuracy of the GermaNet hy-
pernyms feature (which includes combinations of
the hypernyms of first and second word) is much
higher than the versions that do not make use of
hand-crafted taxonomic knowledge, which is sur-
prising since it uses only taxonomic and no rela-
tional information. The pairwise feature combina-
tion for GermaNet features yields another small im-
provement over these already very good results. Dis-
tributional information on single words, both the
strictly window-based w1+w2 feature and the one
that is based on more elaborated distributional mod-
eling (attr1+pl2) show quite good results that
show further (but relatively small) improvements
when combined with the triples feature.

The importance of taxonomic (or, alternatively,
distributional semantic) information for the task pro-
posed here - namely, the supervised classification of
qualia-like relations - partly mirrors results for the
supervised classification of relations between nomi-
nals, where Ó Séaghdha and Copestake (2007) find
that their best system for distributional similarity
based on the BNC performs at about the same level
as a (somewhat simpler) approach using WordNet-
based classification (Ó Séaghdha, 2007), with only
much more sophisticated approaches such as the one
of Ó Séaghdha and Copestake (2009), which also
makes use of a considerably larger textual basis to
improve results over the level of the WordNet-based
approach.

Another reason for the importance of taxonomic
information in this task may lie in the fact that the
different relations have relatively strong selectional

restrictions (for animate objects, roles/professions,
body parts, or artifacts on the noun side, and certain
types of actions or events on the verb side).

Looking at the results for each relation in table
3, we see that both telic-artifact and behaviour-
animate, the two relations with the largest counts,
are classified quite reliably, while behaviour-
bodypart and behaviour-environment, the two rela-
tions with very few examples, are never found by
the system. Among the other relations, taxonomi-
cal information for nouns and verbs seems to be in-
strumental for adequate classification of the groom-
ing relation and possibly also for location, telic-
bodypart and telic-role.

7 Summary

In this paper, we have presented a dataset contain-
ing cross-part-of-speech relations between concrete
nouns and human verb associates and demonstrated
a state-of-the-art approach for the supervised mul-
ticlass classification of the qualia relations in this
dataset.3 Our results show that taxonomic informa-
tion from GermaNet is much superior to all other
features, while corpus-based dependency triples are
still visibly superior to shallow surface-based fea-
tures.

Important questions for future research would in-
clude a more direct comparison to other languages
(ideally using a similar data set and information
sources) to tease apart the influences of word order,
taxonomic organization, and data sparsity, respec-
tively.

3The dataset and future corrected/improved versions, are
available on request. Please feel free to send an email to the
author if you want to use it or produce a create a version for
another language.
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Abstract 

We introduce a list of Arabic multiword 
expressions (MWE) collected from various 
dictionaries. The MWEs are grouped based 
on their syntactic type. Every constituent 
word in the expressions is manually 
annotated with its full context-sensitive 
morphological analysis. Some of the 
expressions contain semantic variables as 
place holders for words that play the same 
semantic role. In addition, we have 
automatically annotated a large corpus of 
Arabic text using a pattern-matching 
algorithm that considers some morpho-
syntactic features as expressed by a highly 
inflected language, such as Arabic. A 
sample part of the corpus is manually 
evaluated and the results are reported in 
this paper. 

1 Introduction 

A multiword expression (MWE) refers to a 
multiword unit or a collocation of words that co-
occur together statistically more than chance. A 
MWE is a cover term for different types of 
collocations, which vary in their transparency and 
fixedness. MWEs are pervasive in natural 
language, especially in web based texts and speech 
genres. Identifying MWEs and understanding their 
meaning is essential to language understanding, 
hence they are of crucial importance for any 
Natural Language Processing (NLP) applications 
that aim at handling robust language meaning and 
use. In fact, the seminal paper (Sag et al., 2002) 
refers to this problem as a key issue for the 
development of high-quality NLP applications. 
MWEs are classified based on their syntactic 

constructions. Among the various classes, one can 
find the Verb Noun Constructions (VNC), Noun 
Noun Construction (NNC) and others. A MWE 
typically has an idiosyncratic meaning that is more 
or different from the meaning of its component 
words. In this paper we focus on MWEs in Arabic. 
Like many other Semitic languages, Arabic is 
highly inflected; words are derived from a root and 
a pattern (template), combined with prefixes, 
suffixes and circumfixes. As opposed to English 
equivalents, Arabic MWEs can be expressed in a 
large number of forms, expressing various 
inflections and derivations of the words while 
maintaining the exact same meaning, for example, 
>gmD [flAn] Eynyh En [Al>mr] 1 , “[one] 
disregarded/overlooked/ignored [the issue]”, 
literally, closed one’s eyes, vs. >gmDt [flAnp] 
EynyhA En [Al>mr], “[one_fem] 
disregarded/overlooked/ignored_fem [the issue]”, 
where the predicate takes on the feminine 
inflection. However, in many cases, there are 
morphological features that cannot be changed in 
different contexts, for example, mkrh >xAk lA bTl, 
“forced with no choice”, in this example, 
regardless of context, the words of the MWE do 
not agree in number and gender with the 
surrounding context. These are considered frozen 
expressions. One of the challenges in building 
MWE list for Arabic is to identify those features 
and document them in every MWE. Our resource 
is available for download.2  

We have manually collected a large number of 
MWEs from various Arabic dictionaries, which are 
based on MSA corpora, and then filtered by Arabic 
                                                
1 We use the Buckwalter transliteration for rendering Arabic 
script in Romanization through out the paper (Buckwalter, 
2002). 
2 To get a direct access, please send a request to one of the 
authors 
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native linguists. We then classified them based on 
their syntactic constructions, considering the 
relevant syntactic phenomena expressed in Arabic. 
The MWEs were manually annotated with the 
context-sensitive SAMA (Maamouri, 2010) 
morphological analysis for each word to assist an 
automated identification of MWEs in a large 
corpus of text. Part of the Arabic Gigaword 4.0 
(Parker, 2009) is processed accordingly and the 
MWEs are annotated based on a deterministic 
algorithm considering different variants of every 
MWE in our list. There are diverse tasks that 
require a corpus with annotated MWEs, which 
have not been addressed in Arabic due to the lack 
of such a resource. However, a lot of attention is 
put on those tasks when implemented in English 
and other languages. Among those tasks, 
classifying MWEs in a running text is the most 
common one. Diab and Bhutada (2009) applied a 
supervised learning framework to the problem of 
classifying token level English MWEs in context. 
They used the annotated corpus provided by Cook 
(2008), a resource of almost 3000 English 
sentences annotated with VNC usage at the token 
level. Katz and Giesbrecht (2006) carried out a 
vector similarity comparison between the context 
of an English MWE and that of the constituent 
words using Latent Semantic Analysis to 
determine if the expression is idiomatic or not. In 
work by Hashimoto and Kawahara (2008), they 
addressed token classification into idiomatic versus 
literal for Japanese MWEs of all types. They 
annotated a corpus of 102K sentences, and used it 
to train a supervised classifier for MWEs. Using 
MWEs in machine translation is another 
application. Carpuat and Diab (2010) studied the 
effect of integrating English MWEs with a 
statistical translation system. They used the 
WordNet 3.0 lexical database (Fellbaum, 1998) as 
the main source for MWEs. Attia et al., in 2010, 
extracted Arabic MWEs from various resources. 
They focused only on nominal MWEs and used 
diverse techniques for automatic MWE extraction 
from cross-lingual parallel Wikipedia titles, 
machine-translated English MWEs taken from the 
English WordNet and the Arabic Gigaword 4.0 
corpus. They found a large number of MWEs, 
however only a few of them were evaluated.  

In this paper, we describe the process of 
manually creating a relatively comprehensive 
Arabic MWE list. We use the resulting list to tag 

MWE occurrences in context in a corpus.  
 
The paper is organized as follows: In Section 2 

we describe the process of creating the Arabic 
MWE list. Section 3 discusses the algorithm for 
automatic deterministic tagging of MWEs in 
running text, based on pattern matching. Sections 4 
and 5 summarize the results of applying the 
pattern-matching algorithm on a corpus. Finally, 
we conclude in Section 6. 

2 Arabic MWE List 

Our Arabic MWE list is created based on a 
collection of about 5,000 expressions, which is 
manually extracted from various Arabic 
dictionaries (Abou Saad, 1987; Seeny et al., 1996; 
Dawod, 2003; Fayed, 2007). Each MWE is 
preprocessed by the following steps: 1) cleaning 
punctuations and unnecessary characters, 2) 
breaking alternative expressions into individual 
entries, and 3) running MADA (Habash and 
Rambow, 2005; Roth et al, 2008) on each MWE 
individually for finding the context-sensitive 
morphological analysis for every word. Some of 
the extracted MWEs are originally enriched with 
placeholder generic words that play the same 
semantic role in the context of the MWE. That set 
of generic words is manually normalized and 
reduced to a group of types, as shown in Table 2. 
 
Generic Type Semantic 

Role 
Example 

flAn  
“so-and-so” 

a person 

Agent/Patient qr flAn EynA  
“pleased 

someone“ 
k*A 

“something“ 
an object 

Goal ElY HsAb k*A  
“at the expense of 

that/this” 
<mr 

“something” 
an issue 

Source <mr Abn ywmh 
“something very 

new“ 
 

Table 1 – Generic Types 
 
Generic words are sometimes provided with or 
without additional clitics. For example, in the 
MWE lEbt [bflAn] AldnyA, literally, “the world 
played-passive with so-and-so:”, which could be 
translated as “life played havoc with so-and-so”,  
the word bflan “to so-and-so” has the preposition b 
“with” cliticized to it.  Every word that substitutes 
a generic word (an instantiation) has to comply 
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with the morphological features of the context 
surrounding it.  

The automatic preprocessing steps we ran on the 
list are followed by a series of manual ones. We 
found that the short context we had for every 
MWE was not sufficient for MADA to return the 
correct analysis with reasonable precision.  
Therefore, we had to go over the results and 
manually select the correct analysis for each word 
in every MWE. Generic words are also assigned 
with their correct analysis in context.  

The class of each MWE is assigned manually. 
Arabic is highly inflected; therefore many MWE 
classes can be identified. However, in this paper, 
we focus only on the major ones. The following 
classes are used: Verb-Verb Construction (VVC) 
as in >xZ [flAn] w>ETY “give and take”; Verb-
Noun Construction (VNC), for example, md [flAn] 
Aljswr “[someone] built bridges” as in extending 
the arms of peace; Verb-Particle Construction 
(VPC) as in mDY [flAn] fy “[someone] continues 
working on”; Noun-Noun Construction (NNC) as 
in Enq {lzjAjp “bottleneck”; Adjective Noun 
Construction (ANC) as in [flAn] wAsE {l&fq 
“[someone] broad-minded”.  

The final list comprises 4,209 MWE types. 
Table 2 presents the total number of MWE types 
for each category.  
 

MWE Category Type Number 
VVC 41 
VNC 1974 
VPC 670 
NNC 1239 
ANC 285 

 

Table 2 – Arabic MWEs by category types 

3 Deterministic Identification of Arabic 
MWEs 

We developed a pattern-matching algorithm for 
discovering MWEs in Arabic running text. The 
main goal of this algorithm is to deterministically 
identify instances of MWEs from the list in a large 
Arabic corpus, considering some morphological as 
well as syntactic phenomena. We use the Arabic 
Gigaword 4.0 (AGW). 3  To capture the large 

                                                
3 
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId
=LDC2009T30 

number of morpho-syntactic variations of the 
MWEs in context, the pattern-matching algorithm 
is designed to use some of the information 
available from the selected morphological analysis 
for every MWE word, as well as shallow-syntactic 
information that we automatically assigned for 
every word in the corpus.  

One of our immediate intentions is to use the list 
of MWEs for learning how to statistically classify 
new ones in running text. Therefore, we begin here 
with annotating a large part of the AGW corpus  
with all the occurrences a MWE given in the list. 
In order to make some shallow-syntactic features 
available for the pattern-matching algorithm, we 
pre-processed the AGW with AMIRAN, an 
updated version of the AMIRA tools (Diab et al., 
2004, 2007). AMIRAN is a tool for finding the 
context-sensitive morpho-syntactic information. 
AMIRAN combines AMIRA output with 
morphological analyses provided by SAMA. 
AMIRAN is also enriched with Named-Entity-
Recognition (NER) class tags provided by 
(Benajiba et al., 2008). For every word, AMIRAN 
is capable of identifying the clitics, diacritized 
lemma, stem, full part-of-speech tag excluding 
case and mood, base-phrase chunks and NER tags. 
Part of this information was used in previous work 
for processing English MWEs.  

When looking for Arabic MWEs in the pre-
processed corpus, there are two important issues 
that the pattern-matching algorithm is addressing: 
morphological variations and gaps. We now 
elaborate further on each one of them. 

 
Morphological variations: As mentioned 

above, Arabic is highly inflected; clitics may be 
attached to reflect definiteness, conjunction, 
possessive pronouns and prepositions. This fact 
forces the pattern-matching algorithm to match 
words on a more abstract level then their surface 
form. The algorithm considers different levels of 
representation for each of the words. Those levels 
are matched based on the information provided by 
AMIRAN on corpus words, on the one hand, and 
the morphological analyses that are selected 
manually for every MWE word on the other hand. 
In the experiment reported here, we match words 
on the lemma level. The lemma provided by 
AMIRAN and the one manually chosen by 
MADA/SAMA analyses are taken from the same 
pool, hence matching is enabled. It is worth noting 
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that in Arabic, the lemma is a generic name for a 
group of words that can be derived from one of its 
underlying stems, sharing the same meaning. For 
instance, the noun bnt  “girl” and its plural form 
bnAt “girls” are reduced to the same lemma form 
bnt. Obviously, perfect and imperfect forms of a 
verb are also assigned to the same lemma. A 
lemma form does not include the clitics; for every 
corpus word, this information is recorded by 
AMIRAN. Since clitics are in many cases 
important for matching MWES, the pattern-
matching algorithm considers them. For example, 
in the MWE: <x* [flAn] bAlv<r, “[so-and-so] 
requited”, the proclitic b “with” expressed in the 
last word, is important for matching.  

 
Gaps: Sometimes a MWE can be found with 

additional words such as modifiers that are not part 
of the original MWE expression words. For 
instance, the MWE: wDEt AlHrb <wzArhA, “the 
war is over”, is found in the text: wDEt AlHrb 
AlEAlmyp AlvAnyp <wzArhA, “the second world 
war is over”. The nominal modifiers AlEAlmyp 
AlvAnyp (“second world…”) are not present in the 
original MWE taken from the list, and therefore 
considered as gap fillers.  To be able to identify 
gaps of MWEs in context, the pattern-matching 
algorithm uses the part-of-speech and base-phrase 
tags provided for every word by AMIRAN. In the 
reported experiment, we allowed an MWE to be 
matched over gaps of noun-phrases 
complementing MWE words. In other words, we 
allowed every MWE noun to be matched with a 
complete non-recursive noun-phrase that appears 
in the text. The matching is performed only on the 
first noun of the containing noun-phrase, 
restricting our approach using only noun-phrases 
expressing the head noun in the beginning of a 
phrase. For instance, in the previous example 
AlHrb AlEAlmyp AlvAnyp, “the Second World 
War”, is a noun-phrase with a first noun word 
AlHrb “the war”. This noun-phrase matches the 
word AlHrb “the war” from the list MWE wDEt 
AlHrb <wzArhA “the war is over”, hence allowing 
the entire MWE to be found. Obviously, allowing 
gaps of any types would have increased the recall 
but on the other hand a large number of false 
positive MWEs would have been identified. 
Currently, only noun-phrases are considered as 
potential gap fillers. Considering other phrase 
types is left for future work. We plan on 

identifying the types of potential gap fillers and 
correlating them with the various MWE types. 

One of the remaining problems with identifying 
MWEs deterministically in a running text is that 
the exact MWE words can be found in a text, 
however given the context, in some cases they are 
not idiomatic. This is the case for many VNCs for 
instance. Hence, they are not a unified concept – a 
word with gaps -- as in our definition of a MWE 
usage.  Accordingly a token MWE classifier is 
required to identify such cases, teasing idiomatic 
from literal MWEs apart.  

4 Building MWE Annotated Corpus 

We ran the pattern-matching algorithm on a large 
part of the AGW after we pre-processed the 
documents with AMIRAN. Overall, we had 250 
million tokens and found 481,131 MWE instances. 
Table 3 summarizes the exact number of MWEs 
that we found, grouped by their class type. 

The matching was performed on the lemma 
level constraining the search with clitic matching. 
Gaps are restricted only to noun-phrases at this 
time, as mentioned above. The output of this 
process follows the Inside Outside Beginning 
(IOB) annotation scheme. In fact, the output files 
are based on the same input AMIRAN files, 
enriched with O, B/I-MWE tags as found by the 
pattern-matching algorithm. Figure 1 shows how a 
complete sentence, containing a MWE, is 
annotated by the pattern-matching algorithm. 
 

MWE Category Type Number 
VVC 576 
VNC 64,504 
VPC 75,844 
NNC 316,393 
ANC 23,814 

 

Table 3 – Annotated MWEs by class 

5 Evaluation 

The annotations are manually evaluated by a native 
speaker of Arabic. We sub sampled the corpus and 
examined each MWE instance that is identified by 
the pattern-matching algorithm. Table 4 shows our 
findings. Each row represents one category type. 
The middle column shows the number of instances 
evaluated, followed by the number of unique 
MWE types. In the last column, the number of 
correct instances as it was examined in context, is 
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reported. The correctness of an instance is 
determined by its context. Remember that MWEs 
are not only matched statically; generic words, 
gaps and inflections may cause the pattern-
matching algorithm to annotate expressions with 
an MWE type, incorrectly. 
 

Word Lemma POS NER MWE 
swlAnA suwlAnA NN I-OR O 

: : PUNC O O 
AlAtHAd <it~iHAd NN B-GP O 

AlAwrwby Auwrub~iy NN I-GP O 
w+ wa+ CC O O 

wA$nTn wA$inoTuwn NNP B-GP O 
ysEyAn saEaY-a VBPMD3 O O 

l+ li+ IN O O 
AyjAd AiyjAd NN O O 
Alyp |liy~ap NNFS O O 

l+ li+ IN O O 
wqf waqof NN O O 

ATlAq Talaq NN O B-MW 
Al+ Al+ DET O I-MW 
nAr nAr NN O I-MW 

 

Figure 1 – Annotated sentence example 
 
 

MWE 
Type 

Evaluated Instances Correct 
Instances 

VVC 111 (2 types) 2 
VNC 157 (34 types) 154 
VPC 161 (32 types) 125 
NNC 155 (26 types) 154 

 

Table 4 – Evaluation Results 
 
The evaluation set is relatively small. Nevertheless, 
one can see that in most cases the annotations are 
correct. For the VNC, the pattern matching 
algorithm achieves an accuracy of 98%, for VPC, 
we get an accuracy of 77.6%, and NNC we achieve 
an accuracy of 99%. It is worth noting that NNCs 
are the only category that employs the gapping. 
The VVC category contains only a few MWE 
types, in the sampled set we evaluated 111 
instances of merely two different types from 
which, one was constantly identified incorrectly by 
the algorithm and it constitutes the majority of the 
instances (109 instances). 

6 Conclusions 

In this paper we have introduced a list of MWEs in 
Arabic. The MWEs are enriched with 
morphological information that was carefully 

assigned to every word. A large part of the Arabic 
Gigaword 4.0 was deterministically annotated 
using a pattern-matching algorithm, considering 
morphological variations as expressed by Arabic 
and some potential gaps. A sample of the corpus 
was manually evaluated with encouraging results. 
Building both resources is a first step toward our 
research in the field of Arabic MWEs. Classifying 
the level of idiomaticity of the part of the MWE 
classes is one direction we are currently exploring. 
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Abstract

This paper introduces a novel unsupervised
approach to semantic role induction that uses
a generative Bayesian model. To the best of
our knowledge, it is the first model that jointly
clusters syntactic verbs arguments into seman-
tic roles, and also creates verbs classes ac-
cording to the syntactic frames accepted by
the verbs. The model is evaluated on French
and English, outperforming, in both cases, a
strong baseline. On English, it achieves re-
sults comparable to state-of-the-art unsuper-
vised approaches to semantic role induction.

1 Introduction and background

Semantic Role Labeling (SRL) is a major task in
Natural Language Processing which provides a shal-
low semantic parsing of a text. Its primary goal is
to identify and label the semantic relations that hold
between predicates (typically verbs), and their asso-
ciated arguments (Màrquez et al., 2008).

The extensive research carried out in this area re-
sulted in a variety of annotated resources, which,
in time, opened up new possibilities for supervised
SRL systems. Although such systems show very
good performance, they require large amounts of
annotated data in order to be successful. This an-
notated data is not always available, very expen-
sive to create and often domain specific (Pradhan
et al., 2008). There is in particular no such data
available for French. To bypass this shortcoming,
“annotation-by-projection” approaches have been
proposed (Pado and Lapata, 2006) which in essence,
(i) project the semantic annotations available in one

language (usually English), to text in another lan-
guage (in this case French); and (ii) use the resulting
annotations to train a semantic role labeller. Thus
Pado and Pitel (2007) show that the projection-based
annotation framework permits bootstrapping a se-
mantic role labeller for FrameNet which reaches an
F-measure of 63%; and van der Plas et al. (2011)
show that training a joint syntactic-semantic parser
based on the projection approach permits reaching
an F-measure for the labeled attachment score on
PropBank annotation of 65%.

Although they minimize the manual effort in-
volved, these approaches still require both an an-
notated source corpus and an aligned target corpus.
Moreover, they assume a specific role labeling (e.g.,
PropBank, FrameNet or VerbNet roles) and are not
generally portable from one framework to another.

These drawbacks with supervised approaches mo-
tivated the need for unsupervised methods capable
of exploiting large amounts of unannotated data. In
this context several approaches have been proposed.
Swier and Stevenson (2004) were the first to intro-
duce unsupervised SRL in an approach that used
the VerbNet lexicon to guide unsupervised learning.
Grenager and Manning (2006) proposed a directed
graphical model for role induction that exploits lin-
guistic priors for syntactic and semantic inference.
Following this work, Lang and Lapata (2010) for-
mulated role induction as the problem of detecting
alternations and mapping non-standard linkings to
cannonical ones, and later as a graph partitioning
problem in (Lang and Lapata, 2011b). They also
proposed an algorithm that uses successive splits and
merges of semantic roles clusters in order to improve
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their quality in (Lang and Lapata, 2011a). Finally,
Titov and Klementiev (2012), introduce two new
Bayesian models that treat unsupervised role induc-
tion as the clustering of syntactic argument signa-
tures, with clusters corresponding to semantic roles,
and achieve the best state-of-the-art results.

In this paper, we propose a novel unsupervised
approach to semantic role labeling that differs from
previous work in that it integrates the notion of verb
classes into the model (by analogy with VerbNet,
we call these verb classes, frames). We show that
this approach gives good results both on the En-
glish PropBank and on a French corpus annotated
with VerbNet style semantic roles. For the English
PropBank, although the model is more suitable for
a framework that uses a shared set of role labels
such as VerbNet, we obtain results comparable to
the state-of-the-art. For French, the model is shown
to outperform a strong baseline by a wide margin.

2 Probabilistic Model

As mentioned in the introduction, semantic role la-
beling comprises two sub-tasks: argument identifi-
cation and role induction. Following common prac-
tice (Lang and Lapata, 2011a; Titov and Klemen-
tiev, 2012), we assume oracle argument identifica-
tion and focus on argument labeling. The approach
we propose is an unsupervised generative Bayesian
model that clusters arguments into classes each of
which can be associated with a semantic role. The
model starts by generating a frame assignment to
each verb instance where a frame is a clustering of
verbs and associated roles. Then, for each observed
verb argument, a semantic role is drawn conditioned
on the frame. Finally, the word and dependency la-
bel of this argument are generated. The model ad-
mits a simple Gibbs algorithm where the number of
latent variables is proportional to the number of roles
and frames to be clustered.

There are two key benefits of this model architec-
ture. First, it directly encodes linguistic intuitions
about semantic frames: the model structure reflects
the subcategorisation property of the frame variable,
which also groups verbs that share the same set of
semantic roles, something very close to the VerbNet
notion of frames. Second, by ignoring the “verb-
specific” nature of PropBank labels, we reduce the

Figure 1: Plate diagram of the proposed directed
Bayesian model.

need for a large amount of data and we better share
evidence across roles.

In addition, because it is unsupervised, the model
is independent both of the language and of the spe-
cific semantic framework (since no inventory of se-
mantic role is a priori chosen).

2.1 Model description
The goal of the task is to assign argument instances
to clusters, such that each argument cluster repre-
sents a specific semantic role, and each role corre-
sponds to one cluster. The model is represented in
the form of a plate diagram in Figure 1. The ob-
served random variables are the verb V (lemma), its
voice V o (active or passive), the words W (lemma)
that are arguments of this verb, and the syntactic de-
pendency labelsD that link the argument to its head.
There are two latent variables: the frame F that rep-
resents the class of the verb, and the role R assigned
to each of its arguments. The parameters θ of all
multinomial distributions are Dirichlet distributed,
with fixed symmetric concentration hyper-parameter
α. The frame plays a fundamental role in this set-
ting, since it intends to capture classes of verbs that
share similar distributions of role arguments.

The model’s generative story is described next,
followed by a description of the inference algorithm
used to apply the model to an unannotated corpus.

2.2 Generative story
For each verb instance, the proposed model first gen-
erates a frame cluster, a voice (active or passive), and
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then a verb lemma from the distribution of verbs in
this frame. The number of arguments is assumed
fixed. For each argument, a role is sampled condi-
tioned on the frame. Then, a word is sampled from
the distribution of words associated to this role, and
finally a dependency label is generated, conditioned
both on the role and the voice. All multinomial pa-
rameters are collapsed, and thus not sampled. All
Dirichlet hyper-parameters are assumed constant.

To identify words, we use either word lemmas or
part-of-speech tags. In order to avoid data sparse-
ness issues, we consider the word lemma only in
cases where there are more than 9 instances of the
word lemma in the corpus. Otherwise, if the number
of word lemma instances is less than 10, we use the
part-of-speech tags.

2.3 Learning and Inference
A collapsed Gibbs sampler is used to perform poste-
rior inference on the model. Initially, all frames Fi
are sampled randomly from a uniform distribution,
while the roles Ri,j are assigned either randomly or
following the deterministic syntactic function base-
line, which simply clusters predicate arguments ac-
cording to their syntactic function. This function is
described in detail in Section 3.

The Gibbs sampling algorithm samples each la-
tent variable (Fi and Ri,j) in turn according to its
posterior distribution conditioned on all other in-
stances of this variable (noted F¬i and R¬(i,j) re-
spectively) and all other variables. These posteriors
are detailed next.

In the following, Ri,j represents the random vari-
able for the jth role of the ith verb in the corpus: its
value is Ri,j = ri,j at a given iteration of the sam-
pling algorithm. nrf,r is the count of occurrences of
(Fi = f,Ri,j = r) in the whole corpus, excluding
the ith instance when the superscript −i is used. A
star ∗ matches any possible value. The joint proba-
bility over the whole corpus with collapsed multino-
mial parameters is:

p(F,R, V,W,D, V o|α)

=

∏Nf

i=1 Γ(nf i + αF )

Γ(
∑Nf

i=1 nf i + αF )

Γ(
∑Nf

i=1 α
F )∏Nf

i=1 Γ(αF )
×

Nf∏
i=1

∏Nv
j=1 Γ(nvi,j + αV )

Γ(
∑Nv

j=1 nvi,j + αV )

Γ(
∑Nv

j=1 α
V )∏Nv

j=1 Γ(αV )
×

Nf∏
i=1

∏Nr
j=1 Γ(nri,j + αR)

Γ(
∑Nr

j=1 nri,j + αR)

Γ(
∑Nr

j=1 α
R)∏Nr

j=1 Γ(αR)
×

Nvo∏
i=1

Nr∏
j=1

∏Nd
k=1 Γ(ndi,j,k + αD)

Γ(
∑Nd

k=1 ndi,j,k + αD)

Γ(
∑Nd

k=1 α
D)∏Nd

k=1 Γ(αD)
×

Nr∏
i=1

∏Nw
j=1 Γ(nwi,j + αW )

Γ(
∑Nw

j=1 nwi,j + αW )

Γ(
∑Nw

j=1 α
W )∏Nw

j=1 Γ(αW )
×

∏Nvo
i=1 Γ(nvoi + αV o)

Γ(
∑Nvo

i=1 nvoi + αV o)

Γ(
∑Nvo

i=1 α
V o)∏Nvo

i=1 Γ(αV o)

The posterior from which the frame is sampled is
derived from the joint distribution as follows:

p(Fi = y|F¬i, R, V,W, V o) (1)

∝
p(F,R, V,W,D, V o)

p(F¬i, R¬i, V¬i,W¬i, D¬i, V o¬i)

=
(nf−i

y + αF )

(
∑Nf

z=1 nf
−i
z + αF )

×
(nv−i

y,vi
+ αV )

(
∑Nv

j=1 nv
−i
y,j + αV )

×

∏
r∈ri,∗

∏nr+i
r −1

x=0 (nr−i
y,r + αR + x)∏Mi

x=0(
∑Nr

r=1 nr
−i
y,r + αR + x)

where nr+i
r is the count of occurrences of role r in

the arguments of verb instance i (Mi =
∑

r nr
+i
r ).

The update equation for sampling the role be-
comes:
p(Ri,j = y|R¬(i,j), F, V,W,D, V o) (2)

∝
p(F,R, V,W,D, V o)

p(F¬i, V¬i, R¬(i,j),W¬(i,j), D¬(i,j), V o¬(i,j))

=
(nr
−(i,j)
fi,y + αR)

(
∑Nr

k=1 nr
−(i,j)
fi,k + αR)

×
(nd
−(i,j)
voi,y,di,j

+ αD)

(
∑Nd

k=1 nd
−(i,j)
voi,y,k + αD)

×

(nw
−(i,j)
y,wi,j

+ αW )

(
∑Nw

k=1 nw
−(i,j)
y,k + αW )

After T iterations, the process is stopped and the
expected value of the sampled frames and roles af-
ter the burn-in period (20 iterations) is computed.
With deterministic (syntactic) initialization, T is set
to 200, while it is set to 2000 with random initializa-
tion because of slower convergence.

3 Evaluations and results

We evaluate our model both on English to situate
our approach with respect to the state of the art; and
on French to demonstrate its portability to other lan-
guages.

3.1 Common experimental setup
The model’s parameters have been tuned with a
few rounds of trial-and-error on the English devel-
opment corpus: For the hyper-parameters, we set
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αF = 0.5, αR = 1.e−3, αV = 1.e−7, αV o = 1.e−3,
αD = 1.e−8 and αW = 0.5. For the evaluation on
French, we only changed the αF and αW parame-
ters. In order to reflect the rather uniform distribu-
tion of verb instances across verb classes we set αF

to 1. Moreover, we set αW to 0.001 because of the
smaller number of words and roles in the French cor-
pus. The number of roles and frames were chosen
based on the properties of each corpus. We set num-
ber of roles to 40 and 10, and the number of frames
to 300 and 60 for English and French respectively.
As done in (Lang and Lapata, 2011a) and (Titov and
Klementiev, 2012), we use purity and collocation
measures to assess the quality of our role induction
process. For each verb, the purity of roles’ clusters
is computed as follows:

PU =
1

N

∑
i

max
j
|Gj ∩ Ci|

where Ci is the set of arguments in the ith clus-
ter found, Gj is the set of arguments in the jth gold
class, and N is the number of argument instances.
In a similar way, the collocation of roles’ clusters is
computed as follows:

CO =
1

N

∑
j

max
i
|Gj ∩ Ci|

Then, each score is averaged over all verbs. In the
same way as (Lang and Lapata, 2011a), we use the
micro-average obtained by weighting the scores for
individual verbs proportionally to the number of ar-
gument instances for that verb. Finally the F1 mea-
sure is the harmonic mean of the aggregated values
of purity and collocation:

F1 =
2 ∗ CO ∗ PU
CO + PU

3.2 Evaluations on French
To evaluate our model on French, we used a manu-
ally annotated corpora consisting on sentences from
the Paris 7 Treebank (Abeillé et al., 2000), con-
taining verbs extracted from the gold standard V-
GOLD (Sun et al., 2010)1. For each verb, at most 25
sentences from the Paris 7 Treebank were randomly

1V-GOLD consists of 16 fine grained Levin classes with 12
verbs each (translated to French) whose predominant sense in
English belong to that class.

Role VerbNet roles
Agent Agent, Actor, Actor1, Actor2
Experiencer Experiencer
Theme Stimulus, Theme, Theme1, Theme2
Topic Proposition, Topic
PredAtt Predicate, Attribute
Patient Patient, Patient1, Patient2
Start Material, Source
End Product, Destination, Recipient
Location Location
Instrument Instrument
Cause Cause
Beneficiary Beneficiary
Extent Asset, Extent, Time, Value

Table 1: VerbNet role groups (French).

selected and annotated with VerbNet-style thematic
roles. In some cases, the annotated roles were ob-
tained by merging some of the VerbNet roles (e.g.,
Actor, Actor1 and Actor2 are merged); or by group-
ing together classes sharing the same thematic grids.
The resulting roles assignment groups 116 verbs into
12 VerbNet classes, each associated with a unique
thematic grid. Table 1 shows the set of roles used
and their relation to VerbNet roles. This constitutes
our gold evaluation corpus.

The baseline model is the “syntactic function”
used for instance in (Lang and Lapata, 2011a),
which simply clusters predicate arguments accord-
ing to the dependency relation to their head. This
is a standard baseline for unsupervised SRL, which,
although simple, has been shown difficult to outper-
form. As done in previous work, it is implemented
by allocating a different cluster to each of the 10
most frequent syntactic relations, and one extra clus-
ter for all the other relations. Evaluation results are
shown in Table 2. The proposed model significantly
outperforms the deterministic baseline, which vali-
dates the unsupervised learning process.

PU CO F1
Synt.Func. (baseline) 78.9 73.4 76.1
Proposed model - rand. init 74.6 82.9 78.5

Table 2: Comparison of the Syntactic Function baseline
with the proposed system initialized randomly, evaluated
with gold parses and argument identification (French).

3.3 Evaluations on English
We made our best to follow the setup used in previ-
ous work (Lang and Lapata, 2011a; Titov and Kle-
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mentiev, 2012), in order to compare with the current
state of the art.

The data used is the standard CoNLL 2008 shared
task (Surdeanu et al., 2008) version of Penn Tree-
bank WSJ and PropBank. Our model is evaluated
on gold generated parses, using the gold PropBank
annotations. In PropBank, predicates are associated
with a set of roles, where roles A2-A5 or AA are
verb specific, while adjuncts roles (AM) are con-
sistent across verbs. Besides, roles A0 and A1 at-
tempt to capture Proto-Agent and Proto-Patient roles
(Dowty, 1991), and thus are more valid across verbs
and verb instances than A2-A5 roles.

Table 3 reports the evaluation results of the pro-
posed model along with those of the baseline system
and of some of the latest state-of-the-art results.

PU CO F1
Synt.Func.(LL) 81.6 77.5 79.5
Split Merge 88.7 73.0 80.1
Graph Part. 88.6 70.7 78.6
TK-Bay.1 88.7 78.1 83.0
TK-Bay.2 89.2 74.0 80.9
Synt.Func. 79.6 84.6 82.0
Proposed model - rand. init 82.2 83.4 82.8
Proposed model - synt. init 83.4 84.1 83.7

Table 3: Comparison of the proposed system (last 2 rows)
with other unsupervised semantic role inducers evaluated
on gold parses and argument identification.

We can first note that, despite our efforts to
reproduce the same baseline, there is still a dif-
ference between our baseline (Synt.Func.) and
the baseline reported in (Lang and Lapata, 2011a)
(Synt.Func.(LL)) 2.

The other results respectively correspond to the
Split Merge approach presented in (Lang and Lap-
ata, 2011a) (Split Merge), the Graph Partitioning al-
gorithm (Graph Part.) presented in (Lang and Lap-
ata, 2011b), and two Bayesian approaches presented
in (Titov and Klementiev, 2012), which achieve the
best current unsupervised SRL results. The first such
model (TK-Bay.1) clusters argument fillers and di-
rectly maps some syntactic labels to semantic roles
for some adjunct like modifiers that are explicitly
represented in the syntax, while the second model
(TK-Bay.2) does not include these two features.

2We identified afterwards a few minor differences in both
experimental setups that partly explain this, e.g., evaluation on
the test vs. train sets, finer-grained gold classes in our case...

Two versions of the proposed model are reported
in the last rows of Table 3: one with random (uni-
form) initialization of all variables, and the other
with deterministic initialization of all Ri from the
syntactic function. Indeed, although many unsuper-
vised system are very sensitive to initialization, we
observe that in the proposed model, unsupervised in-
ference reaches reasonably good performances even
with a knowledge-free initialization. Furthermore,
when initialized with the strong deterministic base-
line, the model still learns new evidences and im-
proves over the baseline to give comparable results
to the best unsupervised state-of-the-art systems.

4 Conclusions and future work
We have presented a method for unsupervised SRL
that is based on an intuitive generative Bayesian
model that not only clusters arguments into seman-
tic roles, but also explicitly integrates the concept
of frames in SRL. Previous approaches to seman-
tic role induction proposed some clustering of roles
without explicitly focusing on the verb classes gen-
erated. Although there has been work on verb clus-
tering, this is, to the best of our knowledge, the first
approach that jointly considers both tasks.

In this work in progress, we focused on the role
induction task and we only evaluated this part, leav-
ing the evaluation of verb classes as future work. We
successfully evaluated the proposed model on two
languages, French and English, showing, in both
cases, consistent performances improvement over
the deterministic baseline. Furthermore, its accu-
racy reaches a level comparable to that of the best
state-of-the-art unsupervised systems.

The model could be improved in many ways, and
in particular by including some penalization term for
sampling the same role for several arguments of a
verb instance (at least for core roles). Moreover, we
believe that our model better fits within a framework
that allows roles sharing between verbs (or frames),
such as VerbNet, and we would like to carry out a
deeper evaluation on this concept.
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Abstract

In many morphologically rich languages, con-
ceptually independent morphemes are glued
together to form a new word (a compound)
with a meaning that is often at least in part pre-
dictable from the meanings of the contribut-
ing morphemes. Assuming that most com-
pounds express a subconcept of exactly one
sense of its nominal head, we use compounds
as a higher-quality alternative to simply using
general second-order collocate terms in the
task of word sense discrimination. We eval-
uate our approach using lexical entries from
the German wordnet GermaNet (Henrich and
Hinrichs, 2010).

1 Introduction

In several morphologically rich languages such as
German and Dutch, compounds are usually written
as one word: In a process where nouns, verbs and
other prefixes combine with a head noun (called the
simplex when it occurs on its own), a novel word
can be formed which is typically interpretable by
considering its parts and the means of combination.
The process of compounding is both highly produc-
tive and subject to lexicalization (i.e., the creation
of non-transparent compounds that can only be in-
terpreted as a whole rather than as a combination
of parts). The analysis of compounds have been
subject to interest in machine translation as well as
in the semantic processing of morphologically rich
languages. The analysis of compounds is generally
challenging for many reasons. In particular, com-
pounds leave us with the dilemma of either model-

ing them as complete units, yielding a more accu-
rate picture for lexicalized compounds but creating
a more severe sparse data problem in general, or try-
ing to separate out their parts and ending up with
problems of wrongly split lexicalized compounds,
or of incurring mis-splits where spurious ambigui-
ties occur.

The purpose of this paper is to address the ques-
tion of whether semantic information of compound
occurrences can be used to learn more about the
sense distribution of the simplex head, with respect
to a text collection. Specifically, this paper focuses
on the task of word sense discrimination, where the
goal is to find different senses of a word without
assuming a hand-crafted lexical resource as train-
ing material (in contrast to word sense disambigua-
tion, where the exact sense inventory to be tagged
is known at training and inference time, and where
making effective use of a resource such as WordNet
(Miller and Fellbaum, 1991) or GermaNet (Henrich
and Hinrichs, 2010) is an important part of the prob-
lem to be solved).

While the present paper focuses on nominal com-
pounds in German, the method as such can also be
applied to other languages where compounds are
written as one word.

2 Related Work

Automatic word sense discrimination (WSD) is a
task that consists of the automatic discovery of a
sense inventory for a word and of associated exam-
ples for each sense.

To evaluate systems performing word sense dis-
crimination, earlier research such as Schütze (1998)
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uses either pseudowords – two words that have been
artificially conflated to yield an ambiguous concept
such as wide range/consulting firm – or use (ex-
pensive) manually annotated data. Subsequently,
the contexts of these occurrences are clustered into
groups that correspond to training examples for each
postulated sense.

A different approach to the idea of word sense
discrimination can be found in the work of Pantel
and Lin (2002): they retrieve a set of most-similar
items to the target word, and then cluster these sim-
ilar items according to distributional semantic prop-
erties. In Pantel and Lin’s approach, the output of
the word sense induction algorithm is not a group
of contexts with the target word that will be used to
represent a sense, but instead one or more words that
are (hopefully) related to one particular sense. The
contexts in which the related words occur could then
be used as positive examples for that particular sense
of the target word.

Pantel and Lin aim at a principled approach to
compare the soft-clustering approaches they pro-
pose, in conjunction with a fixed set of related
words. While the main interest of this paper lies
in comparing different methods for generating the
candidate set of related words, the exact clustering
method is only of marginal interest. In this paper, a
simpler hard clustering method is used and only the
assignment for the tight center of a cluster is consid-
ered since the non-central items can be different or
even incomparable for the different methods.

3 Our Approach

Our approach to word sense discrimination is based
on the idea that different compounds that have the
same simplex word as their head (e.g. Blütenblatt
‘petal’, and Revolverblatt ‘tabloid rag’) are less am-
biguous than the simplex (Blatt ‘leaf’, ‘newspa-
per’) itself. This assumption is along the lines with
what the “one sense per collocation” heuristic of
Yarowsky (1993) would predict.

Yarowsky noted that in a corpus of homo-
graphs/homophones/near-homographs, translation
distinctions, and pseudo-words, a single collocation
(such as “foreign” or “presidential”) is often enough
to disambiguate the occurrence of a near-homograph
such as aid/aide. While Yarowsky claims that most

of the problems of such an approach would be due
to absent or unseen collocates, it is easily imagin-
able that collocates such as old or big can occur with
multiple senses of a word.

In German, noun compounds usually involve at
least a minimum degree of lexicalization: In En-
glish, ‘red flag’ and ‘red beet’ are lexicalized (i.e.,
denote something more specific than the composi-
tional interpretation would suggest), but ‘red rag’
or ‘red box’ are purely compositional. In German,
Rotwein ‘red wine’ is a compound, but the more
compositional roter Apfel/*Rotapfel ‘red apple’ is
not a compound and points to the fact that ‘red ap-
ple’ only has a compositional interpretation. Be-
cause of this minimal required degree of lexicaliza-
tion, we would expect that German nominal com-
pounds (as well as any compounds in a language that
has a similar distinction between affixating and non-
affixating compounds) are, for the largest portion,
compositional enough to be interpretable, but lexi-
calized enough that a compound is always specific
to only one sense of its head simplex.

3.1 Finding Committees
The method of finding committees that form sense
clusters is illustrated in Figure 1 using the target
word example Blatt. To generate a candidate list
of related terms, our method first retrieves all words
(compounds) that have the target word as a suffix
(step 3 in Figure 1). This candidate set is then sorted
according to distributional similarity with the target
word and cut off after N items (step 2 in Figure 1) to
reduce the influence of spurious matches and non-
taxonomic compounds and to avoid too much noise
in the candidate list.

In order to evaluate the method of selecting com-
pounds as candidate words, we first cluster the set
of candidate words into as many clusters as there
are target word senses represented in the candidate
words (step 3 in Figure 1, again using the distribu-
tional similarity vectors of the words described in
the following subsection 3.2).

To avoid biasing our method towards any partic-
ular method of choosing the candidate words, we
simply assume that it is possible to produce a ‘rea-
sonable’ number of clusters. In the next step, the
most central items of each cluster (the ‘committee’)
are determined, purely by closeness to the cluster’s
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Figure 1: Steps in the clustering method

centroid and disregarding similarity with the target
word. The committee words are rendered in bold
face in the circles in Figure 1. The quality of the
approach is then evaluated according to whether the
committees form a suitable representation for the set
of senses that the target word possesses.

An advantage of only including compounds in the
candidate list of related terms, instead of all words,
is that the related words generated by such an ap-
proach are conceptually considerably closer to the
target word than those using all words as candidates:
Using all words, the top candidates include the co-
ordinate terms Frucht ‘fruit’ and Blüte ‘flower’, as
well as more faraway terms such as Tuch ‘cloth’ or
Haar ‘hair’; using only compounds of the simplex,
the candidate list contains mostly hyponyms such as

Laubblatt ‘leaf’, Titelblatt ‘title page’ or Notenblatt
‘sheet of music’.

3.2 Distributional Similarity and Clustering
Both for the initial selection of candidate words
(where the list is cut off after the top-N similar
terms) and for the subsequent clustering step, fre-
quency profiles from a large corpus are used to cre-
ate a semantic vector from the target word and each
(potential or actual) candidate word.

To construct these frequency profiles, the web-
news corpus of Versley and Panchenko (2012) is
used, which contains 1.7 billion words of text from
various German online newspapers. The text is
parsed using MALTParser (Hall et al., 2006) and
the frequency of collocates with the ATTR (premod-
ifying adjective) and OBJA (accusative object) re-
lations is recorded. Vectors are weighted using the
conservative pointwise mutual information estimate
from Pantel and Lin (2002). For selecting most-
similar words in candidate selection, we use a ker-
nel based on the Jensen-Shannon Divergence across
both grammatical relations, similar to the method
proposed by Ó Séaghdha and Copestake (2008).

The resulting vector representations of words are
then clustered using average-link hierarchical ag-
glomerative clustering using the CLUTO toolkit
(Zhao and Karypis, 2005), which uses cosine sim-
ilarity to assess the similarity of two vectors. In the
study of Pantel and Lin (2002), agglomerative clus-
tering was among the best-performing off-the-shelf
clustering methods.

As we initially found that many features that were
used in clustering were less relevant to the differ-
ent senses of the head word that were targeted, we
also introduce a method to enforce a focus on tar-
get word compatible aspects of those words. In the
basic approach (raw), the normal vector representa-
tion of each word is used. In the modified approach
(intersect), only the features that are relevant for the
target word are selected, by using for each feature
the minimum value of (i) that feature’s value in the
candidate word’s vector and (ii) that feature’s value
in the target word’s vector.

3.3 Competing and Upper Baselines
To see how well our method performs in relation to
other approaches for finding related terms describ-
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ing each sense of a synset, two lower baselines and
one upper baseline have been implemented.

One lower baseline uses general distributionally
similar items. This is an intelligent (but realistic)
general baseline method – close in spirit to Pantel
and Lin (2002). It simply consists in retrieving the
distributionally most similar words for the clustering
task. Effectively, this resembles our own method,
but without the compound filtering step.

The second lower baseline assumes that it should
always be possible to find one word that is related to
one of the senses (yielding poor coverage but trivi-
alizing the clustering problem). This trivial baseline
is called one-cluster.

The upper baseline (called profile) assumes that
it knows which senses of the word should be mod-
eled and that errors can only be introduced by the
clustering step not reproducing the original sense.
This baseline retrieves the synsets corresponding to
each sense of the word from GermaNet, and, among
the terms in the neighbouring synsets (synonyms,
hypernyms, hyponyms as well as sibling synsets),
select those that are both unambiguous (i.e., do not
have other synsets corresponding to that word) and
are distributionally most similar to the (ambiguous)
target word.

4 Evaluation Framework

Our evaluation framework is based on retrieving a
set of words related to the target item (the candidate
set), and then using collocate vectors extracted from
a corpus to cluster the candidate set into multiple
subsets.

Once we have a clustering of the generated terms,
we want a quantitative evaluation of the clustering.
The underlying idea for this is that we would like to
have, for each sense of the target word, a cluster that
has one or several words describing it. (We should
not assume that it is always possible to find many
related words for a particular sense).

4.1 Evaluation Data

As target items, we used a list of simplexes that
are most productive in terms of compounding, us-
ing a set of gold-standard compound splits that were
created by Henrich and Hinrichs (2011); candidate
words (both compounds and general neighbours)

Figure 2: Evaluation procedure for the committees of re-
lated words

were selected using a frequency list extracted from
the TüPP-D/Z corpus (Müller, 2004). For the ex-
periments themselves, no information about correct
splits of the compounds was assumed and potential
compounds were simply retrieved as lemma forms
that have the target word as a suffix.

The subsets from clustering the candidate set
are then evaluated according to whether the most-
central related words in that cluster are related to the
same sense of the target word, and how many senses
of the target word are covered by the clusters.

4.2 Evaluation Metric
Given the committee lists that are output by the can-
didate selection and output, we calculate an evalua-
tion score by creating a mapping between senses of
the target word and the committees that are the out-
put of the clustering algorithm, choosing that map-
ping according to a quality measure that describes
how well the committee members match that synset
(the precision of that possible pairing between a
committee and a sense of the target word), as shown
in figure 2. Each candidate word is assigned a sense
of the target word, either because it is a hyponym of
that sense (for the compound-based method) or be-
cause its path distance in GermaNet’s taxonomy is
less than four (for the general terms method). If a
candidate word is not near any of the target word’s
sense synsets, it is assigned no sense (and always
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candidates num vectors score quality coverage
compound 5 intersect 0.399 0.882 0.468
compound 30 intersect 0.489 0.721 0.702
compound 100 intersect 0.419 0.586 0.769
general 5 intersect 0.433 0.882 0.510
general 30 intersect 0.528 0.696 0.784
general 100 intersect 0.573 0.650 0.896
compound 5 raw 0.406 0.898 0.468
compound 30 raw 0.479 0.712 0.702
compound 100 raw 0.422 0.591 0.769
general 5 raw 0.441 0.902 0.510
general 30 raw 0.526 0.694 0.784
general 100 raw 0.551 0.630 0.896
profile 10n intersect 0.737 0.781 0.945
profile 10n raw 0.753 0.801 0.946
one-cluster 1 — 0.325 1.000 0.325

Table 1: Evaluation scores for the different methods and
baselines

counted wrong).1

Given a committee C of these (at most) k most-
central candidate words in a cluster, we can calculate
a measure P (C, s) = |w2C:sense(w)=s|

|C| that describes
how well this cluster corresponds to a given sense.
(Ideally, the committee would contain words only
related to one sense).

Using the Kuhn-Munkres algorithm (Kuhn,
1955), we compute a mapping between each rep-
resented synset s and a cluster Cs such thatP

s P (Cs, s) is maximized. The final score for one
target word is this sum divided by the total number
of synsets for the target word – this means that a
method that yields a less representative set of can-
didate words will normally not get a better score,
unless the clusters are of higher enough quality, than
one that has candidate terms for each cluster.

In addition to the score metric, we calculated a
quality metric that divides the raw sum by the num-
ber of senses covered in the candidate set, and a
coverage metric that corresponds to the fraction of
senses covered by the candidate set in the first place
(see Table 1).

5 Results and Discussion

Table 1 contains quantitative results for the differ-
ent methods and also evaluation statistics for some

1If a candidate word is not represented in GermaNet at all,
it is discarded before the committee-building step, so that all
committee words are in fact GermaNet-represented terms.

lower and upper baselines: Selecting exactly one re-
lated word as a candidate (and putting it in a clus-
ter of its own) would yield a quality of 1.0, since
that cluster is related to exactly one synset, but a
very poor coverage of 0.325. For the profile up-
per baseline, which takes related terms from Ger-
maNet and uses imperfect information only in clus-
tering, we see that our clustering approach is able
to reconstruct committees of sense-identical terms
out of the candidate list fairly well: given related
terms for each sense, distributional similarity yields
fairly good quality (0.801) and, unsurprisingly, near-
perfect coverage for all senses (0.946).

For the actual methods using compounds of a
word (compound rows in Table 1) or distribution-
ally similar words (general rows), we find that the
compound-based candidate selection only reaches
very limited coverage numbers and furthermore
gives the best results with a smaller number of can-
didate words (30 for compounds versus 100 for gen-
eral). Whether this effect is due to minority senses
being less productive in compounding or whether
compounds of the minority senses are not repre-
sented in GermaNet is left to be investigated in fu-
ture work.

6 Conclusion

We used compounds in the selection of candidate
words for representing a target word’s senses in a
word sense discrimination approach. Because com-
pounds are less-frequent overall than the similar-
frequency coordinate terms that are retrieved in the
general baseline approach, the proposed approach
does less well in covering all senses encoded in the
gold standard and gets lower results in our evalua-
tion metric. In contrast to previous work by Pantel
and Lin, our evaluation approach allows a principled
comparison between approaches to generate candi-
date lemmas in such a task and would be applicable
also to other alternative methods to do so.
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Ó Séaghdha, D. and Copestake, A. (2008). Semantic
classification with distributional kernels. In Pro-
ceedings of the 22nd International Conference on
Computational Linguistics (COLING 2008).

Pantel, P. and Lin, D. (2002). Discovering word
senses from text. In Proceedings of ACM Confer-
ence on Knowledge Discovery and Data Mining
(KDD-02).

Schütze, H. (1998). Automatic word sense discrimi-
nation. Computational Linguistics, 24(1):97–123.

Versley, Y. and Panchenko, Y. (2012). Not just
bigger: Towards better-quality Web corpora. In
Proceedings of the 7th Web as Corpus Workshop
(WAC-7).

Yarowsky, D. (1993). One sense per collocation. In
HUMAN LANGUAGE TECHNOLOGY: Proceed-
ings of a Workshop Held at Plainsboro.

Zhao, Y. and Karypis, G. (2005). Hierarchical clus-
tering algorithms for document datasets. Data
Mining and Knowledge Discovery, 10:141–168.

41



Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 42–47,
Jeju, Republic of Korea, 12 July 2012. c©2012 Association for Computational Linguistics

Machine Learning of Syntactic Attachment
from Morphosyntactic and Semantic Co-occurrence Statistics

Adam Slaski and Szymon Acedański and Adam Przepiórkowski
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Abstract

The paper presents a novel approach to ex-
tracting dependency information in morpho-
logically rich languages using co-occurrence
statistics based not only on lexical forms
(as in previously described collocation-based
methods), but also on morphosyntactic and
wordnet-derived semantic properties of words.
Statistics generated from a corpus annotated
only at the morphosyntactic level are used
as features in a Machine Learning classifier
which is able to detect which heads of groups
found by a shallow parser are likely to be con-
nected by an edge in the complete parse tree.
The approach reaches the precision of 89%
and the recall of 65%, with an extra 6% re-
call, if only words present in the wordnet are
considered.

1 Introduction

The practical issue handled in this paper is how to
connect syntactic groups found by a shallow parser
into a possibly complete syntactic tree, i.e., how to
solve the attachment problem. To give a well-known
example from English, the task is to decide whether
in I shot an elephant in my pajamas1, the group in
my pajamas should be attached to an elephant or to
shot (or perhaps to I).

The standard approach to this problem relies on
finding collocation strengths between syntactic ob-
jects, usually between lexical items which are heads
of these objects, and resolve attachment ambigui-
ties on the basis of such collocation information.

1http://www.youtube.com/watch?v=NfN_
gcjGoJo

The current work extends this approach in two main
ways. First, we consider a very broad range of
features: not only lexical, but also lexico-semantic,
lexico-grammatical, and grammatical. Second, and
more importantly, we train classifiers based not on
these features directly, but rather on various associ-
ation measures calculated for each of the considered
features. This way the classifier selects which types
of features are important and which association mea-
sures are most informative for any feature type.

The proposed method is evaluated on Polish,
a language with rich inflection (and relatively free
word order), which exacerbates the usual data
sparseness problem in NLP.

In this work we assume that input texts are al-
ready part-of-speech tagged and chunked, the lat-
ter process resulting in the recognition of basic syn-
tactic groups. A syntactic group may, e.g., con-
sist of a verb with surrounding adverbs and particles
or a noun with its premodifiers. We assume that all
groups have a syntactic head and a semantic head. In
verbal and nominal groups both heads are the same
word, but in prepositional and numeral groups they
usually differ: the preposition and the numeral are
syntactic heads of the respective constituents, while
the semantic head is the head noun within the nomi-
nal group contained in these constituents.

To simplify some of the descriptions below, by
syntactic object we will understand either a shallow
group or a word. We will also uniformly talk about
syntactic and semantic heads of all syntactic objects;
in case of words, the word itself is its own syntac-
tic and semantic head. In effect, any syntactic ob-
ject may be represented by a pair of words (the two

42



heads), and each word is characterised by its base
form and its morphosyntactic tag.

2 Algorithm

The standard method of solving the PP-attachment
problem is based on collocation extraction (cf., e.g.,
(Hindle and Rooth, 1993)) and consists of three
main steps: first a training corpus is scanned and
frequencies of co-occurrences of pairs of words
(or more general: syntactic objects) are gathered;
then the collected data are normalised to obtain, for
each pair, the strength of their connection; finally,
information about such collocation strengths is em-
ployed to solve PP-attachment in new texts. An in-
stance of the PP-attachment problem is the choice
between two possible edges in a parse tree: (n1, pp)
and (n2, pp), where pp is the prepositional phrase,
and n1 and n2 are nodes in the tree (possible attach-
ment sites). This is solved by choosing the edge with
the node that has a stronger connection to the pp.

On this approach, collocations (defined as a rela-
tion between lexemes that co-occur more often than
would be expected by chance) are detected by taking
pairs of syntactic objects and only considering the
lemmata of their semantic heads. The natural ques-
tion is whether this could be generalised to other
properties of syntactic objects. In the following, the
term feature will refer to any properties of linguis-
tic objects taken into consideration in the process
of finding collocation strengths between pairs of ob-
jects.

2.1 Lexical and Morphosyntactic Features

To start with an example of a generalised colloca-
tion, let us consider morphosyntactic valence. In
order to extract valence links between two objects,
we should consider the lemma of one object (po-
tential predicate) and the morphosyntactic tag, in-
cluding the value of case, etc., of the other (potential
argument). This differs from standard (lexical) col-
location, where the same properties of both objects
are considered, namely, their lemmata.

Formally, we define a feature f to be a pair
of functions lf : so → Lf and rf : so → Rf , where
so stands for the set of syntactic objects and Lf , Rf

are the investigated properties. For example, to learn
dependencies between verbs and case values of their

objects, we can take lf (w) = base(semhead(w))
(the lemma of the semantic head of w) and rf (w) =
case(synhead(w)) (the case value of the syntactic
head of w). On the other hand, in order to obtain the
usual collocations, it is sufficient to take both func-
tions as mapping a syntactic object to a base form
of its semantic head.

What features should be considered in the task
of finding dependencies between syntactic objects?
The two features mentioned above, aimed at finding
lexical collocations and valence relations, are obvi-
ously useful. However, in a morphologically rich
language, like Polish, taking the full morphosyntac-
tic tag as the value of a feature function leads to
the data sparsity problem. Clearly, the most im-
portant valence information a tag may contribute is
part of speech and grammatical case. Hence, we
define the second function in the “valence” feature
more precisely to be the base form and grammati-
cal case (if any), if the syntactic object is a preposi-
tion, or part of speech and grammatical case (if any),
otherwise. For example, consider the sentence Who
cares for the carers? and assume that it has already
been split into basic syntactic objects in the follow-
ing way: [Who] [cares] [for the carers] [?]. The syn-
tactic head of the third object is for and the lemma of
the semantic head is CARER. So, the valence feature
for the pair care and for the carers (both defined be-
low via their syntactic and semantic heads) will give:

lval (〈CARE:verb, 3s; CARE:verb, 3s〉) = CARE

rval (〈FOR:prep, obj; CARER:noun, pl〉) = 〈FOR, obj〉,

where 3s stands for the “3rd person singular” prop-
erty of verbs and obj stands for the objective case in
English.

Additionally, 7 morphosyntactic features are de-
fined by projecting both syntactic objects onto any
(but the same of the two objects) combination
of grammatical case, gender and number. For exam-
ple one of those features is defined in the following
way:

lf (w) = rf (w) =
= 〈case(synhead(w)), gender(synhead(w))〉.

Another feature relates the two objects’ syntactic
heads, by looking at the part of speech of the first
one and the case of the other one. The final feature
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records information about syntactic (number, gen-
der, case) agreement between the objects.

2.2 Lexico-Semantic Features
Obviously, the semantics of syntactic objects is im-
portant in deciding which two objects are directly
connected in a syntactic tree. To this end, we utilise
a wordnet.

Ideally, we would like to represent a syntactic ob-
ject via its semantic class. In wordnets, semantic
classes are approximated by synsets (synonym sets)
which are ordered by the hyperonymy relation. We
could represent a syntactic object by its directly cor-
responding synset, but in terms of generalisation this
would hardly be an improvement over representing
such an object by its semantic head. In most cases
we need to represent the object by a hypernym of
its synset. But how far up should we go along the
hypernymy path to find a synset of the right granu-
larity? This is a difficult problem, so we leave it to
the classifier. Instead, lexico-semantic features are
defined in such a way that, for a given lexeme, all its
hypernyms are counted as observations.

After some experimentation, three features based
on this idea are defined:

1. lf (w) = base(semhead(w))
rf (w) = sset(w)
(for all sset(w) ∈ hypernyms(w)),

2. lf (w) = base(semhead(w))
rf (w) = 〈sset(w), case(synhead(w))〉
(for all sset(w) ∈ hypernyms(w)),

3. lf (w) = sset(w)
rf (w) = sset(w)

In the last feature, where both objects are repre-
sented by synsets, only those minimally general hy-
pernyms of the two objects are considered that co-
occur in the training corpus more than T (thresh-
old) times. In the experiments described below,
performed on a 1-million-word training corpus, the
threshold was set to 30.

2.3 Association Measures
For any two syntactic objects in the same sentence
the strength of association is computed between
them using each of the 14 features (standard col-
locations, 10 morphosyntactic features, 3 lexico-
semantic features) defined above. In fact, we use

not 1 but 6 association measures most suitable for
language analysis according to (Seretan, 2011): log
likehood ratio, chi-squared, t-score, z-score, point-
wise mutual information and raw frequency. The
last choice may seem disputable, but as was shown
in (Krenn and Evert, 2001) (and reported in vari-
ous works on valence acquisition), in some cases
raw frequency behaves better than more sophisti-
cated measures.

We are well aware that some of the employed
measures require the distribution of frequencies to
meet certain conditions that are not necessarily ful-
filled in the present case. However, as explained in
the following subsection, the decision which mea-
sures should ultimately be taken into account is left
to a classifier.

2.4 Classifiers

Let us first note that no treebank is needed for
computing the features and measures presented in
the previous section. These measures represent co-
occurrence strengths of syntactic objects based on
different grouping strategies (by lemma, by part
of speech, by case, gender, number, by wordnet
synsets, etc.). Any large, morphosyntactically an-
notated (and perhaps chunked) corpus is suitable for
computing such features. A treebank is only needed
to train a classifier which uses such measures as in-
put signals.2

In order to apply Machine Learning classifiers,
one must formally define what counts as an instance
of the classification problem. In the current case, for
each pair of syntactic objects in a sentence, a single
instance is generated with the following signals:

• absolute distance (in terms of the number of
sytnactic objects in between),
• ordering (the sign of the distance),
• 6 measures (see § 2.3) of lexical collocation,
• 10 × 6 = 60 values of morphosyntactic co-

occurrence measures,
• 3× 6 = 18 values of lexico-semantic (wordnet-

based) co-occurrence measures,
• a single binary signal based on 14 high-

precision low-recall handwritten syntactic de-

2We use the term signal instead of the more usual feature in
order to avoid confusion with features defined in § 2.1 and in
§ 2.2.
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cision rules which define common grammati-
cal patterns like verb-subject agreement, geni-
tive construction, etc.; the rules look only at the
morphosyntactic tags of the heads of syntactic
objects,
• the classification target from the treebank: a bi-

nary signal describing whether the given pair of
syntactic objects form an edge in the parse tree.

The last signal is used for training the classifier and
then for evaluation. Note that lexical forms of the
compared syntactic objects or their heads are not
passed to the classifier, so the size of the training
treebank can be kept relatively small.

An inherent problem that needs to be addressed
is the imbalance between the sizes of two classifi-
cation categories. Of course, most of the pairs of
the syntactic objects do not form an edge in the
parse tree, so a relatively high classification accu-
racy may be achieved by the trivial classifier which
finds no edges at all. We experimented with various
well-known classifiers, such as decision trees, Sup-
port Vector Machines and clustering algorithms, and
also tried subsampling3 of the imbalanced data. Fi-
nally, satisfactory results were achieved by employ-
ing a Balanced Random Forest classifier.

Random Forest (Breiman, 2001) is a set of un-
pruned C4.5 (Quinlan, 1993) decision trees. When
building a single tree in the set, only a random subset
of all attributes is considered at each node and the
best is selected for splitting the data set. Balanced
Random Forest (BRF, (Chen et al., 2004)) is a mod-
ified version of the Random Forest. A single tree
of BRF is built by first randomly subsampling the
more frequent instances in the training set to match
the number of less frequent ones and then creating
a decision tree from this reduced data set.

3 Experiments and Evaluation

The approach presented above has been evaluated on
Polish.

First, a manually annotated 1-million-word
subcorpus of the National Corpus of Polish
(Przepiórkowski et al., 2010), specifically, its mor-
phosyntactic and shallow syntactic annotation, was

3Removing enough negative instances in the training set to
balance the numbers of instances representing both classes.

used to compute the co-occurrence statistics. The
wordnet used for lexico-semantic measures was
Słowosieć (Piasecki et al., 2009; Maziarz et al.,
2012), the largest Polish wordnet.

Then a random subset of sentences from this cor-
pus was shallow-parsed by Spejd (Buczyński and
Przepiórkowski, 2009) and given to linguists, who
added annotation for the dependency links between
syntactic objects. Each sentence was processed by
two linguists, and in case of any discrepancy, the
sentence was simply rejected. The final corpus con-
tains 963 sentences comprising over 8000 tokens.

From this data we obtained over 23 500 classi-
fication problem instances. Then we performed
the classification using a BRF classifier written for
Weka (Witten and Frank, 2005) as part of the re-
search work on definition extraction with BRFs
(Kobyliński and Przepiórkowski, 2008). The re-
sults were 10-fold cross-validated. A similar exper-
iment was performed taking into account only those
instances which describe syntactic objects with se-
mantic heads present in the wordnet. The results
were measured in terms of precision and recall over
edges in the syntactic tree: what percentage of found
edges are correct (precision) and what percentage of
correct edges were found by the algorithm (recall).
The obtained measures are presented in Table 1.

Expected
YES NO Classified
2674 319 YES
1781 21250 NO

Precision: 0.89
Recall: 0.60

F-measure: 0.72

Expected
YES NO Classified
1933 241 YES
1008 13041 NO

Precision: 0.89
Recall: 0.66

F-measure: 0.76

Table 1: Confusion matrix (# of instances) and measures
for the full data set and for data present in wordnet.
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We also looked at the actual decision trees that
were generated during the training. We note that
the signal most frequently observed near the tops of
decision trees was the one from handwritten rules.
The second one was the distance. By looking at
the trees, we could not see any clear preferences for
other types of signals. This suggests that both mor-
phosyntactic and lexico-semantic signals contribute
to the accuracy of the classification.

Based on this inspection of decision trees, we per-
formed another experiment to learn how much im-
provement we get from generalised collocation sig-
nals. We evaluated – on the same data – a not so
trivial baseline algorithm which, for each syntactic
object, creates an edge to its nearest neighbour ac-
cepted by the handwritten rules, if any. Note that
this baseline builds on the fact that a node in a parse
tree has at most one parent, whereas the algorithm
described above does not encode this property, yet;
clearly, there is still some room for improvement.
The baseline reaches 0.78 precision and 0.47 recall
(F-measure is 0.59). Therefore, the improvement
from co-occurrence signals over this strong baseline
is 0.13, which is rather high. Also, given the high
precision, our algorithm may be suitable for using
in a cascade of classifiers.

4 Related Work

There is a plethora of relevant work on resolving PP-
attachment ambiguities in particular and finding de-
pendency links in general, and we cannot hope to do
it sufficient justice here.

One line of work, exemplified by the early influ-
ential paper (Hindle and Rooth, 1993), posits the
problem of PP-attachment as the problem of choos-
ing between a verb v and a noun n1 when attaching
a prepositional phrase defined by the syntactic head
p and the semantic head n2. Early work, including
(Hindle and Rooth, 1993), concentrated on lexical
associations, later also using wordnet information,
e.g., (Clark and Weir, 2000), in a way similar to
that described above. Let us note that this scenario
was criticised as unrealistic by (Atterer and Schütze,
2007), who argue that “PP attachment should not
be evaluated in isolation, but instead as an integral
component of a parsing system, without using in-
formation from the gold-standard oracle”, as in the

approach proposed here.
Another rich thread of relevant research is con-

cerned with valence acquisition, where shallow
parsing and association measures based on mor-
phosyntactic features are often used at the stage
of collecting evidence, (Manning, 1993; Korhonen,
2002), also in work on Polish, (Przepiórkowski,
2009). However, the aim in this task is the construc-
tion of a valence dictionary, rather than disambigua-
tion of attachment possibilities in a corpus.

A task more related to the current one is presented
in (Van Asch and Daelemans, 2009), where a PP-
attacher operates on top of a shallow parser. How-
ever, this memory-based module is fully trained on
a treebank (Penn Treebank, in this case) and is con-
cerned only with finding anchors for PPs, rather than
with linking any dependents to their heads.

Finally, much work has been devoted during the
last decade to probabilistic dependency parsing (see
(Kübler et al., 2009) for a good overview). Clas-
sifiers deciding whether – at any stage of depen-
dency parsing – to perform shift or reduce typically
rely on lexical and morphosyntactic, but not lexico-
semantic information (Nivre, 2006). Again, such
classifiers are fully trained on a treebank (converted
to parser configurations).

5 Conclusion

Treebanks are very expensive, morphosyntactically
annotated corpora are relatively cheap. The main
contribution of the current paper is a novel approach
to factoring out syntactic training in the process
of learning of syntactic attachment. All the fine-
grained lexical training data were collected from
a relatively large morphosyntactically annotated and
chunked corpus, and only less than 100 signals (al-
though many of them continuous) were used for
training the final classifier on a treebank. The ad-
vantage of this approach is that reasonable results
can be achieved on the basis of tiny treebanks (here,
less than 1000 sentences).

We are not aware of work fully analogous to ours,
either for Polish or for other languages, so we cannot
fully compare our results to the state of the art. The
comparison with a strong baseline algorithm which
uses handwritten rules shows a significant improve-
ment – over 0.13 in terms of F-measure.
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Abstract 

This paper presents the results of a set of 
preliminary experiments combining two 
knowledge-based partial dependency 
analyzers with two statistical parsers, 
applied to the Basque Dependency 
Treebank. The general idea will be to apply 
a stacked scheme where the output of the 
rule-based partial parsers will be given as 
input to MaltParser and MST, two state of 
the art statistical parsers. The results show 
a modest improvement over the baseline, 
although they also present interesting lines 
for further research. 

1. Introduction 
In this paper we present a set of preliminary 
experiments on the combination of two 
knowledge-based partial syntactic analyzers with 
two state of the art data-driven statistical parsers. 
The experiments have been performed on the 
Basque Dependency Treebank (Aduriz et al., 
2003). 

In the last years, many attempts have been 
performed trying to combine different parsers 
(Surdeanu and Manning, 2010), with significant 
improvements over the best individual parser’s 
baseline. The two most successful approaches have 
been stacking (Martins et al., 2008) and voting 
(Sagae and Lavie, 2006, Nivre and McDonald, 
2008, McDonald and Nivre, 2011). In this paper 
we will experiment the use of the stacking 
technique, giving the tags obtained by the rule-

based syntactic partial parsers as input to the 
statistical parsers. 

Morphologically rich languages present new 
challenges, as the use of state of the art parsers for 
more configurational and non-inflected languages 
like English does not reach similar performance 
levels in languages like Basque, Greek or Turkish 
(Nivre et al., 2007a). As it was successfully done 
on part of speech (POS) tagging, where the use of 
rule-based POS taggers (Tapanainen and 
Voutilainen, 1994) or a combination of a rule-
based POS tagger with a statistical one (Aduriz et 
al., 1997, Ezeiza et al., 1998) outperformed purely 
statistical taggers, we think that exploring the 
combination of knowledge-based and data-driven 
systems in syntactic processing can be an 
interesting line of research. 

Most of the experiments on combined parsers 
have relied on different types of statistical parsers 
(Sagae and Lavie, 2006, Martins et al., 2008, 
McDonald and Nivre, 2011), trained on an 
automatically annotated treebank. Yeh (2000) used 
the output of several baseline diverse parsers to 
increase the performance of a second 
transformation-based parser. In our work we will 
study the use of two partial rule-based syntactic 
analyzers together with two data-driven parsers: 

• A rule-based chunker (Aduriz et al., 2004) 
that marks the beginning and end of noun 
phrases, postpositional phrases and verb 
chains, in the IOB (Inside/ 
Outside/Beginning of a chunk) style. 

• A shallow dependency relation annotator 
(Aranzabe et al., 2004), which tries to 
detect dependency relations by assigning a 
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set of predefined tags to each word, where 
each tag gives both the name of a 
dependency relation (e.g. subject) together 
with the direction of its head (left or right). 

• We will use two statistical dependency 
parsers, MaltParser (Nivre et al., 2007b) 
and MST (McDonald et al, 2005). 

In the rest of this paper, section 2 will first 
present the corpus and the different parsers we will 
combine, followed by the experimental results in 
section 3, and the main conclusions of the work. 

2. Resources 
This section will describe the main resources that 
have been used in the experiments. First, 
subsection 2.1 will describe the Basque 
Dependency Treebank, and then subsection 2.2 
will explain the main details of the analyzers that 
have been employed. The analyzers are a rule-
based chunker, a rule-based shallow dependency 
parser and two state of the art data-driven 
dependency parsers, MaltParser and MST.  

2.1 Corpora 
Our work will make use the second version of the 
Basque dependency Treebank (BDT II, Aduriz et 
al., 2003), containing 150,000 tokens (11,225 
sentences). Figure 1 presents an example of a 
syntactically annotated sentence. Each word 
contains its form, lemma, category or coarse part 
of speech (CPOS), POS, morphosyntactic features 
such as case, number of subordinate relations, and 
the dependency relation (headword + dependency). 
The information in figure 1 has been simplified 
due to space reasons, as typically each word 

contains many morphosyntactic features (case, 
number, type of subordinated sentence, ...), which 
are relevant for parsing. The last two lines of the 
sentence in figure 1 do not properly correspond to 
the treebank, but are the result of the rule-based 
partial syntactic analyzers (see subsection 2.2). For 
evaluation, we divided the treebank in three sets, 
corresponding to training, development, and test 
(80%, 10%, and 10%, respectively). The 
experiments were performed on the development 
set, leaving the best system for the final test. 

2.2 Analyzers 
This subsection will present the four types of 
analyzers that have been used. The rule-based 
analyzers are based on the Contraint Grammar 
(CG) formalism (Karlsson et al., 1995), based on 
the assignment of morphosyntactic tags to words 
using a formalism that has the capabilities of finite 
state automata or regular expressions, by means of 
a set of rules that examine mainly local contexts of 
words to determine the correct tag assignment. 

The rule-based chunker (RBC henceforth, 
Aranzabe et al., 2009) uses 560 rules, where 479 of 
the rules deal with noun phrases and the rest with 
verb phrases. The chunker delimits the chunks with 
three tags, using a standard IOB marking style (see 
figure 1). The first one is to mark the beginning of 
the phrase (B-VP if it is a verb phrase and B-NP 
whether it's a noun phrase) and the other one to 
mark the continuation of the phrase (I-NP or I-VP, 
meaning that the word is inside an NP or VP). The 
last tag marks words that are outside a chunk. The 
evaluation of the chunker on the BDT gave a result 
of 87% precision and 85% recall over all chunks. 
We must take into account that this evaluation was 

auxmod 
ccomp_obj 
 auxmod 

Gizonak    mutil    handia   etorri     dela        esan      du . 
The-man       boy        tall-the    come         has+he+that     tell      he+did+it   
N-ERG-S       N          ADJ-ABS-S   V            AUXV+S+COMPL    V         AUXV 
B-NP          B-NP       I-NP        B-VP         I-NP            B-VP      I-VP 
&NCSUBJ>      &NCSUBJ>   $<NCMOD     $CCOMP_OBJ>  &<AUXMOD        &MAINV    &<AUXMOD 

ncsubj 

ncmod 
ncsubj 

Figure 1. Dependency tree for the sentence Gizonak mutil handia etorri dela esan du (the man told that the tall 
boy has come). The two last lines show the tags assigned by the rule-based chunker and the rule-based 

dependency analyzer, respectively. 
(V = main verb, N = noun, AUXV = auxiliary verb, COMPL = completive, ccomp_obj = clausal complement object, ERG = 

ergative, S: singular, auxmod = auxiliary, ncsubj = non-clausal subject, B-NP = beginning of NP, I-NP = inside an NP, 
&MAINV = main verb, &<AUXMOD = verbal auxiliary modifier). 
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performed on the gold POS tags, rather than on 
automatically assigned POS tasks, as in the present 
experiment. For that reason, the results can serve 
as an upper bound on the real results. 

The rule-based dependency analyzer (RBDA, 
Aranzabe et al., 2004) uses a set of 505 CG rules 
that try to assign dependency relations to 
wordforms. As the CG formalism only allows the 
assignment of tags, the rules only aim at marking 
the name of the dependency relation together with 
the direction of the head (left or right). For 
example, this analyzer assigns tags of the form 
&NCSUBJ> (see figure 1), meaning that the 
corresponding wordform is a non-clausal syntactic 
subject and that its head is situated to its right (the 
“>” or “<” symbols mark the direction of the 
head). This means that the result of this analysis is 
on the one hand a partial analysis and, on the other 
hand, it does not define a dependency tree, and can 
also be seen as a set of constraints on the shape of 
the tree. The system was evaluated on the BDT, 
obtaining f-scores between 90% for the auxmod 
dependency relation between the auxiliary and the 
main verb and 52% for the subject dependency 
relation, giving a (macro) average of 65%. 

Regarding the data-driven parsers, we have 
made use of MaltParser (Nivre et al., 2007b) and 
MST Parser (McDonald et al., 2006), two state of 
the art dependency parsers representing two 
dominant approaches in data-driven dependency 
parsing, and that have been successfully applied to 
typologically different languages and treebanks 
(McDonald and Nivre, 2007).  

MaltParser (Nivre, 2006) is a representative of 
local, greedy, transition-based dependency parsing 
models, where the parser obtains deterministically 
a dependency tree in a single pass over the input 
using two data structures: a stack of partially 
analyzed items and the remaining input sequence. 
To determine the best action at each step, the 
parser uses history-based feature models and 
discriminative machine learning. The learning 
configuration can include any kind of information 
(such as word-form, lemma, category, subcategory 
or morphological features). Several variants of the 
parser have been implemented, and we will use 
one of its standard versions (MaltParser version 
1.4). In our experiments, we will use the Stack-
Lazy algorithm with the liblinear classifier.  

The MST Parser can be considered a 
representative of global, exhaustive graph-based 

parsing (McDonald et al., 2005, 2006). This 
algorithm finds the highest scoring directed 
spanning tree in a dependency graph forming a 
valid dependency tree. To learn arc scores, it uses 
large-margin structured learning algorithms, which 
optimize the parameters of the model to maximize 
the score margin between the correct dependency 
graph and all incorrect dependency graphs for 
every sentence in a training set. The learning 
procedure is global since model parameters are set 
relative to classifying the entire dependency graph, 
and not just over single arc attachments. This is in 
contrast to the local but richer contexts used by 
transition-based parsers. We use the freely 
available version of MSTParser1. In the following 
experiments we will make use of the second order 
non-projective algorithm.  

3. Experiments  
We will experiment the effect of using the output 
of the knowledge-based analyzers as input to the 
data-driven parsers in a stacked learning scheme. 
Figure 1 shows how the two last lines of the 
example sentence contain the tags assigned by the 
rule-based chunker (B-NP, I-NP, B-VP and I-VP) 
and the rule-based partial dependency analyzer 
(&NCSUBJ, &<NCMOD, &<AUXMOD, 
&CCOMP_OBJ and &MAINV) . 

The first step consisted in applying the complete 
set of text processing tools for Basque, including: 

• Morphological analysis. In Basque, each 
word can receive multiple affixes, as each 
lemma can generate thousands of word-
forms by means of morphological 
properties, such as case, number, tense, or 
different types of subordination for verbs. 
Consequently, the  morphological analyzer 
for Basque (Aduriz et al. 2000) gives a 
high ambiguity. If only categorial (POS) 
ambiguity is taken into account, there is an 
average of 1.55 interpretations per word-
form, which rises to 2.65 when the full 
morphosyntactic information is taken into 
account, giving an overall 64% of 
ambiguous word-forms. 

• Morphological disambiguation. 
Disambiguating the output of 
morphological analysis, in order to obtain 
a single interpretation for each word-form, 

                                                           
1 http://mstparser.sourceforge.net 
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can pose an important problem, as 
determining the correct interpretation for 
each word-form requires in many cases the 
inspection of local contexts, and in some 
others, as the agreement of verbs with 
subject, object or indirect object, it could 
also suppose the examination of elements 
which can be far from each other, added to 
the free constituent order of the main 
sentence elements in Basque. The 
erroneous assignment of incorrect part of 
speech or morphological features can 
difficult the work of the parser. 

• Chunker 
• Partial dependency analyzer 

When performing this task, we found the 
problem of matching the treebank tokens with 
those obtained from the analyzers, as there were 
divergences on the treatment of multiword units, 
mostly coming from Named Entities, verb 
compounds and complex postpositions (formed 
with morphemes appearing at two different words). 
For that reason, we performed a matching process 
trying to link the multiword units given by the 
morphological analysis module and the treebank, 
obtaining a correct match for 99% of the sentences.  

Regarding the data-driven parsers, they are 
trained using two kinds of tags as input: 

• POS and morphosyntactic tags coming 
from the automatic morphological 
processing of the dependency treebank. 
Disambiguation errors, such as an 
incorrect POS category or morphological 
analyses (e.g. the assignment of an 
incorrect case) can harm the parser, as 
tested in Bengoetxea et al. (2011). 

• The output of the rule-based partial 
syntactic analyzers (two last lines of the 
example in figure 1). These tags contain 
errors of the CG-based syntactic taggers. 
As the analyzers are applied after 

morphological processing, the errors can 
be propagated and augmented. 

Table 1 shows the results of using the output of 
the knowledge-based analyzers as input to the 
statistical parsers. We have performed three 
experiments for each statistical parser, trying with 
the chunks provided by the chunker, the partial 
dependency parser, and both. The table shows 
modest gains, suggesting that the rule-based 
analyzers help the statistical ones, giving slight 
increases over the baseline, which are statistically 
significant when applying MaltParser to the output 
of the rule-based dependency parser and a 
combination of the chunker and rule-based parsers. 
As table 1 shows, the parser type is relevant, as 
MaltParser seems to be sensitive when using the 
stacked features, while the partial parsers do not 
seem to give any significant improvement to MST. 

3.1 Error analysis 
Looking with more detail at the errors made by the 
different versions of the parsers, we observe 
significant differences in the results for different 
dependency relations, seeing that the statistical 
parsers behave in a different manner regarding to 
each relation, as shown in table 2. The table shows 
the differences in f-score2  corresponding to five 
local dependency relations, (determination of 
verbal modifiers, such as subject, object and 
indirect object).  

McDonald and Nivre (2007) examined the types 
of errors made by the two data-driven parsers used 
in this work, showing how the greedy algorithm of 
MaltParser performed better with local dependency 
relations, while the graph-based algorithm of MST 
was more accurate for global relations. As both the 
chunker and the partial dependency analyzer are 
based on a set of local rules in the CG formalism, 
we could expect that the stacked parsers could 
benefit mostly on the local dependency relations. 
                                                           
2 f-score = 2 * precision * recall / (precision + recall) 

 MaltParser MST Parser 
 LAS UAS LAS UAS 
Baseline 76.77% 82.09%  77.96% 84.04% 

+ RBC 77.10% (+0.33) 82.29% (+0.20)  77.99% (+0.03) 83.99% (-0.05) 

+ RBDA *77.15% (+0.38) 82.27% (+0.18)  78.03% (+0.07) 83.76% (-0.28) 

+ RBC + RBDA  *77.25% (+0.48) 82.18% (+0.09)  78.00% (+0.04) 83.34% (-0.70) 

Table 1. Evaluation results  
(RBC = rule-based chunker, RBDA = rule-based dependency analyzer, LAS: Labeled Attachment Score,  

UAS: Unlabeled Attachment Score, *: statistically significant in McNemar's test, p < 0.05) 
 

51



Table 2 shows how the addition of the rule-based 
parsers’ tags performs in accord with this behavior, 
as MaltParser gets f-score improvements for the 
local relations. Although not shown in Table 2, we 
also inspected the results on the long distance 
relations, where we did not observe noticeable 
improvements with respect to the baseline on any 
parser. For that reason, MaltParser, seems to 
mostly benefit of the local nature of the stacked 
features, while MST does not get a significant 
improvement, except for some local dependency 
relations, such as ncobj and ncsubj. 

We performed an additional test using the partial 
dependency analyzer’s gold dependency relations 
as input to MaltParser. As could be expected, the 
gold tags gave a noticeable improvement to the 
parser’s results, reaching 95% LAS. However, 
when examining the scores for the output 
dependency relations, we noticed that the gold 
partial dependency tags are beneficial for some 
relations, although negative for some others. For 
example the non-clausal modifier (ncmod) 
relation’s f-score increases 3.25 points, while the 
dependency relation for clausal subordinate 
sentences functioning as indirect object decreases 
0.46 points, which is surprising in principle. 

For all those reasons, the relation between the 
input dependency tags and the obtained results 
seems to be intricate, and we think that it deserves 
new experiments in order to determine their nature. 
As each type of syntactic information can have an 
important influence on the results on specific 
relations, their study can shed light on novel 
schemes of parser combination. 

4. Conclusions  
We have presented a preliminary effort to integrate 
different syntactic analyzers, with the objective of 
getting the best from each system. Although the 
potential gain is in theory high, the experiments 

have shown very modest improvements, which 
seem to happen in the set of local dependency 
relations. We can point out some avenues for 
further research: 

• Development of the rule-based 
dependency parser using the dependencies 
that give better improvements on the gold 
dependency tags, as this can measure the 
impact of each kind of shallow 
dependency tag on the data-driven parsers. 

• Development of rules that deal with the 
phenomena where the statistical parsers 
perform worse. This requires a careful 
error analysis followed by a redesign of 
the manually developed CG tagging rules. 

• Application of other types of combining 
schemes, such as voting, trying to get the 
best from each type of parser. 

Finally, we must also take into account that the 
rule-based analyzers were developed mainly 
having linguistic principles in mind, such as 
coverage of diverse linguistic phenomena or the 
treatment of specific syntactic constructions 
(Aranzabe et al., 2004), instead of performance-
oriented measures, such as precision and recall. 
This means that there is room for improvement in 
the first-stage knowledge-based parsers, which will 
have, at least in theory, a positive effect on the 
second-phase statistical parsers, allowing us to test 
whether knowledge-based and machine learning-
based systems can be successfully combined. 
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 MaltParser MST Parser 
Dependency 
relation 

Baseline + RBC + RBDA + RBC  
+ RBDA 

Baseline + RBC + RBDA + RBC  
+ RBDA 

ncmod 75,29 75,90 76,08 76,40 77,15 77,44 76,39 76,92 

ncobj 67,34 68,49 69,67 69,54 64,85 64,86 65,56 66,18 

ncpred 61,37 61,92 61,26 63,50 60,37 57,55 58,44 59,27 

ncsubj 61,92 61,90 63,96 63,91 59,19 59,26 62,23 61,61 

nciobj 75,76 76,53 77,16 76,29 74,23 74,47 72,16 69,08 

Table 2. Comparison of the different parsers’ f-score with regard to specific dependency relations 
(ncmod = non-clausal modifier, ncobj = non-clausal object, ncpred = non-clausal predicate, ncsubj = non-clausal subject, 

nciobj = non-clausal indirect object) 
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Science and Innovation (MICINN, TIN2010- 
20218). 
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Abstract

Although parsing performances have greatly
improved in the last years, grammar inference
from treebanks for morphologically rich lan-
guages, especially from small treebanks, is
still a challenging task. In this paper we in-
vestigate how state-of-the-art parsing perfor-
mances can be achieved on Spanish, a lan-
guage with a rich verbal morphology, with a
non-lexicalized parser trained on a treebank
containing only around 2,800 trees. We rely
on accurate part-of-speech tagging and data-
driven lemmatization to provide parsing mod-
els able to cope lexical data sparseness. Pro-
viding state-of-the-art results on Spanish, our
methodology is applicable to other languages
with high level of inflection.

1 Introduction

Grammar inference from treebanks has become the
standard way to acquire rules and weights for pars-
ing devices. Although tremendous progress has
been achieved in this domain, exploiting small tree-
banks is still a challenging task, especially for lan-
guages with a rich morphology. The main difficulty
is to make good generalizations from small exam-
ple sets exhibiting data sparseness. This difficulty
is even greater when the inference process relies
on semi-supervised or unsupervised learning tech-
niques which are known to require more training ex-
amples, as these examples do not explicitly contain
all the information.

In this paper we want to explore how we can cope
with this difficulty and get state-of-the-art syntac-
tic analyses with a non-lexicalized parser that uses
modern semisupervised inference techniques. We
rely on accurate data-driven lemmatization and part-
of-speech tagging to reduce data sparseness and ease

the burden on the parser. We try to see how we
can improve parsing structure predictions solely by
modifying the terminals and/or the preterminals of
the trees. We keep the rest of the tagset as is.
In order to validate our method, we perform ex-
periments on the Cast3LB constituent treebank for
Spanish (Castillan). This corpus is quite small,
around 3,500 trees, and Spanish is known to have
a rich verbal morphology, making the tag set quite
complex and difficult to predict. Cowan and Collins
(2005) and Chrupała (2008) already showed inter-
esting results on this corpus that will provide us with
a comparison for this work, especially on the lexical
aspects as they used lexicalized frameworks while
we choose PCFG-LAs.

This paper is structured as follows. In Section 2
we describe the Cast3LB corpus in details. In Sec-
tion 3 we present our experimental setup and results
which we discuss and compare in Section 4. Finally,
Section 5 concludes the presentation.

2 Data Set

The Castillan 3LB treebank (Civit and Martì, 2004)
contains 3,509 constituent trees with functional an-
notations. It is divided in training (2,806 trees), de-
velopment (365 trees) and test (338 trees).

We applied the transformations of Chrupała
(2008) to the corpus where CP and SBAR nodes
are added to the subordinate and relative clauses but
we did not perform any other transformations, like
the coordination modification applied by Cowan and
Collins (2005).

The Cast3LB tag set is rich. In particular part-of-
speech (POS) tags are fine-grained and encode pre-
cise morphological information while non-terminal
tags describe subcategorization and function labels.
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Without taking functions into account, there are 43
non-terminal tags. The total tag set thus comprises
149 symbols which makes the labeling task chal-
lenging.

The rich morphology of Spanish can be observed
in the treebank through word form variation. Table 1
shows some figures extracted from the corpus (train-
ing, development and test). In particular the word
form/lemma ratio is 1.54, which is similar to other
Romance language treebanks (French FTB and Ital-
ian ITB).

# of tokens 94 907
# of unique word forms 17 979
# of unique lemmas 11 642
ratio word form/lemma 1.54

Table 1: C3LB properties

Thus, we are confronted with a small treebank
with a rich tagset and a high word diversity. All
these conditions make the corpus a case in point for
building a parsing architecture for morphologically-
rich languages.

3 Experiments

We conducted experiments on the Cast3LB develop-
ment set in order to test various treebank modifica-
tions, that can be divided in two categories: (i) mod-
ification of the preterminal symbols of the treebank
by using simplified POS tagsets; (ii) modification of
the terminal symbols of the treebank by replacing
word tokens by lemmas.

3.1 Experimental Setup

In this section we describe the parsing formalism
and POS tagging settings used in our experiments.

PCFG-LAs To test our hypothesis, we use the
grammatical formalism of Probabilistic Context-
Free Grammars with Latent Annotations (PCFG-
LAs) (Matsuzaki et al., 2005; Petrov et al., 2006).
These grammars depart from the standard PCFGs by
automatically refining grammatical symbols during
the training phase, using unsupervised techniques.
They have been applied successfully to a wide range
of languages, among which French (Candito and
Seddah, 2010), German (Petrov and Klein, 2008),
Chinese and Italian (Lavelli and Corazza, 2009).

For our experiments, we used the LORG PCFG-
LA parser implementing the CKY algorithm. This
software also implements the techniques from Attia
et al. (2010) for handling out-of-vocabulary words,
where interesting suffixes for part-of-speech tagging
are collected on the training set, ranked according
to their information gain with regards to the part-
of-speech tagging task. Hence, all the experiments
are presented in two settings. In the first one, called
generic, unknown words are replaced with a dummy
tokenUNK, while in the second one, dubbedIG, we
use the collected suffixes and typographical infor-
mation to type unknown words.1 We retained the 30
best suffixes of length 1, 2 and 3.

The grammar was trained using the algorithm
of Petrov and Klein (2007) using 3 rounds of
split/merge/smooth2. For lexical rules, we applied
the strategy dubbedsimple lexiconin the Berkeley
parser. Rare words – words occurring less than 3
times in the training set – are replaced by a special
token, which depends on the OOV handling method
(genericor IG), before collecting counts.

POS tagging We performed parsing experiments
with three different settings regarding POS infor-
mation provided as an input to the parser: (i) with
no POS information, which constitutes our base-
line; (ii) with gold POS information, which can be
considered as a topline for a given parser setting;
(iii) with POS information predicted using the MElt
POS-tagger (Denis and Sagot, 2009), using three
different tagsets that we describe below.

MElt is a state-of-the-art sequence labeller that
is trained on both an annotated corpus and an ex-
ternal lexicon. The standard version of MElt relies
on Maximum-Entropy Markov models (MEMMs).
However, in this work, we have used a multiclass
perceptron instead, as it allows for much faster train-
ing with very small performance drops (see Table 2).
For training purposes, we used the training section
of the Cast3LB (76,931 tokens) and the Leffe lexi-
con (Molinero et al., 2009), which contains almost
800,000 distinct (form, category) pairs.3

We performed experiments using three different
1Namesgenericand IG originally come from Attia et al.

(2010).
2We tried to perform 4 and 5 rounds but 3 rounds proved to

be optimal on this corpus.
3Note that MElt does not use information from the exter-
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TAGSET baseline reduced2 reduced3
Nb. of tags 106 42 57
Multiclass Perceptron

Overall Acc. 96.34 97.42 97.25
Unk. words Acc. 91.17 93.35 92.30

Maximum-Entropy Markov model (MEMM)
Overall Acc. 96.46 97.42 97.25
Unk. words Acc. 91.57 93.76 92.87

Table 2: MElt POS tagging accuracy on the Cast3LB
development set for each of the three tagsets. We pro-
vide results obtained with the standard MElt algorithm
(MEMM) as well as with the multiclass perceptron, used
in this paper, for which training is two orders of magni-
tude faster. Unknown words represent as high as 13.5 %
of all words.

tagsets: (i) abaseline tagsetwhich is identical
to the tagset used by Cowan and Collins (2005)
and Chrupała (2008); with this tagset, the training
corpus contains 106 distinct tags;
(ii) the reduced2tagset, which is a simplification
of the baseline tagset: we only retain the first two
characters of each tag from the baseline tagset; with
this tagset, the training corpus contains 42 distinct
tags;
(iii) the reduced3 tagset, which is a variant of
the reduced2 tagset: contrarily to the reduced2
tagset, the reduced3 tagset has retained the mood
information for verb forms, as it proved relevant
for improving parsing performances as shown by
(Cowan and Collins, 2005); with this tagset, the
training corpus contains 57 distinct tags.

Melt POS tagging accuracy on the Cast3LB de-
velopment set for these three tagsets is given in Ta-
ble 2, with overall figures together with figures com-
puted solely on unknown words (words not attested
in the training corpus, i.e., as high as 13.5 % of all
tokens).

3.2 Baseline

The first set of experiments was conducted with the
baseline POS tagset. Results are summarized in Ta-
ble 3. This table presents parsing statistics on the
Cast3LB development set in the 3 POS settings in-

nal lexicon as constraints, but as features. Therefore, theset of
categories in the external lexicon need not be identical to the
tagset. In this work, the Leffe categories we used include some
morphological information (84 distinct categories).

troduced above (i) no POS provided, (ii) gold POS
provided and (iii) predicted POS provided. For each
POS tagging setting it shows labeled precision, la-
beled recall, labeled F1-score, the percentage of ex-
act match and the POS tagging accuracy. The latter
needs not be the same as presented in Section 3.1 be-
cause (i) punctuation is ignored and (ii) if the parser
cannot use the information provided by the tagger,
it is discarded and the parser performs POS-tagging
on its own.

MODEL LP LR F1 EXACT POS
Word Only

Generic 81.42 81.04 81.23 14.47 90.89
IG 80.15 79.60 79.87 14.19 85.01

Gold POS
Generic 87.83 87.49 87.66 30.59 99.98
IG 86.78 86.53 86.65 27.96 99.98

Pred. POS
Generic 84.47 84.39 84.43 22.44 95.82
IG 83.60 83.66 83.63 21.78 95.82

Table 3: Baseline PARSEVAL scores on Cast3LB dev. set
(≤ 40 words)

As already mentioned above, this tagset contains
106 distinct tags. On the one hand it means that POS
tags contain useful information. On the other hand it
also means that the data is already sparse and adding
more sparseness with the IG suffixes and typograph-
ical information is detrimental. This is a major dif-
ference between this POS tagset and the two follow-
ing ones.

3.3 Using simplified tagsets

We now turn to the modified tagsets and measure
their impact on the quality of the syntactic analyses.
Results are summarized in Table 4 for thereduced2
tagset and in Table 5 forreduced3. In these two set-
tings, we can make the following remarks.

• Parsing results are better withreduced3, which
indicates that verbal mood is an important fea-
ture for correctly categorizing verbs at the syn-
tactic level.

• When POS tags are not provided, using suffixes
and typographical information improves OOV
word categorization and leads to a better tag-
ging accuracy and F1 parsing score (78.94 vs.
81.81 forreduced2and 79.69 vs. 82.44 forre-
duced3).
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• When providing the parser with POS tags,
whether gold or predicted, both settings show
an interesting difference w.r.t. to unknown
words handling. When usingreduced2, the IG
setting is better than the generic one, whereas
the situation is reversed inreduced3. This indi-
cates thatreduced2is too coarse to help finely
categorizing unknown words and that the re-
finement brought by IG is beneficial, however
the added sparseness. Forreduced3it is diffi-
cult to say whether it is the added richness of
the POS tagset or the induced OOV sparseness
that explains why IG is detrimental.

MODEL LP LR F1 EXACT POS
Word Only

Generic 78.86 79.02 78.94 15.23 88.18
IG 81.89 81.72 81.81 16.17 92.19

Gold POS
Generic 86.56 85.90 86.23 26.64 100.00
IG 86.90 86.63 86.77 29.28 100.00

Pred. POS
Generic 84.16 83.81 83.99 21.05 96.76
IG 84.57 84.32 84.45 21.38 96.76

Table 4: PARSEVAL scores on Cast3LB development set
with reduced2tagset (≤ 40 words)

MODEL LP LR F1 EXACT POS
Word Only

Generic 79.61 79.78 79.69 14.90 87.29
IG 82.57 82.31 82.44 14.24 91.63

Gold POS
Generic 88.08 87.69 87.89 30.59 100.00
IG 87.56 87.31 87.43 29.61 100.00

Pred. POS
Generic 85.56 85.38 85.47 23.03 96.56
IG 85.32 85.24 85.28 23.36 96.56

Table 5: PARSEVAL scores on Cast3LB development set
with reduced3tagset (≤ 40 words)

3.4 Lemmatization Impact

Being a morphologically rich language, Spanish ex-
hibits a high level of inflection similar to several
other Romance languages, for example French and
Italian (gender, number, verbal mood). Furthermore,
Spanish belongs to the pro-drop family and clitic
pronouns are often affixed to the verb and carry
functional marks. This makes any small treebank

of this language an interesting play field for statis-
tical parsing. In this experiment, we want to use
lemmatization as a form of morphological cluster-
ing. To cope with the loss of information, we pro-
vide the parser with predicted POS. Lemmatization
is carried out by the morphological analyzer MOR-
FETTE, (Chrupała et al., 2008) while POS tagging
is done by the MElt tagger. Lemmatization perfor-
mances are on a par with previously reported results
on Romance languages (see Table 6)

TAGSET ALL SEEN UNK (13.84%)
baseline 98.39 99.01 94.55

reduced2 98.37 98.88 95.18
reduced3 98.24 98.88 94.23

Table 6: Lemmatization performance on the Cast3LB.

To make the parser less sensitive to lemmatization
and tagging errors, we train both tools on a 20 jack-
kniffed setup4. Resulting lemmas and POS tags are
then reinjected into the train set. The test corpora
is itself processed with tools trained on the unmod-
ified treebank. Results are presented Table 7. They
show an overall small gain, compared to the previ-
ous experiments but provide a clear improvement on
the richest tagset, which is the most difficult to parse
given its size (106 tags).

First, we remark that POS tagging accuracy with
the baseline tagset when no POS is provided is lower
than previously observed. This can be easily ex-
plained: it is more difficult to predict POS with mor-
phological information when morphological infor-
mation is withdrawn from input.

Second, and as witnessed before, reduction of the
POS tag sparseness using a simplified tagset and in-
crease of the lexical sparseness by handling OOV
words using typographical information have adverse
effects. This can be observed in the generic Pre-
dicted POS section of Table 7 where thebaseline
tagset is the best option. On the other hand, in IG
Predicted POS, using thereduced3is better than
baselineandreduced2. Again this tagset is a trade-
off between rich information and data sparseness.

4The training set is split in 20 chunks and each one is pro-
cessed with a tool trained on the 19 other chunks. This enables
the parser to be less sensitive to lemmatization and/or pos tag-
ging errors.
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TAGSET LR LP F1 EX POS
Word Only – Generic
baseline 79.70 80.51 80.1 15.23 74.04

reduced2 79.19 79.78 79.4815.56 89.25
reduced3 79.92 80.03 79.97 13.16 87.67
Word Only – IG
baseline 80.67 81.32 80.99 15.89 75.02

reduced2 80.54 81.3 80.92 15.1390.93
reduced3 80.52 80.94 80.73 15.13 88.53
Pred. POS – Generic
baseline 85.03 85.57 85.30 23.68 95.68

reduced2 83.98 84.73 84.35 23.3696.78
reduced3 84.93 85.19 85.06 21.05 96.60
Pred. POS – IG
baseline 84.60 85.06 84.83 23.68 95.68

reduced2 84.29 84.82 84.55 21.7196.78
reduced3 84.86 85.39 85.12 22.70 96.60

Table 7: Lemmmatization Experiments

In all casesreduced2is below the other tagsets
wrt. to Parseval F1 although tagging accuracy is bet-
ter. We can conclude that it is too poor from an in-
formational point of view.

4 Discussion

There is relatively few works actively pursued on
statistical constituency parsing for Spanish. The ini-
tial work of Cowan and Collins (2005) consisted
in a thorough study of the impact of various mor-
phological features on a lexicalized parsing model
(the Collins Model 1) and on the performance gain
brought by the reranker of Collins and Koo (2005)
used in conjunction with the feature set developed
for English. Direct comparison is difficult as they
used a different test set (approximately, the concate-
nation of our development and test sets). They report
an F-score of 85.1 on sentences of length less than
40.5

However, we are directly comparable with Chru-
pała (2008)6 who adapted the Collins Model 2 to
Spanish. As he was focusing on wide coverage LFG
grammar induction, he enriched the non terminal an-
notation scheme with functional paths rather than
trying to obtain the optimal tagset with respect to
pure parsing performance. Nevertheless, using the

5See http://pauillac.inria.fr/~seddah/
spmrl-spanish.html for details on comparison with that
work.

6We need to remove CP and SBAR nodes to be fairly com-
parable.

same split and providing gold POS, our system pro-
vides better performance (around 2.3 points better,
see Table 8).

It is of course not surprising for a PCFG-LA
model to outperform a Collins’ model based lexi-
calized parser. However, it is a fact that, on such
small treebank configurations, PCFG-LA are cru-
cially lacking annotated data. It is only by greatly
reducing the POS tagset and using either a state-of-
the-art tagger or a lemmatizer (or both), that we can
boost our system performance.
The sensitivity of PCFG-LA models to lexical data
sparseness was also shown on French by Seddah
et al. (2009). In fact they showed that perfor-
mance of state-of-the-art lexicalized parsers (Char-
niak, Collins models, etc.) were crossing that
of Berkeley parsers when the training set contains
around 2500–3000 sentences. Here, with around
2,800 sentences of training data, we are probably
in a setting where both parser types exhibit simi-
lar performances, as we suspect French and Spanish
to behave in the same way. It is therefore encour-
aging to notice that our approach, which relies on
accurate POS tagging and lemmatization, provides
state-of-the-art performance. Let us add that a simi-
lar method, involving only MORFETTE, was applied
with success to Italian within a PCFG-LA frame-
work and French with a lexicalized parser, both lead-
ing to promising results (Seddah et al., 2011; Seddah
et al., 2010).

5 Conclusion

We presented several experiments reporting the im-
pact of lexical sparseness reduction on non lexical-
ized statistical parsing. We showed that, by using
state-of-the-art lemmatization and POS tagging on
a reduced tagset, parsing performance can be on a
par with lexicalized models that manage to extract
more information from a small corpus exhibiting a
rich lexical diversity. It remains to be seen whether
applying the same kind of simplifications to the rest
of the tagset, i.e. on the internal nodes, can further
improve parse structure quality. Finally, the methods
we presented in this paper are not language specific
and can be applied to other languages if similar re-
sources exist.
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TAGSET MODE TOKENS ALL ≤ 70 ≤ 40
reduced3 Gen. pred. POS 83.92 84.27 85.08

eval. w/o CP/SBAR 84.02 84.37 85.24
baseline IG pred. lemma & POS 84.15 84.40 85.26

eval. w/o CP/SBAR 84.34 84.60 85.45

reduced3 Gen. gold POS 86.21 86.63 87.84
eval. w/o CP/SBAR 86.35 86.77 88.01

baseline gold POS 83.96 84.58 –
(Chrupała, 2008)

Table 8: PARSEVAL F-score results on the Cast3LB test set
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Abstract

Deep linguistic grammars are able to pro-
vide rich and highly complex grammatical
representations of sentences, capturing, for
instance, long-distance dependencies and re-
turning a semantic representation. These
grammars lack robustness in the sense that
they do not gracefully handle words miss-
ing from their lexicon. Several approaches
have been explored to handle this problem,
many of which consist in pre-annotating the
input to the grammar with shallow processing
machine-learning tools. Most of these tools,
however, use features based on a fixed win-
dow of context, such as n-grams. We investi-
gate whether the use of features that encode
discrete structures, namely grammatical de-
pendencies, can improve the performance of
a machine learning classifier that assigns deep
lexical types. In this paper we report on the
design and evaluation of this classifier.

1 Introduction

Parsing is one of the fundamental tasks in Nat-
ural Language Processing and a critical step in
many applications. Many of the most com-
monly used parsers rely on probabilistic approaches.
These parsers are obtained through data-driven
approaches, by inferring a probabilistic language
model over a dataset of annotated sentences.
Though these parsers always produce some analy-
sis of their input sentences, they do not go into deep
linguistic analysis.

Deep grammars, also referred to as precision
grammars, seek to make explicit information about

highly detailed linguistic phenomena and produce
complex grammatical representations for their in-
put sentences. For instance, they are able to cap-
ture long-distance dependencies and produce the se-
mantic representation of a sentence. Although there
is a great variety of parsing methods (see (Mitkov,
2004) for an overview), all CKY-based algorithms
require a lexical look-up initialization step that, for
each word in the input, returns all its possible cate-
gories.

From this it follows that if any of the words in
a sentence is not present in the lexicon—an out-
of-vocabulary (OOV) word—a full parse of that
sentence is impossible to obtain. Given that nov-
elty is one of the defining characteristics of natu-
ral languages, unknown words will eventually oc-
cur. Hence, being able to handle OOV words is of
paramount importance if one wishes to use a gram-
mar to analyze unrestricted texts.

Another important issue is that of lexical ambigu-
ity. That is, words that may bear more than one lexi-
cal category. The combinatorial explosion of lexical
and syntactic ambiguity may hinder parsing due to
increased requirements in terms of parsing time and
memory usage. Thus, even if there were no OOV
words in the input, being able to assign syntactic cat-
egories to words prior to parsing may be desirable
for efficiency reasons.

For the shallower parsing approaches, such as
plain constituency parsing, it suffices to determine
the part-of-speech of words, so pre-processing the
input with a POS tagger is a common and effective
way to tackle either of these problems. However, the
linguistic information contained in the lexicon of a
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deep grammar is much more fine-grained, includ-
ing, in particular, the subcategorization frame (SCF)
of the word, which further constraints what can be
taken as a well-formed sentence by imposing sev-
eral restrictions on co-occurring expressions.

Thus, what for a plain POS tagger corresponds to
a single category is often expanded into hundreds of
different distinctions, and hence tags, when at the
level of detail required by a deep grammar. For in-
stance, the particular grammar we will be using for
the study reported in this paper—a grammar follow-
ing the HPSG framework—has in its current ver-
sion a lexicon with roughly 160 types for verbs and
nearly 200 types for common nouns.

While the deep grammar may proceed with the
analysis knowing only the base POS category of a
word, it does so at the cost of vastly increased am-
biguity1 which may even allow the grammar to ac-
cept ungrammatical sentences as valid. This has lead
to research that specifically targets annotating words
with a tagset suitable for deep grammars.

Current approaches tend to use shallow features
with limited context (e.g. n-grams). However, given
that the SCF is one of the most relevant pieces of
information that is associated with a word in the
lexicon of a deep grammar, one would expect that
features describing the inter-word dependencies in
a sentence would be highly discriminative and help
to accurately assign lexical types. Accordingly,
in this paper we investigate the use of structured
features that encode grammatical dependencies in
a machine-learning classifier and how it compares
with state-of-the-art approaches.

Our study targets Portuguese, a Romance lan-
guage with a rich morphology, in particular in what
concerns verb inflection (see for instance, (Mateus et
al., 2003) for a detailed account of Portuguese gram-
mar and (Branco et al., 2008) for an assessment of
the issues raised by verbal ambiguity).

Paper outline: Section 2 provides an overview of
related work, with a focus on supertagging, and in-
troduces tree kernels as a way of handling structured
classifier features. Section 3 introduces the particu-
lar deep grammar that is used in this work and how it
supports the creation of the corpus that provides the

1For instance, a common noun POS tag could be taken as
being any of the nearly 200 common noun types existing in the
lexicon of the grammar we use in this paper.

data for training and evaluation of the classifier. The
classifier itself, and the features it uses, are described
in Section 4. Section 5 covers empirical evaluation
and comparison with other approaches. Finally, Sec-
tion 6 concludes with some final remarks.

2 Background and Related Work

The construction of a hand-crafted lexicon for a deep
grammar is a time-consuming task requiring trained
linguists. More importantly, such lexica are invari-
ably incomplete since they often do not cover spe-
cialized domains and are slow to incorporate new
words.

Accordingly, much research in this area has been
focused on automatic lexical acquisition (Brent,
1991; Briscoe and Carroll, 1997; Baldwin, 2005).
That is, approaches that try to discover all the lex-
ical types a given unknown word may occur with,
thus effectively creating a new lexical entry. How-
ever, at run-time, it is still up to the grammar using
the newly acquired lexical entry to choose which of
those lexical types is the correct one for each par-
ticular occurrence of that word; and, ultimately, one
can only acquire the lexicon entries for those words
that are present in the corpus. Thus, any system that
is constantly exposed to new text—e.g. parsing text
from the Web—will eventually come across some
unknown word that has not yet been acquired. More-
over, such words must be dealt with on-the-fly, since
it is unlikely that the system can afford to wait until
it has accumulated enough occurrences of the un-
known word to be able to apply offline lexicon ac-
quisition methods.

In the work reported in the present paper we use
a different approach, closer to what is known as su-
pertagging, where we assign on-the-fly a single lex-
ical type to a word.

2.1 Supertagging

POS tagging is a task that relies only on local infor-
mation (e.g. the word and a small window of con-
text) to achieve a form of syntactic disambiguation.
As such, POS tags are commonly assigned prior
to parsing as a way of reducing parsing ambiguity
by restricting words to a certain syntactic category.
Less ambiguity leads to a greatly reduced search
space and, as a consequence, faster parsing.
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Supertagging, first introduced by Bangalore and
Joshi (1994), can be seen as a natural extension of
this idea to a richer tagset, in particular to one that
includes information on subcategorization frames.

In (Bangalore and Joshi, 1994) supertagging was
applied to the Lexicalized Tree Adjoining Grammar
(LTAG) formalism. As the name indicates, this is a
lexicalized grammar, like HPSG, but in LTAG each
lexical item is associated with one or more trees,
the elementary structures, which localize informa-
tion on dependencies, even long-range ones, by re-
quiring that all and only the dependents be present
in the structure.

The supertagger in (Bangalore and Joshi, 1994)
assigns an elementary structure to each word us-
ing a simple trigram model. The data for training
was obtained by taking the sentences of length un-
der 15 words in the Wall Street Journal together with
some other minor corpora, and parsing them with
XTAG, a wide-coverage grammar for English based
on LTAG. In addition, and due to data-sparseness,
POS tags were used in training instead of words.

Evaluation was performed over 100 held-out sen-
tences from the Wall Street Journal. For a tagset of
365 elementary trees, this supertagger achieved 68%
accuracy, which is far too low to be useful for pars-
ing.

In a later experiment, the authors improved
the supertagger by smoothing model parameters
and adding additional training data (Bangalore and
Joshi, 1999). The larger dataset was obtained by
extending the corpus from the previous experiment
with Penn Treebank parses that were automatically
converted to LTAG. The conversion process relied
on several heuristics, and though it is not perfect,
the authors found that the issues concerning conver-
sion were far outweighed by the benefit of increased
training data.

The improved supertagger increased accuracy to
92% (Bangalore and Joshi, 1999). The supertagger
can also assign the n-best tags, which increases the
chances of it assigning the correct supertag at the
cost of leaving more unresolved ambiguity. With 3-
best tagging, it achieved 97% accuracy.

A supertagger was also used by Clark and Curran
(2007), in their case for a Combinatory Categorial
Grammar (CCG). This formalism uses a set of log-
ical combinators to manipulate linguistic construc-

tion tough, for our purposes here, it matters only
that lexical items receive complex tags that describe
the constituents they require to create a well-formed
construction.

The set of 409 lexical categories to be assigned
was selected by taking those categories that occur at
least 10 times in sections 02–21 of a CCG automatic
annotation of Penn Treebank (CCGBank).

Evaluation was performed over section 00 of
CCGBank, and achieved 92% per word accuracy.

As with the LTAG supertagger, assigning more
than one tag can greatly increase accuracy. How-
ever, instead of a fixed n-best number of tags—
which might be to low, or too high, depending on
the case at hand—the CCG supertagger assigns all
tags with a likelihood within a factor β of the best
tag. A value for β as small as 0.1, which results in
an average of 1.4 tags per word, is enough to boost
accuracy up to 97%.

Supertagging for HPSG: There has been some
work on using supertagging together with the HPSG
framework. As with other works on supertag-
ging, it is mostly concerned with restricting the
parser search space in order to increase parsing ef-
ficiency, and not specifically with the handling of
OOV words.

Prins and van Noord (2003) present an HMM-
based supertagger for the Dutch Alpino grammar.
An interesting feature of their approach is that the
supertagger is trained over the output of the parser
itself, thus avoiding the need for a hand-annotated
dataset.

The supertagger was trained over 2 million sen-
tences of newspaper text parsed by Alpino. A gold
standard was created by having Alpino choose the
best parse for a set of 600 sentences. The supertag-
ger, when assigning a single tag (from a tagset with
2,392 tags), achieves a token accuracy close to 95%.

It is not clear to what extent these results can be
affected by some sort of bias in the disambiguation
module of Alpino, given that both the sequence of
lexical types in the training dataset and in the gold
standard are taken from the best parse produced by
Alpino.

Matsuzaki et al. (2007) use a supertagger with
the Enju grammar for English. The novelty in their
work comes from the use of a context-free gram-
mar (CFG) to filter the tag sequences produced by
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the supertagger before running the HPSG parser. In
this approach, a CFG approximation of the HPSG
is created. The key property of this approxima-
tion is that the language it recognizes is a superset
of the parsable supertag sequences. Hence, if the
CFG is unable to parse a sequence, it can be safely
discarded, thus further reducing the amount of se-
quences the HPSG parser has to deal with.

The provided evaluation is mostly concerned with
showing the improvement in parsing speed. Nev-
ertheless, the quality of the supertagging process
can be inferred from the accuracy of the parse re-
sults, which achieved a labeled precision and recall
for predicate-argument relations of 90% and 86%,
respectively, over 2,300 sentences with up to 100
words in section 23 of the Penn Treebank.

Dridan (2009) tests two supertaggers, one induced
using the TnT tagger (Brants, 2000) and another us-
ing the C&C supertagger (Clark and Curran, 2007),
over different datasets. For simplicity, we will only
refer to the results of TnT over a dataset of 814 sen-
tences of tourism data.

The author experiments with various tag granu-
larities in order to find a balance between tag ex-
pressiveness and tag predictability. For instance, as-
signing only POS—a tagset with only 13 tags—is
the easiest task, with 97% accuracy, while a highly
granular supertag formed by the lexical type con-
catenated with any selectional restriction present in
the lexical entry increases the number of possible
tags to 803, with accuracy dropping to 91%.

2.2 Support-Vector Machines and Tree Kernels
Support-vector machines (SVM) are a well known
supervised machine-learning algorithm for linear
binary classification. They are part of the fam-
ily of kernel-based methods where a general pur-
pose learning algorithm is coupled with a problem-
specific kernel function (Cristianini and Shawe-
Taylor, 2000).

For the work presented in this paper we wish
to apply the learning algorithm over discrete tree-
like structures that encode grammatical dependen-
cies (see Figure 1 for an example). A suitable ker-
nel for such a task is the tree kernel introduced by
Collins and Duffy (2002), which uses a represen-
tation that implicitly tracks all subtrees seen in the
training data.

This representation starts by implicitly enumerat-
ing all subtrees that are found in the training data. A
given tree, T , is then represented by a (huge) vector
where the n-th position counts the number of occur-
rences of the n-th subtree in T .

Under this representation, the inner product of
two trees gives a measure of their similarity. How-
ever, explicitly calculating such an operation is pro-
hibitively expensive due to the high dimensions of
the feature space. Fortunately, the inner product can
be replaced by a rather simple kernel function that
sums over the subtrees that are common to both trees
(see (Collins and Duffy, 2002) for a proof).

3 Grammar and Base Dataset

The deep linguistic grammar used in this study
is LXGram, a hand-built HPSG grammar for Por-
tuguese (Branco and Costa, 2008; Branco and Costa,
2010).

We used this grammar to support the annota-
tion of a corpus. That is, the grammar is used
to provide the set of possible analyses for a sen-
tence (the parse forest). Human annotators then
perform manual disambiguation by picking the cor-
rect analysis from among all those that form the
parse forest.2 This grammar-supported approach to
corpus annotation ensures that the various linguis-
tic annotation layers—morphological, syntactic and
semantic—are consistent.

The corpus that was used is composed mostly by a
subset of the sentences in CETEMPúblico, a corpus
of plain text excerpts from the Público newspaper.

After running LXGram and manually disam-
biguating the parse forests, we were left with a
dataset consisting of 5,422 sentences annotated with
all the linguistic information provided by LXGram.

4 Classifier and Feature Extraction

For training and classification we use SVM-light-TK
(Moschitti, 2006), an extension to the widely-used
SVM-light (Joachims, 1999) software for SVMs that
adds a function implementing the tree kernel intro-
duced in Section 2.2. With SVM-light-TK one can

2In our setup, two annotators work in a double-blind
scheme, where those cases where they disagree are adjudicated
by a third annotator. Inter-annotator agreement is 0.86.
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directly provide one or more tree structures as fea-
tures (using the standard parenthesis representation
of trees) together with the numeric feature vectors
that are already accepted by SVM-light.

Given that the task at stake is a multi-class clas-
sification problem but an SVM is a binary classi-
fier, the problem must first be binarized (Galar et
al., 2011). For this work we have chosen a one-
vs-one binarization scheme, where multiple classi-
fiers are created, each responsible for discriminat-
ing between a pair of classes. This divides a prob-
lem with n classes into n(n − 1)/2 separate binary
problems (i.e. one classifier for each possible class
pairing). Each classifier then performs a binary de-
cision, voting for one of the two classes it is tasked
with discriminating, and the class with the overall
largest number of votes is chosen.

The dataset, having been produced with the help
of a deep grammar, contains a great deal of linguistic
information. The first step is thus to extract from
each sentence the relevant features in a format that
can be used by SVM-light-TK.

Since we are aiming at discriminating between
deep lexical types, which, among other information,
encode the SCF of a word, the dependency structure
associated with a word is expected to be a piece of
highly relevant information. We start by extracting
the dependency representation of a sentence from
the output of LXGram.3 The dependency represen-
tation that is obtained through this process consists
of a list of tuples, each relating a pair of words in the
sentence through a grammatical relation.

The example in Figure 1 shows the dependency
representation of the sentence “a o segundo dia de
viagem encontrámos os primeiros golfinhos” (Eng.:
by the second day of travel we found the first dol-
phins).4 Note that each word is also annotated with
its lexical type, POS tag and lemma, though this is
not shown in the example for the sake of readability.

For a one-vs-one classifier tasked with discrim-
inating between types A and B we are concerned
with finding instances of type A to be taken as posi-
tive examples and instances of type B to be taken as

3The details of this process are outside the scope of the cur-
rent paper and will be reported elsewhere.

4Relations in the example: ADV (adverb), C (complement),
DO (direct object), PRED (predicate), SP (specifier) and TMP
(temporal modifier).

negative examples.
Take, for instance, the word “encontrámos” from

the example in Figure 1. Its lexical type in this par-
ticular occurrence is verb-dir trans-lex, the type as-
signed to transitive verbs by LXGram. A one-vs-one
classifier tasked with recognizing this type (against
some other type) will take this instance as a positive
example.

However, the full dependency representation of
the sentence has too many irrelevant features for
learning how to classify this word. Instead, we fo-
cus more closely on the information that is relevant
to determining the SCF of the word by looking only
at its immediate neighbors in the dependency graph:
its dependents and the word it depends on.

This information is encoded in two trees, shown
in Figure 2, which are the actual features given to
SVM-light-TK.

One tree, labeled with H as root, is used to repre-
sent the word and its dependents. The target word is
marked by being under an asterisk “category” while
the dependents fall under a “category” correspond-
ing to the relation between the target word and the
dependent. The words appears as the leafs of the
tree, with their POS tags as the pre-terminal nodes.5

The second feature tree, labeled with D as root,
encodes the target word—again marked with an
asterisk—and the word it is dependent on. In the
example shown in Figure 2, since the target word is
the main verb of the sentence, the feature tree has no
other nodes apart from that of the target word.

5 Evaluation

The following evaluation results were obtained fol-
lowing a standard 10-fold cross-validation approach,
where the folds were taken from a random shuffle of
the sentences in the corpus.

We compare the performance of our tree kernel
(TK) approach with two other automatic annotators,
TnT (Brants, 2000) and SVMTool (Giménez and
Màrquez, 2004).

TnT is a statistical POS tagger, well known for
its efficiency—in terms of training and tagging
speed—and for achieving state-of-the-art re-
sults despite having a quite simple underlying

5POS tags in the example: V (verb), PREP (preposition) and
CN (common noun).
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C(de, viagem) SP(dia, o) C(a, dia)
ADV(dia, de) PRD(golfinhos, primeiros) TMP(encontrámos, a)
PRD(dia, segundo) SP(golfinhos, os) DO(encontrámos, golfinhos)

Figure 1: Dependency representation

H

TMP

PREP

a
by

DO

CN

golfinhos
dolphins

*

V

encontrámos
we-found

D

*

V

encontrámos
we-found

Figure 2: Features for SVM-light-TK

model. It is based on a second-order hidden
Markov model extended with linear smooth-
ing of parameters to address data-sparseness is-
sues and suffix analysis for handling unknown
words. TnT was used as a supertagger in (Dri-
dan, 2009), where it achieved the best results
for this task, and is thus a good representative
for this approach to supertagging. We run it
out-of-the-box using the default settings.

SVMTool is another statistical sequential tagger
which, as the name indicates, is based on
support-vector machines. It is extremely flexi-
ble in allowing to define which features should
be used in the model (e.g. size of word win-
dow, number of POS bigrams, etc.) and the tag-
ging strategy (left to right, bidirectional, num-
ber of passes, etc). In fact, due to this flexibil-
ity, it is described as being a tagger generator.
It beat TnT in a POS tagging task (Giménez
and Màrquez, 2004), so we use it in the current
paper to evaluate whether that lead is kept in
a supertagging task. We used the simplest set-
tings, “M0 LR”, which uses Model 0 in a left
to right tagging direction.6

6See (Giménez and Màrquez, 2006) for an explanation of
these settings.

The type distribution in the dataset is highly
skewed. For instance, from the number of com-
mon noun types that occur in this corpus, the two
most frequent ones are enough to account for 57%
of all the common noun tokens. Such skewed cat-
egory distributions are usually a problematic issue
for machine-learning approaches since the number
of instances of the more rare categories is too small
to properly estimate the parameters of the model.

For many types there are not enough instances in
the dataset to train a classifier. Hence, the evalua-
tion that follows is done only for the most frequent
types. For instance, top-10 means picking the 10
most frequent types in the corpus, training one-vs-
one classifiers for those types, and evaluating only
over tokens with one of those types. In addition, we
show only the evaluation results of verb types, for
which SCF information is more varied and relevant.

Table 1 show the accuracy results for each tool
over the top-10, top-20 and top-30 most frequent
verb types.

Comparing both sequential supertaggers, one
finds that SVMTool is consistently better than TnT,
which is in accordance with the results for POS tag-
ging reported in (Giménez and Màrquez, 2004).

Our TK approach beats both supertaggers when
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TnT SVMTool TK

top-10 92.98% 94.22% 94.71%
top-20 91.53% 92.39% 90.21%
top-30 91.42% 92.38% 88.70%

Table 1: Accuracy over frequent verb types

looking at the top-10 verb types, but falls behind as
soon as the number of types under consideration in-
creases. This seems to point towards data-sparseness
issues, an hypothesis we test by automatically ex-
tending the dataset, as discussed next.

5.1 Experiments with an Extended Dataset

The extended datasets were created by taking ad-
ditional sentences from the Público newspaper, as
well as sentences from the Portuguese Wikipedia
and from the Folha de São Paulo newspaper, pre-
processing them with a POS tagger, and running
them through LXGram.

Such an approach is only made possible because
LXGram, like many other modern HPSG gram-
mars, includes a stochastic disambiguation module
that automatically chooses the most likely analysis
among all those returned in the parse forest, instead
of requiring a manual choice by a human annota-
tor (Branco and Costa, 2010). The authors do not
provide a complete evaluation of this disambigua-
tion module. Instead, they perform a manual evalu-
ation of a sample of 50 sentences that indicates that
this module picks the correct reading in 40% of the
cases.

If this ratio is kept, 60% of the sentences in the ex-
tended datasets will have an analysis that is, in some
way, the wrong analysis, though it is not clear how
this translates into errors in the lexical types that end
up being assigned to the tokens. For instance, when
faced with the rather common case of PP-attachment
ambiguity, the disambiguation module may choose
the wrong attachment, which will count as being a
wrong analysis though most lexical types assigned
to the words in the sentence may be correct.

To evaluate this, we tested the disambiguation
module over the base dataset, where we know what
the correct parses are, and found that the grammar
picks the correct parse in 44% of the cases. If we
just look at whether the lexical types are correct, the

dataset sentences tokens unique oov

base 5,422 51,483 8,815 10.0%
+ Público 10,727 139,330 18,899 7.6%
+ Wiki 15,108 205,585 24,063 6.6%
+ Folha 21,217 288,875 30,204 6.0%

Table 2: Cumulative size of datasets

grammar picks a sentence with fully correct types in
68% of the cases.

LXGram displayed a coverage of roughly 30%,
and allowed us to build progressively larger datasets
as more data was added. The cumulative sizes of the
resulting datasets are shown in Table 2. The Table
also shows the ratio of OOV words, which was de-
termined by taking the average of the ratio for each
of the 10 folds (i.e. words that occur in a fold but not
in any of the other 9 folds).

We can now evaluate the tools over the four pro-
gressively larger datasets and plot their learning
curves. In the following Figures, the errors bars rep-
resent a 95% confidence interval.

All learning curves in the following Figures tell a
somewhat similar story.

The lead that SVMTool has over TnT when look-
ing only at the base corpus is kept in the extended
corpora. Both sequential supertaggers only start to
benefit from the increased dataset at the final stage,
when sentences from Folha de São Paulo are added.
Before that stage the added data seems to be slightly
detrimental to them, possibly due to them being sen-
sitive to noise in the automatically generated data.

The learning curves give credence to the hypoth-
esis put forward earlier that our TK approach was
being adversely affected by data-sparseness issues
when classifying a greater number of verb types, and
that it has much to gain by an increase in the amount
of training data.

For the top-10 verb types, for which there is
enough data in the base dataset, TK starts ahead
from the outset and significantly increases its mar-
gin over the two supertaggers.

For the top-20 and top-30 verb types, TK starts
behind but its accuracy raises quickly as more data
are added, ending slightly ahead of SVMTool when
running over the largest dataset.
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Figure 3: Learning curves (over top-10 verb types)
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Figure 4: Learning curves (over top-20 verb types)
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Figure 5: Learning curves (over top-30 verb types)

dataset accuracy

base 87.24%
+ Público 82.67%
+ Wiki 82.30%
+ Folha 83.92%

Table 3: MaltParser labeled accuracy

5.2 Running over Predicted Dependencies

In the previous section, we were concerned with
evaluating the classifier itself. Accordingly, the fea-
tures used by the classifier were the gold dependen-
cies in the corpus. However, on a running system,
the features used by the classifier will be automati-
cally generated by a dependency parser. To evaluate
this setup, we used MaltParser (Nivre et al., 2007).

Like the other tools, the parser was run out-of-the-
box. The 10-fold average labeled accuracy scores
for each dataset shown in Table 3 can thus be seen
as a lower bound on the achievable accuracy. De-
spite this, the performance over the base dataset is
extremely good, on par with the best scores achieved
for other languages (cf. (Nivre et al., 2007)). How-
ever, performance drops sharply when automatically
annotated data is used, only beginning to pick up
again when running over the largest dataset.

As expected, the noisy features that result from
the automatic process have a detrimental effect on
the accuracy of the classifier. For the same set of
experiments reported previously, the accuracy of the
SVM-TK classifier when running over predicted de-
pendencies tends to trail 2.0–2.5% points behind
that of the classifier that uses gold dependencies, as
shown in Table 4.

6 Concluding Remarks

In this paper we reported on an novel approach to as-
signing deep lexical types. It uses an SVM classifier
with a tree kernel that allows it to seamlessly work
with features encoding discrete structures represent-
ing the grammatical dependencies between words.

Evaluation over the top-10 most frequent verb
types showed that the grammatical dependencies of
a word, which can be seen as information on its SCF,
are very helpful in allowing the classifier to accu-
rately assign lexical types. Our classifier clearly im-
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top-10 top-20 top-30
dataset gold pred. gold pred. gold pred.

base 94.71% 93.14% 90.21% 88.66% 88.70% 87.01%
+ Público 96.02% 93.83% 92.34% 90.35% 91.32% 88.97%
+ Wiki 96.48% 93.95% 93.54% 91.29% 92.80% 90.21%
+ Folha 96.98% 94.55% 94.46% 92.26% 93.93% 91.50%

Table 4: SVM-TK classifier accuracy over gold and predicted features

proves over TnT, which had displayed the best su-
pertagging performance in other studies.

When running the classifier for a greater number
of verb types, data-sparseness issues led to a drop
in performance, which motivated additional experi-
ments where the dataset was extended with automat-
ically annotated data. This allowed us to plot learn-
ing curves that show that our approach can maintain
a lead in accuracy when given more training data.

Running the classifier over predicted features
shows an expected drop in performance. However,
we anticipate that using larger corpora will also
be effective in raising these scores since additional
training data not only improve the classifier, but also
the underlying parser that provides the dependencies
that are used as features.
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Charles University in Prague

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics

Prague, Czech Republic
{green,ramasamy,zabokrtsky}@ufal.mff.cuni.cz

Abstract

Dependency parsing has been shown to im-
prove NLP systems in certain languages and
in many cases helps achieve state of the art re-
sults in NLP applications, in particular appli-
cations for free word order languages. Mor-
phologically rich languages are often short on
training data or require much higher amounts
of training data due to the increased size of
their lexicon. This paper examines a new
approach for addressing morphologically rich
languages with little training data to start.

Using Tamil as our test language, we cre-
ate 9 dependency parse models with a lim-
ited amount of training data. Using these
models we train an SVM classifier using only
the model agreements as features. We use
this SVM classifier on an edge by edge deci-
sion to form an ensemble parse tree. Using
only model agreements as features allows this
method to remain language independent and
applicable to a wide range of morphologically
rich languages.

We show a statistically significant 5.44%
improvement over the average dependency
model and a statistically significant 0.52% im-
provement over the best individual system.

1 Introduction

Dependency parsing has made many advancements
in recent years. A prime reason for the quick ad-
vancement has been the CoNLL shared task compe-
titions, which gave the community a common train-
ing/testing framework along with many open source
systems. These systems have, for certain languages,

achieved high accuracy ranging from on average
from approximately 60% to 80% (Buchholz and
Marsi, 2006). The range of scores are more of-
ten language dependent rather than system depen-
dent, as some languages contain more morpholog-
ical complexities. While some of these languages
are morphologically rich, we would like to addition-
ally address dependency parsing methods that may
help under-resourced languages as well, which often
overlaps with morphologically rich languages. For
this reason, we have chosen to do the experiments
in this paper using the Tamil Treebank (Ramasamy
and Žabokrtský, 2012).

Tamil belongs to Dravidian family of languages
and is mainly spoken in southern India and also in
parts of Sri Lanka, Malaysia and Singapore. Tamil
is agglutinative and has a rich set of morphologi-
cal suffixes. Tamil has nouns and verbs as two ma-
jor word classes, and hundreds of word forms can
be produced by the application of concatenative and
derivational morphology. Tamil’s rich morphology
makes the language free word order except that it is
strictly head final.

When working with small datasets it is often very
difficult to determine which dependency model will
best represent your data. One can try to pick the
model through empirical means on a tuning set but
as the data grows in the future this model may no
longer be the best choice. The change in the best
model may be due to new vocabulary or through a
domain shift. If the wrong single model is chosen
early on when training is cheap, when the model is
applied in semi supervised or self training it could
lead to significantly reduced annotation accuracy.
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For this reason, we believe ensemble combinations
are an appropriate direction for lesser resourced lan-
guages, often a large portion of morphologically
rich languages. Ensemble methods are robust as
data sizes grow, since the classifier can easily be re-
trained with additional data and the ensemble model
chooses the best model on an edge by edge basis.
This cost is substantially less than retraining multi-
ple dependency models.

2 Related Work

Ensemble learning (Dietterich, 2000) has been used
for a variety of machine learning tasks and recently
has been applied to dependency parsing in various
ways and with different levels of success. (Surdeanu
and Manning, 2010; Haffari et al., 2011) showed
a successful combination of parse trees through a
linear combination of trees with various weight-
ing formulations. Parser combination with depen-
dency trees have been examined in terms of accu-
racy (Sagae and Lavie, 2006; Sagae and Tsujii,
2007; Zeman and Žabokrtský, 2005; Søgaard and
Rishøj, 2010). (Sagae and Lavie, 2006; Green and
Žabokrtský, 2012) differ in part since their method
guarantees a tree while our system can, in some sit-
uations, produce a forest. POS tags were used in
parser combination in (Hall et al., 2007) for combin-
ing a set of Malt Parser models with an SVM clas-
sifier with success, however we believe our work is
novel in its use of an SVM classifier solely on model
agreements. Other methods of parse combinations
have shown to be successful such as using one parser
to generate features for another parser. This was
shown in (Nivre and McDonald, 2008; Martins et
al., 2008), in which Malt Parser was used as a fea-
ture to MST Parser.

Few attempts were reported in the literature on the
development of a treebank for Tamil. Our exper-
iments are based on the openly available treebank
(TamilTB) (Ramasamy and Žabokrtský, 2012). De-
velopment of TamilTB is still in progress and the ini-
tial results for TamilTB appeared in (Ramasamy and
Žabokrtský, 2011). Previous parsing experiments in
Tamil were done using a rule based approach which
utilized morphological tagging and identification of
clause boundaries to parse the sentences. The results
were also reported for Malt Parser and MST parser.

Figure 1: Process Flow for one run of our SVM Ensemble
system. This Process in its entirety was run 100 times for
each of the 8 data set splits.

When the morphological tags were available during
both training and testing, the rule based approach
performed better than Malt and MST parsers. For
other Indian languages, treebank development is ac-
tive mainly for Hindi and Telugu. Dependency pars-
ing results for them are reported in (Husain et al.,
2010).

3 Methodology

3.1 Process Flow

When dealing with small data sizes it is often
not enough to show a simple accuracy increase.
This increase can be very reliant on the train-
ing/tuning/testing data splits as well as the sam-
pling of those sets. For this reason our experi-
ments are conducted over 7 training/tuning/testing
data split configurations. For each configuration
we randomly sample without replacement the train-
ing/tuning/testing data and rerun the experiment 100
times. These 700 runs, each on different samples,
allow us to better show the overall effect on the ac-
curacy metric as well as the statistically significant
changes as described in Section 3.5. Figure 1 shows
this process flow for one run of this experiment.
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3.2 Parsers

A dependency tree is a special case of a depen-
dency graph that spawns from an artificial root, is
connected, follows a single-head constraint and is
acyclic. Because of this we can look at a large his-
tory of work in graph theory to address finding the
best spanning tree for each dependency graph. The
most common form of this type of dependency pars-
ing is Graph-Based parsing also called arc-factored
parsing and deals with the parameterization of the
edge weights. The main drawback of these meth-
ods is that for projective trees, the worst case sce-
nario for most methods is a complexity of O(n3)
(Eisner, 1996). However, for non-projective pars-
ing Chu-Liu-Edmond’s algorithm has a complexity
of O(n2) (McDonald et al., 2005). The most com-
mon tool for doing this is MST parser (McDonald et
al., 2005). For this parser we generate two models,
one projective and one non-projective to use in our
ensemble system.

Transition-based parsing creates a dependency
structure that is parameterized over the transitions.
This is closely related to shift-reduce constituency
parsing algorithms. The benefit of transition-based
parsing is the use greedy algorithms which have a
linear time complexity. However, due to the greedy
algorithms, longer arc parses can cause error propa-
gation across each transition (Kübler et al., 2009).
We make use of Malt Parser (Nivre et al., 2007),
which in the CoNLL shared tasks was often tied
with the best performing systems. For this parser
we generate 7 different models using different train-
ing parameters, seen in Table 1, and use them as
input into our ensemble system along with the two
Graph-based models described above. Each parser
has access to gold POS information as supplied by
the TamilTB described in 3.4.

Dependency parsing systems are often optimized
for English or other major languages. This opti-
mization, along with morphological complexities,
lead other languages toward lower accuracy scores
in many cases. The goal here is to show that
while the corpus is not the same in size or scope of
most CoNLL data, a successful dependency parser
can still be trained from the annotated data through
model combination for morphologically rich lan-
guages.

Training Parameter Model Description
nivreeager Nivre arc-eager

nivrestandard Nivre arc-standard
stackproj Stack projective

stackeager Stack eager
stacklazy Stack lazy

planar Planar eager
2planar 2-Planar eager

Table 1: Table of the Malt Parser Parameters used during
training. Each entry represents one of the parsing algo-
rithms used in our experiments. For more information see
http://www.maltparser.org/options.html

3.3 Ensemble SVM System

We train our SVM classifier using only model agree-
ment features. Using our tuning set, for each cor-

rectly predicted dependency edge, we create
(

N

2

)
features where N is the number of parsing models.
We do this for each model which predicted the cor-
rect edge in the tuning data. So for N = 3 the
first feature would be a 1 if model 1 and model 2
agreed, feature 2 would be a 1 if model 1 and model
3 agreed, and so on. This feature set is novel and
widely applicable to many languages since it does
not use any additional linguistic tools.

For each edge in the ensemble graph, we use our
classifier to predict which model should be correct,
by first creating the model agreement feature set
for the current edge of the unknown test data. The
SVM predicts which model should be correct and
this model then decides to which head the current
node is attached. At the end of all the tokens in a
sentence, the graph may not be connected and will
likely have cycles. Using a Perl implementation of
minimum spanning tree, in which each edge has a
uniform weight, we obtain a minimum spanning for-
est, where each subgraph is then connected and cy-
cles are eliminated in order to achieve a well formed
dependency structure. Figure 2 gives a graphical
representation of how the SVM decision and MST
algorithm create a final Ensemble parse tree which
is similar to the construction used in (Hall et al.,
2007; Green and Žabokrtský, 2012). Future itera-
tions of this process could use a multi-label SVM
or weighted edges based on the parser’s accuracy on
tuning data.
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Figure 2: General flow to create an Ensemble parse tree

3.4 Data Sets

Table 2 shows the statistics of the TamilTB Tree-
bank. The last 2 rows indicate how many word types
have unique tags and how many have two tags. Also,
Table 2 illustrates that most of the word types can
be uniquely identified with single morphological tag
and only around 120 word types take more than one
morphological tag.

Description Value
#Sentences 600
#Words 9581
#Word types 3583
#Tagset size 234
#Types with unique tags 3461
#Types with 2 tags 112

Table 2: TamilTB: data statistics

Since this is a relatively small treebank and in or-
der to confirm that our experiments are not heavily
reliant on one particular sample of data we try a va-
riety of data splits. To test the effects of the train-
ing, tuning, and testing data we try 7 different data
splits. The tuning data in the Section 4 use the for-
mat training-tuning-testing. So 70-20-10 means we
used 70% of the TamilTB for training, 20% for tun-
ing the SVM classifier, and 10% for evaluation.

3.5 Evaluation

Made a standard in the CoNLL shared tasks com-
petition, two standard metrics for comparing depen-

dency parsing systems are typically used. Labeled
attachment score (LAS) and unlabeled attachment
score (UAS). UAS studies the structure of a depen-
dency tree and assesses whether the output has the
correct head and dependency arcs. In addition to the
structure score in UAS, LAS also measures the accu-
racy of the dependency labels on each arc (Buchholz
and Marsi, 2006). Since we are mainly concerned
with the structure of the ensemble parse, we report
only UAS scores in this paper.

To test statistical significance we use Wilcoxon
paired signed-rank test. For each data split we have
100 iterations each with different sampling. Each
model is compared against the same samples so a
paired test is appropriate in this case. We report sta-
tistical significance values for p < 0.01 and p <
0.05.

4 Results and Discussion

Data Average % Increase % Increase
Split SVM UAS over Avg over Best

70-20-10 76.50% 5.13% 0.52%
60-20-20 76.36% 5.68% 0.72%
60-30-10 75.42% 5.44% 0.52%
60-10-30 75.66% 4.83% 0.10%
85-5-10 75.33% 3.10% -1.21%
90-5-5 75.42% 3.19% -1.10%

80-10-10 76.44% 4.84% 0.48%

Table 3: Average increases and decreases in UAS score
for different Training-Tuning-Test samples. The average
was calculated over all 9 models while the best was se-
lected for each data split

For each of the data splits, Table 3 shows the per-
cent increase in our SVM system over both the av-
erage of the 9 individual models and over the best
individual model. As the Table 3 shows, our ap-
proach seems to decrease in value along with the de-
crease in tuning data. In both cases when we only
used 5% tuning data we did not get any improve-
ment in our average UAS scores. Examining Table
4, shows that the decrease in the 90-5-5 split is not
statistically significant however the decrease in 85-
5-10 is a statistically significant drop. However, the
increases in all data splits are statistically significant
except for the 60-20-20 data split. It appears that
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Model 70-20-10 60-20-20 60-30-10 60-10-30 85-5-10 90-5-5 80-10-10
2planar * * * * * * **

mstnonproj * * * * * * **
mstproj * * * * * * **

nivreeager * * * * ** x *
nivrestandard * * ** x * * *

planar * * * * * * **
stackeager * * * x * ** *
stacklazy * * * x * ** *
stackproj ** * * x ** ** **

Table 4: Statistical Significance Table for different Training-Tuning-Test samples. Each experiment was sampled
100 times and Wilcoxon Statistical Significance was calculated for our SVM model’s increase/decrease over each
individual model. ∗ = p < 0.01 , ∗ ∗ p =< 0.05, x = p ≥ 0.05

the size of the tuning and training data matter more
than the size of the test data given the low variance
in Table 5. Since the TamilTB is relatively small
when compared to other CoNLL treebanks, we ex-
pect that this ratio may shift more when additional
data is supplied since the amount of out of vocab-
ulary, OOV, words will decrease as well. As OOV
words decrease, we expect the use of additional test
data to have less of an effect.

Data Splits SVM Variance
70-20-10 0.0011
60-20-20 0.0005
60-30-10 0.0010
60-10-30 0.0003
85-5-10 0.0010
90-5-5 0.0028

80-10-10 0.0010

Table 5: Variance of the UAS Scores of our Ensemble
SVM System over 100 data splits

The traditional approach of using as much data as
possible for training does not seem to be as effec-
tive as partitioning more data for tuning an SVM.
For instance the highest training percentage we use
is 90% applied to training with 5% for tuning and
testing each. In this case the best individual model
had a UAS of 76.25% and the SVM had a UAS of
75.42%. One might think using 90% of the data
would achieve a higher overall UAS than using less
training data. On the contrary, we achieve a better
UAS score on average using only 60%, 70%, 80%,

and 85% of the data towards training. This addi-
tional data spent for tuning appears to be worth the
cost.

5 Conclusion

We have shown a new SVM based ensemble parser
that uses only dependency model agreement fea-
tures. The ability to use only model agreements al-
lows us to keep this approach language independent
and applicable to a wide range of morphologically
rich languages. We show a statistically significant
5.44% improvement over the average dependency
model and a statistically significant 0.52% improve-
ment over the best individual system.

In the future we would like to examine how our
data splits’ results change as more data is added.
This might be a prime use for self training. Since
the tuning data size for the SVM seems most impor-
tant, the UAS may be improved by only adding self
training data to our tuning sets. This would have the
additional benefit of eliminating the need to retrain
the individual parsers, thus saving computation time.
The tuning size may have a reduced effect for larger
treebanks but in our experiments it is critical to the
smaller treebank. Additionally, a full comparison of
various ensemble parsing error distributions will be
needed.
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Tamil dependency parsing: results using rule based
and corpus based approaches. In Proceedings of the
12th international conference on Computational lin-
guistics and intelligent text processing - Volume Part I,
CICLing’11, pages 82–95, Berlin, Heidelberg.

Loganathan Ramasamy and Zdeněk Žabokrtský. 2012.
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Abstract

Korean is a morphologically rich language in
which grammatical functions are marked by
inflections and affixes, and they can indicate
grammatical relations such as subject, object,
predicate, etc. A Korean sentence could be
thought as a sequence of eojeols. An eo-
jeol is a word or its variant word form ag-
glutinated with grammatical affixes, and eo-
jeols are separated by white space as in En-
glish written texts. Korean treebanks (Choi
et al., 1994; Han et al., 2002; Korean Lan-
guage Institute, 2012) use eojeol as their fun-
damental unit of analysis, thus representing
an eojeol as a prepreterminal phrase inside
the constituent tree. This eojeol-based an-
notating schema introduces various complex-
ity to train the parser, for example an en-
tity represented by a sequence of nouns will
be annotated as two or more different noun
phrases, depending on the number of spaces
used. In this paper, we propose methods to
transform eojeol-based Korean treebanks into
entity-based Korean treebanks. The methods
are applied to Sejong treebank, which is the
largest constituent treebank in Korean, and the
transformed treebank is used to train and test
various probabilistic CFG parsers. The experi-
mental result shows that the proposed transfor-
mation methods reduce ambiguity in the train-
ing corpus, increasing the overall F1 score up
to about 9 %.

1 Introduction

The result of syntactic parsing is useful for many
NLP applications, such as named entity recogni-

tion (Finkel and Manning, 2009), semantic role la-
beling (Gildea and Jurafsky, 2002), or sentimental
analysis (Nasukawa and Yi, 2003). Currently most
of the state-of-the-art constituent parsers take statis-
tical parsing approach (Klein and Manning, 2003;
Bikel, 2004; Petrov and Klein, 2007), which use
manually annotated syntactic trees to train the prob-
abilistic models of each consituents.

Even though there exist manually annotated Ko-
rean treebank corpora such as Sejong Treebank (Ko-
rean Language Institute, 2012), very few research
projects about the Korean parser, especially using
phrase structure grammars have been conducted. In
this paper, we aim to transform the treebank so that it
could be better used as training data for the already-
existing English constituent parsers.

Most of Korean treebank corpora use eojeols as
their fundamental unit of analysis. An eojeol is
a word or its variant word form agglutinated with
grammatical affixes, and eojeols are separated by
white space as in English written texts (Choi et al.,
2011). Figure 1 is one of the example constituent
tree from the Sejong Treebank. As can be observed,
an eojeol is always determined as a prepretermi-
nal phrase 1. But this kind of bracketing guideline
could cause ambiguities to the existing algorithms
for parsing English, because: (1) English does not
have the concept of “eojeol”, and (2) an eojeol
can contain two or more morphemes with different
grammatical roles. For example, Korean case par-

1A node is a prepreterminal if all the children of this node
are preterminals (Part-Of-Speech tags such as NNP and JKG).
Preterminal is defined to be a node with one child which is itself
a leaf (Damljanovic et al., 2010).
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Figure 1: An example constituent tree and morphological analysis result from the Sejong treebank

ticles (‘josa’) are normally written inside the same
eojeol with their argument nouns, but the whole eo-
jeol is always considered as a prepreterminal noun
phrase in the Korean treebank, as can be seen in the
eojeol Ungaro-GA. Considering that the case parti-
cles in Korean play important role in determining
the syntactic structure of a sentence, this could cause
loss of information during the training phase. More-
over, Emanuel Ungaro is considered as two different
noun phrases, because they simply belong to the two
different eojeols (that is, a space exists between eo-
jeols Emanuel and Ungaro-GA).

In this paper, we propose methods to refine the
Sejong treebank which is currently the largest Ko-
rean treebank corpus. The methods are aimed at de-
creasing the ambiguities during the training phase
of parsers, by separating phrases which are inte-
grated into the same prepreterminal phrase due to
the reason that they happen to be in the same eojeol,
and integrating phrases into the same prepretermi-
nal phrase which are separated because they hap-
pen to be in different eojeols. The refined datasets
are trained and tested against three state-of-the-art
parsers, and the evaluation results for each dataset
are reported.

In section 2, the work about Korean parsers are
briefly introduced. Sejong treebank is described

with more detailed explanation in section 3, while
the methods to transform the treebank are introduced
in section 4. In section 5 the evaluation results of the
transformed treebank using the three existing state-
of-the-art parsers are introduced with an error report,
and we discuss conclusions in section 6.

2 Related Work

There were some trials to build Korean constituent
parsers, but due to the lack of appropriate corpus
those trials were not able to acheive a good re-
sult. (Smith and Smith, 2004) tried to build a Ko-
rean parser by bilingual approach with English, and
achieved labeled precision/recall around 40 % for
Korean. More recently, (Park, 2006) tried to extract
tree adjoining grammars from the Sejong treebank,
and (Oh et al., 2011) build a system to predict a
phrase tag for each eojeol.

Due to the partial free word order and case pari-
cles which can decide the grammatical roles of noun
phrases, there exist some works to build statistical
dependency parsers for Korean. (Chung, 2004) pre-
sented a dependency parsing model using surface
contextual model. (Choi and Palmer, 2011) con-
verted the Sejong treebank into the dependency tree-
bank, and applied the SVM algorithm to learn the
dependency model.
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NNG General noun IC Interjection JKQ Quotational CP XSV Verb DS
NNP Proper noun MM Adnoun JX Auxiliary PR XSA Adjective DS
NNB Bound noun MAG General adverb JC Conjunctive PR XR Base morpheme
NP Pronoun MAJ Conjunctive adverbEP Prefinal EM SN Number
NR Numeral JKS Subjective CP EF Final EM SL Foreign word
VV Verb JKC Complemental CP EC Conjunctive EM SH Chinese word
VA Adjective JKG Adnomial CP ETN Nominalizing EM NF Noun-like word
VX Auxiliary predicateJKO Objective CP ETM Adnominalizing EMNV Verb-like word
VCP Copula JKB Adverbial CP XPN Noun prefix NA Unknown word
VCN Negation adjective JKV Vocative CP XSN Noun DS SF,SP,SS,SE,SO,SW

Table 1: POS tags used in Sejong treebank (CP: case particle, EM: ending marker, DS: derivational suffix, PR: particle,
SF SP SS SE SO: different types of punctuations, SW: currency symbols and mathematical symbols. Table borrowed
from (Choi and Palmer, 2011))

Apart from the Sejong Treebank, there are few
other Korean treebanks available. The KAIST tree-
bank (Choi et al., 1994) contains constituent trees
about approximately 30K sentences from newspa-
pers, novels and textbooks. Also, the Penn Ko-
rean Treebank (Han et al., 2002) contains 15K
constituent trees constructed from the sentences of
newswire and military domains. The proposed
methods are evaluated using the Sejong treebank be-
cause it is the most recent and the largest Korean
treebank among those which is currently available.

3 Sejong Treebank

The Sejong treebank is the largest constituent
treebank in Korean. It contains approximately
45K manually-annotated constituent trees, and their
sources cover various domains including newspa-
pers, novels and cartoon texts. Figure 1 shows an
example of the Sejong constituent tree.

The tree consists of phrasal nodes and their func-
tional tags as described in table 2. Each eojeol
could contain one or more morphemes with different
POS tags (Table 1 shows the POS tagset). In most
cases, eojeols are determined by white spaces. As
stated in its bracketing guidelines, the Sejong tree-
bank uses eojeols as its fundamental unit of analy-
sis 2. This means that an eojeol is always treated as
one prepreterminal phrase. This could cause confu-
sions to the training system, because an eojeol could
contain many morphemes which have very different

2The bracketing guidelines could be requested from the Se-
jong project, but available only in Korean

grammatical roles, as can be seen in the example
of Ungaro-GA - word Ungaro is a noun, where the
nominative case particle GA suggests that this eojeol
is used as a subject.

Table 2 shows phrase tags and functional tags
used to construct the Sejong treebank. Some phrases
are annotated with functional tags to clarify their
grammatical role inside the sentence. There are
three special phrase tags beside those in table 2:
X indicates phrases containing only case particles
or ending markers, L and R indicate left and right
parenthesis.

Phrase-level tags Functional tags
S Sentence SBJ Subject
Q Quotative clause OBJ Object
NP Noun phrase CMP Complement
VP Verb phrase MOD Modifier
VNP Copula phrase AJT Adjunct
AP Adverb phrase CNJ Conjunctive
DP Adnoun phrase INT Vocative
IP Interjection phrasePRN parenthetical

Table 2: Phrase tags used in Sejong treebank.

4 Transforming Methods: from
Eojeol-based to Entity-based

In this section, we describe the methods to transform
the annotation schema of the Korean treebank from
eojeol-based to entity-based using the examples of
the Sejong treebank.

4.1 Method 1: POS Level Preprocessing
Before starting the actual transforming process, the
system first detects emails, phone numbers and dates
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based on their unique POS patterns. If the system
detects a sequence of morphemes matching with one
of predefined POS patterns inside an eojeol, then it
groups those morphemes into one entity and tags it
as a noun. This procedure aims to reduce the ambi-
guity of the corpus by reducing many miscellaneous
mrophemes which in fact forms one phone num-
ber, email address or date information into one en-
tity. Figure 2 shows an example of an eojeol whose
five morphemes toghether represent one date, and its
transformation result.

Figure 2: Example of an eojeol containing date: five mor-
phemes are merged into one morpheme representing date.

Also, the morphemes representing chinese char-
acters (POS: SH) and other foreign characters (POS:
SL) are considered as nouns, since they are normally
used to rewrite Korean nouns that have their foreign
origin such as Sino-Korean nouns.

4.2 Method 2: Detecting NPs inside an Eojeol

Although an eojeol is considered to be one prepreter-
minal phrase as a whole, many eojeols contain sep-
arated noun components inside them. For exam-
ple, a noun phrase Ungaro-GA in Figure 3 con-
sists of a separated noun component Ungaro in it,
plus josa GA. The system separates noun compo-
nents from other endings and case particles, creates
a new phrase containing those words and tags it as
an NP. By doing so, the boundaries of the NP are
more clarified - before transforming prepreterminal
NPs could contain case particles and endings, but
after the transformation it is not possible. Also the
internal syntactic structures of phrases are revealed,
providing more information to the parser.

4.3 Method 3: Finding Arguments of Josa

In this step, the system tries to find out the actual ar-
gument of each josa. For example, in figure 4 the

Figure 3: Detecting NP inside an eojeol: Case of a verb
phrase

actual argument of the nominative josa GA is the
whole person name Emanuel Ungaro, not only Un-
garo. The system tries to find out the actual argu-
ment of each josa by using a rather simple heuristic:

1. Traverse the constituent parse tree in bottom-up, right-to-
left manner.

2. If a phrase node is NP, its parent is also NP, and it directly
dominates josa(s), then:

(a) Create a new NP.
(b) Attach the node to that NP, except the josa(s).
(c) Attach all the other children of the parent node to the

newly-created NP.
(d) Remove all the children of the parent, and attach the

new NP and remaining josa part to the parent node.

3. After the procedure ends, find and remove redundant NPs,
if exist.

Figure 4: Example of applying the transformation heuris-
tic

Method 3 is dependent on method 2, since method
2 first determines boundary of NPs which do not in-
clude any case particles.

4.4 Method 4: Integrating a Sequence of
Nouns into One NP

Some of entities represented as sequences of nouns
are considered as two or more separated noun
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phrases since their components belong to the dif-
ferent eojeols. This could be problematic because
an entity could sometimes be written without any
whitespace between its component nouns. Figure 5
shows one of the case: person name Emanuel Un-
garo is considered as two separated NPs since there
exists a whitespace between a noun Emanual and a
noun Ungaro. In this step, we aim to solve this prob-
lem.

Figure 5: Integrating sequence of nouns representing one
entity into one prepreterminal noun phrase

The system finds out an NP which has two NP
children which dominates only the noun pretermi-
nal children. If the system finds such an NP, then it
removes NP children and attaches their children di-
rectly to the found NP. Figure 5 shows an application
example of the method.

This method is dependent on method 3, since this
method assumes that an NP with its parent also NP
does not have any case particles - which cannot be
hold if method 3 is not applied.

4.5 Method 5: Dealing with Noun
Conjunctions

The system tries to enumerate the noun conjunc-
tions, rather than expressing those conjunctions in
binary format. Current Sejong treebank expresses
noun conjunctions in binary format - that is, to ex-
press the constituent tree for noun conjunctions, the
nonterminal node has one NP child on its left which
contains information about the first item of the con-
junction, and the rest of conjunctions are expressed
on the right child. Figure 63 shows an example of
the Sejong constituent tree expressing the noun con-
junctions, and its transformed version.

3Mike-WA (CNJ) Speaker-GA (NOM) Jangchak-DOI-UH
IT-DA. (‘Microphone and speaker are installed.’)

Figure 6: Enumerating Noun Conjunctions

By converting noun conjunctions into rather the
‘enumerated’ forms, two benefits could be gained:
first, the resultant constituent tree will resemble
more to the Penn-treebank constituent trees. Since
most of the existing English parsers are trained on
the Penn Treebank, we can expect that the enumer-
ated form of conjunctions will more ‘fit’ to those
parsers. Second, the conjunctions are expressed in
much more explicit format, so the human users can
more easily understand the conjunctive structures in-
side the constituent trees.

4.6 Method 6: Re-tagging Phrase Tags

In this step, the system re-tags some of phrase tags
to clarify their types and to decrease training ambi-
guities. For example, a noun phrase with and with-
out case particles should be distinguished. The sys-
tem re-tags those noun phrases with case particles to
JSP 4 to distinguish them from the pure noun phrases
which consist of only nouns. Also, VP-MOD and
VNP-MOD are re-tagged to DP, since they have very
similar lexical formats with existing DPs. NP-MOD
is converted into JSP-MOD - most of them consist
of a NP with josa JKG, forming possesive cases. S-
MOD remains as S-MOD if its head is JSP-MOD:

4It stands for a ‘Josa Phrase’.
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otherwise, it is also re-tagged to a DP. Figure 75

shows a re-tagging example.

Figure 7: Example of retagging phrase tags: VP-MOD to
DP, NP-MOD to JSP-MOD, and NP-SBJ to JSP-SBJ.

5 Evaluations

In this section, several experiment results using the
standard F1 metric (2PR/(P + R)) are introduced
to show the effect of each transforming method, and
the most frequently shown error cases are explained.

5.1 Experiments using the Sejong Treebank
The proposed transformation methods are applied to
the Sejong treebank, and the converted treebanks are
used to train and test three different well-known sta-
tistical parsers, namely Stanford parser (Klein and
Manning, 2003), Bikel-Collins parser (Bikel, 2012)
and Berkeley parser (Petrov et al., 2006). To figure
out the effect of each method, all six methods are
sequentially applied one by one, and each version of
the treebank is used to train and test each parser. The
baseline treebank is the original Sejong treebank
without any transformations. For the Korean head
word extraction which will be used during parsing,
the head percolation rule of (Choi and Palmer, 2011)
is adapted. According to that paper, particles and
endings were the most useful morphemes to deter-
mine dependencies between eojeols. Based on the
observation, their rules are changed so that they give
the best priorities on those morphemes. We use
the preprocessing method described in (Park, 2006)
for training trees. It replaces symboles with Penn-
Treebank-like tags and corrects wrong morpheme

5See Figure 1 for its transcription and translation.

boundary marks within the eojeol. Methods are ap-
plied cumulatively; for example, symbol ‘M 1-6’
means the version of a treebank to which method
1, 2, 3, 4, 5 and 6 are applied cumulatively.6

System Corpus P R F1

Stan.

Baseline 67.88% 61.77% 64.69%
M 1 68.34% 61.93% 64.98%
M 1-2 71.78% 67.50% 69.58%
M 1-3 71.28% 67.91% 69.56%
M 1-4 71.06% 67.08% 69.01%
M 1-5 71.35% 67.27% 69.26%
M 1-6 75.85% 72.07% 73.92%

Bikel.

Baseline 74.81% 70.39% 72.53%
M 1 74.87% 70.45% 72.59%
M 1-2 77.05% 73.84% 75.41%
M 1-3 75.87% 72.88% 74.34%
M 1-4 75.33% 72.10% 73.68%
M 1-5 75.29% 72.18% 73.70%
M 1-6 73.70% 71.05% 72.35%

Berk.

Baseline 75.25% 72.72% 73.96%
M 1 74.54% 71.97% 73.23%
M 1-2 77.27% 75.05% 76.14%
M 1-3 75.60% 73.19% 74.38%
M 1-4 75.69% 73.32% 74.49%
M 1-5 76.53% 74.30% 75.40%
M 1-6 78.60% 76.03% 77.29%

Table 3: Evaluation results of parsers, with various trans-
formed versions of the Sejong treebank.

Table 3 shows the experimental results on each
version of the treebanks using each parser. Since
the corpus covers various domains (i.e. the style of
sentences is not homogeneous.), we perform 10-fold
cross-validation for our experiments. Stan. rep-
resents Stanford parser, Bikel. represents Bikel-
Collins parser, and Berk. means Berkeley parser.
For the Berkeley parser, we set the number of itera-
tion as two for latent annotations. In this set of ex-
periments, only phrase tags are the target of training
and testing, not including functional tags.

As can be observed from the evaluation result, the
performance is improved due to methods 2 and 6
are quite big compared to the effect of other four

6As pointed out by reviewers, we are planning the reversibil-
ity of transformations to be evaluated on the same trees for
meaning comparison.
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System Corpus P R F1

Stan.

Baseline 71.48% 69.40% 70.43%
M 1 71.89% 69.75% 70.81%
M 1-2 75.90% 73.44% 74.65%
M 1-3 72.32% 69.76% 71.02%
M 1-4 72.37% 69.97% 71.16%
M 1-5 72.80% 70.28% 71.52%
M 1-6 72.32% 69.81% 71.05%

Bikel.

Baseline 69.65% 66.80% 68.19%
M 1 69.73% 66.97% 68.32%
M 1-2 74.33% 71.90% 73.09%
M 1-3 63.94% 64.57% 64.25%
M 1-4 63.95% 65.04% 64.49%
M 1-5 64.09% 65.05% 64.57%
M 1-6 62.94% 64.16% 63.54%

Berk.

Baseline 76.82% 75.28% 76.04%
M 1 76.73% 75.06% 75.89%
M 1-2 79.59% 77.91% 78.74%
M 1-3 75.24% 72.16% 73.67%
M 1-4 75.02% 73.01% 74.00%
M 1-5 75.58% 73.61% 74.58%
M 1-6 74.37% 71.93% 73.13%

Table 4: Evaluation results of parsers, with phrase tags
and functional tags together as learning target.

methods. Especially, the performance increase due
to the method 6 strongly suggests that Sejong phrase
tagsets are not enough to distinguish the types of
phrases effectively. Except those two methods,
only the method 5 increases the overall performance
slightly, and methods 1, 3 and 4 do not have any
significant effect on the performance or even some-
times decrease the overall performance.

Although the usage of functional tags is different
from that of phrase tags, the Sejong treebank has
a very rich functional tag set. Considering the re-
sults of the previous experiments, it is highly likely
that some of phrasal information is encoded into the
functional tags. To prove that, another set of experi-
ments is carried out. In this time, parsers are trained
not only on phrase tags but also on functional tags.
Table 4 shows the evaluation results.

As can be observed, by keeping functional tags
to train and test parsers, the baseline performance
increases 3 to 6 % for the Stanford and Berkeley
parsers. Only the performance of the Bikel parser

is decreased - it is highly possible that the parser
fails to find out the appropriate head word for each
possible tag, because the number of possible tags is
increased greatly by using the functional tags along
with the phrase tags.

In both set of experiments, the method 3 decreases
the overall performance. This strongly suggests that
finding the actual argument of josa directly is quite a
challenging work. The performance drop is consid-
ered mainly because the branching problem at the
higher level of the constituent tree is counted twice
due to the josa.

5.2 Experiments using the Penn Korean
Treebank

To show the effect of the transformation methods
more clearly, the Penn Korean Treebank (Han et al.,
2002) is used as another treebank for experimen-
tation: (Chung et al., 2010) describes about major
difficulties of parsing Penn Korean Treebank. The
same three parsers are trained and tested using the
treebank. Due to the different annotation guidelines
and different tagsets, transformation methods 1, 5
and 6 cannot be applied on the treebank. Thus, only
method 2, 3 and 4 are used to transform the treebank.
Table 5 shows the evaluation results.

System Corpus P R F1

Stan.

Baseline 82.84% 80.28% 81.54%
M 2 85.29% 83.25% 84.26%
M 2-3 84.52% 82.71% 83.61%
M 2-4 84.52% 82.92% 83.72%

Bikel.

Baseline 81.49% 78.20% 79.81%
M 2 75.82% 74.47% 75.13%
M 2-3 73.50% 69.66% 71.53%
M 2-4 73.45% 69.66% 71.51%

Berk.

Baseline 85.11% 81.90% 83.47%
M 2 83.40% 81.04% 82.20%
M 2-3 82.36% 80.52% 81.43%
M 2-4 82.97% 81.28% 82.12%

Table 5: Evaluation on Penn Korean Treebank.

The overall performance of training the Penn Ko-
rean treebank is higher than that of the Sejong tree-
bank. There could be two possible explanations.
First one is, since the Penn Korean treebank tries
to follow English Penn treebank guidelines as much
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as possible, thus annotation guidelines of the Ko-
rean Penn treebank could be much “familiar” to the
parsers than that of the Sejong treebank. The second
explanation is, since the domain of the Penn Korean
treebank is much more restricted than that of the Se-
jong treebank, the system could be trained for the
specific domain. The best performance was gained
with the Stanford parser, with the treebank trans-
formed by method 2. Actually, (Chung et al., 2010)
also investigated parsing accuracy on the Penn Ko-
rean treebank; the direct comparison could be very
difficult because parsing criteria is different.

5.3 Error Analysis

In this section, some of the parsing error cases are
reported. Berkeley parser trained with the Sejong
treebank is used for error analysis. Both phrase tags
and functional tags are used to train and test the sys-
tem.

5.3.1 Locating Approximate Positions of
Errors

As the first step to analyze the errors, we tried to
figure out at which points of the constituent tree er-
rors frequently occur – do the errors mainly occur at
the bottom of the trees? Or at the top of the trees?
If we can figure out approximate locations of errors,
then the types of errors could be predicted.

Figure 8: Example of assigning levels to each phrasal
node.

To define the level of each nonterminal node of
the constituent tree, the following rules are used:

• The level of prepreterminal node is 0.

• The levels of other phrasal nodes are defined
as: the maximal level of their children + 1.

• Once the levels of all the phrasal nodes are cal-
culated, normalize the levels so that they have
the values between 0 and 1.

Figure 8 shows an example of constituent tree
with levels assigned to its phrasal nodes. All the
prepreterminal nodes have level value 0, and the top-
most node has level 1.

Figure 9: Performance of the system on each level of the
parse tree

Once the levels are assigned to each constituent
tree, only those constituents with levels larger than
or equal to the predefined threshold µ are used to
evaluate the system. µ are increased from 0 to 1 with
value 0.01. Higher µ value means that the system is
evaluated only for those constituents positioned at
the top level of the constituent tree.

Figure 9 shows the evaluation results. X-axis rep-
resents the value of µ, and Y-axis represents the F1-
score. As can be observed, most of the errors oc-
cur at the mid-level of the constituent trees. Also,
the effects of some methods are explicitly shown
on the graph. For example, method 2 greatly in-
creases the performance at low level of the con-
stituent tree, suggesting improved consistency in de-
temining prepreterminal NP nodes. Also, it is shown
that the proposed methods does not affect the perfor-
mance of mid-level and top-level constituent deci-
sions - this suggests that the future works should be
more focused on providing more information about
those mid-level decision to the treebank annotation.
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Figure 10: Example of NP boundary detection error. Part
of parse tree as well as name of the enumerated products
are omitted to more clearly show the example itself.

5.3.2 Frequent Error Cases

In this section, four major parsing error cases are
described.

Detecting Boundaries of NP. Although the
method 4 tries to find and gather the sequence of
nouns which actually belong to one NP, it misses
some of the cases. Figure 10 shows such example.
Some parts of the tree are omitted using the notation
‘...’ to show the example more simply. Although it
is counted as the parser error, the result of the parser
is more likely to be an answer - the number of those
products is 8, not their action. The Sejong treebank
tree is annotated in that way because the number ‘8’
and bound noun Gae (‘unit’), representing as units,
are separated by a space. To detect such kind of sep-
arated NPs and transform them into one NP will be
our next task.

Finding an Appropriate Modifee. Some phrases
modifying other phrases were failed to find their ap-
propriate modifees. Figure 11 shows an example of
such kind of error case.

Detecting an Appropriate Subject of the Sen-
tence. This case frequently occurs when a sentence
is quotated inside the other sentence. In this case,
the subject of quotated sentence is often considered
as the subject of the whole sentence, because the
quotated sentences in Korean are usually first stated

Figure 11: Example of a phrase (JSP-AJT) which failed
to find its right modifee.

and then the subject of the whole sentence shows up.
Figure 12 shows an example of the erroneously de-
tected subject.

The Wrongly-tagged Topmost Node. Some of
Sejong treebank trees have phrases which are not
tagged as S as their topmost nodes. This could cause
confusion during the training. Figure 13 shows such
example.

6 Conclusion and Future Work

Although there exist some manually-annotated
large-enough constituent treebanks such as Sejong
treebank, it was hard to apply the algorithms for En-
glish parsers to Korean treebanks, because they were
annotated in eojeol-based scheme, which concept
does not exist in English. In this paper, we showed
the possibility of acquiring good training and testing
results with the existing parsers trained using the ex-
isting Korean treebanks, if it undergoes some simple
transforming procedures. The error analysis result
shows that, indeed the proposed method improves
the performance of parser at the lower level of con-
stituent tree.
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Figure 12: Example of a wrongly-detected subject.

Although there exists a performance gain due to
the transforming methods, there are still many gaps
for improvement. The evaluation results and er-
ror analysis results suggests the need to define the
phrase tagset of Sejong treebank in more detail.
Also, the transforming methods themselves are not
perfect yet - we believe still they could be improved
more to increase consistency of the resultant tree-
banks.

We will continuously develop our transforming
methods to improve the parsing result. Furthermore,
we are planning to investigate methods to determine
the appropriate “detailedness” of phrase tag set, so
that there are no missing information due to too
small number of tags as well as no confusion due
to too many tags.
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Abstract

We present an architecture for parsing in two
steps. A phrase-structure parser builds for
each sentence an n-best list of analyses which
are converted to dependency trees. These de-
pendency structures are then rescored by a dis-
criminative reranker. Our method is language
agnostic and enables the incorporation of ad-
ditional information which are useful for the
choice of the best parse candidate. We test
our approach on the the Penn Treebank and
the French Treebank. Evaluation shows a sig-
nificative improvement on different parse met-
rics.

1 Introduction

Two competing approaches exist for parsing natural
language. The first one, called generative, is based
on the theory of formal languages and rewriting sys-
tems. Parsing is defined here as a process that trans-
forms a string into a tree or a tree forest. It is of-
ten grounded on phrase-based grammars – although
there are generative dependency parsers – in partic-
ular context-free grammars or one of their numer-
ous variants, that can be parsed in polynomial time.
However, the independence hypothesis that under-
lies this kind of formal system does not allow for
precise analyses of some linguistic phenomena, such
as long distance and lexical dependencies.

In the second approach, known as discriminative,
the grammar is viewed as a system of constraints
over the correct syntactic structures, the words of the
sentence themselves being seen as constraints over
the position they occupy in the sentence. Parsing
boils down to finding a solution that is compatible
with the different constraints. The major problem of

this approach lies in its complexity. The constraints
can, theoretically, range over any aspect of the final
structures, which prevents from using efficient dy-
namic programming techniques when searching for
a global solution. In the worst case, final structures
must be enumerated in order to be evaluated. There-
fore, only a subset of constraints is used in imple-
mentations for complexity reasons. This approach
can itself be divided into formalisms relying on logic
to describe constraints, as the model-theoretic syn-
tax (Pullum and Scholz, 2001), or numerical for-
malisms that associate weights to lexico-syntactic
substructures. The latter has been the object of some
recent work thanks to progresses achieved in the
field of Machine Learning. A parse tree is repre-
sented as a vector of features and its accuracy is
measured as the distance between this vector and the
reference.

One way to take advantage of both approaches
is to combine them sequentially, as initially pro-
posed by Collins (2000). A generative parser pro-
duces a set of candidates structures that constitute
the input of a second, discriminative module, whose
search space is limited to this set of candidates.
Such an approach, parsing followed by reranking,
is used in the Brown parser (Charniak and Johnson,
2005). The approach can be extended in order to
feed the reranker with the output of different parsers,
as shown by (Johnson and Ural, 2010; Zhang et al.,
2009).

In this paper we are interested in applying rerank-
ing to dependency structures. The main reason is
that many linguistic constraints are straightforward
to implement on dependency structures, as, for ex-
ample, subcategorization frames or selectional con-
straints that are closely linked to the notion of de-
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pendents of a predicate. On the other hand, depen-
dencies extracted from constituent parses are known
to be more accurate than dependencies obtained
from dependency parsers. Therefore the solution we
choose is an indirect one: we use a phrase-based
parser to generate n-best lists and convert them to
lists of dependency structures that are reranked. This
approach can be seen as trade-off between phrase-
based reranking experiments (Collins, 2000) and the
approach of Carreras et al. (2008) where a discrimi-
native model is used to score lexical features repre-
senting unlabelled dependencies in the Tree Adjoin-
ing Grammar formalism.

Our architecture, illustrated in Figure 1, is based
on two steps. During the first step, a syntagmatic
parser processes the input sentence and produces n-
best parses as well as their probabilities. They are
annotated with a functional tagger which tags syn-
tagms with standard syntactic functions subject, ob-
ject, indirect object . . . and converted to dependency
structures by application of percolation rules. In the
second step, we extract a set of features from the
dependency parses and the associated probabilities.
These features are used to reorder the n-best list
and select a potentially more accurate parse. Syn-
tagmatic parses are produced by the implementation
of a PCFG-LA parser of (Attia et al., 2010), simi-
lar to (Petrov et al., 2006), a functional tagger and
dependency converter for the target language. The
reranking model is a linear model trained with an
implementation of the MIRA algorithm (Crammer et
al., 2006)1.

Charniak and Johnson (2005) and Collins (2000)
rerank phrase-structure parses and they also include
head-dependent information, in other words unla-
belled dependencies. In our approach we take into
account grammatical functions or labelled depen-
dencies.

It should be noted that the features we use are very
generic and do not depend on the linguistic knowl-
edge of the authors. We applied our method to En-
glish, the de facto standard for testing parsing tech-
nologies, and French which exhibits many aspects of
a morphologically rich language. But our approach
could be applied to other languages, provided that

1This implementation is available at https://github.
com/jihelhere/adMIRAble.

the resources – treebanks and conversion tools – ex-
ist.

(1) PCFG-LA n-best constituency parses

(2) Function annotation

(3) Conversion to dependency parses

(4) Feature extraction

(5) MIRA reranking

w

Final constituency & dependency parse

Input text

Figure 1: The parsing architecture: production of the n-
best syntagmatic trees (1) tagged with functional labels
(2), conversion to a dependency structure (3) and feature
extraction (4), scoring with a linear model (5). The parse
with the best score is considered as final.

The structure of the paper is the following: in
Section 2 we describe the details of our generative
parser and in Section 3 our reranking model together
with the features templates. Section 4 reports the re-
sults of the experiments conducted on the Penn Tree-
bank (Marcus et al., 1994) as well as on the Paris 7
Treebank (Abeillé et al., 2003) and Section 5 con-
cludes the paper.

2 Generative Model

The first part of our system, the syntactic analysis
itself, generates surface dependency structures in a
sequential fashion (Candito et al., 2010b; Candito
et al., 2010a). A phrase structure parser based on
Latent Variable PCFGs (PCFG-LAs) produces tree
structures that are enriched with functions and then
converted to labelled dependency structures, which
will be processed by the parse reranker.
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2.1 PCFG-LAs
Probabilistic Context Free Grammars with Latent
Annotations, introduced in (Matsuzaki et al., 2005)
can be seen as automatically specialised PCFGs
learnt from treebanks. Each symbol of the gram-
mar is enriched with annotation symbols behaving
as subclasses of this symbol. More formally, the
probability of an unannotated tree is the sum of the
probabilities of its annotated counterparts. For a
PCFG-LA G, R is the set of annotated rules, D(t)
is the set of (annotated) derivations of an unanno-
tated tree t, and R(d) is the set of rules used in a
derivation d. Then the probability assigned by G to
t is:

PG(t) =
∑

d∈D(t)

PG(d) =
∑

d∈D(t)

∏
r∈R(d)

PG(r) (1)

Because of this alternation of sums and products
that cannot be optimally factorised, there is no ex-
act polynomial dynamic programming algorithm for
parsing. Matsuzaki et al. (2005) and Petrov and
Klein (2007) discuss approximations of the decod-
ing step based on a Bayesian variational approach.
This enables cubic time decoding that can be fur-
ther enhanced with coarse-to-fine methods (Char-
niak and Johnson, 2005).

This type of grammars has already been tested
on a variety of languages, in particular English
and French, giving state-of-the-art results. Let us
stress that this phrase-structure formalism is not lex-
icalised as opposed to grammars previously used in
reranking experiments (Collins, 2000; Charniak and
Johnson, 2005). The notion of lexical head is there-
fore absent at parsing time and will become avail-
able only at the reranking step.

2.2 Dependency Structures
A syntactic theory can either be expressed with
phrase structures or dependencies, as advocated for
in (Rambow, 2010). However, some information
may be simpler to describe in one of the representa-
tions. This equivalence between the modes of repre-
sentations only stands if the informational contents
are the same. Unfortunately, this is not the case
here because the phrase structures that we use do
not contain functional annotations and lexical heads,
whereas labelled dependencies do.

This implies that, in order to be converted
into labelled dependency structures, phrase struc-
ture parses must first be annotated with functions.
Previous experiments for English and French as
well (Candito et al., 2010b) showed that a sequential
approach is better than an integrated one for context-
free grammars, because the strong independence hy-
pothesis of this formalism implies a restricted do-
main of locality which cannot express the context
needed to properly assign functions. Most func-
tional taggers, such as the ones used in the following
experiments, rely on classifiers whose feature sets
can describe the whole context of a node in order to
make a decision.

3 Discriminative model

Our discriminative model is a linear model
trained with the Margin-Infused Relaxed Algorithm
(MIRA) (Crammer et al., 2006). This model com-
putes the score of a parse tree as the inner product
of a feature vector and a weight vector represent-
ing model parameters. The training procedure of
MIRA is very close to that of a perceptron (Rosen-
blatt, 1958), benefiting from its speed and relatively
low requirements while achieving better accuracy.

Recall that parsing under this model consists in
(1) generating a n-best list of constituency parses
using the generative model, (2) annotating each of
them with function tags, (3) converting them to de-
pendency parses, (4) extracting features, (5) scoring
each feature vector against the model, (6) selecting
the highest scoring parse as output.

For training, we collect the output of feature ex-
traction (4) for a large set of training sentences and
associate each parse tree with a loss function that de-
notes the number of erroneous dependencies com-
pared to the reference parse tree. Then, model
weights are adjusted using MIRA training so that the
parse with the lowest loss gets the highest score. Ex-
amples are processed in sequence, and for each of
them, we compute the score of each parse according
to the current model and find an updated weight vec-
tor that assigns the first rank to the best parse (called
oracle). Details of the algorithm are given in the fol-
lowing sections.
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3.1 Definitions
Let us consider a vector space of dimensionmwhere
each component corresponds to a feature: a parse
tree p is represented as a sparse vector φ(p). The
model is a weight vector w in the same space where
each weight corresponds to the importance of the
features for characterizing good (or bad) parse trees.
The score s(p) of a parse tree p is the scalar product
of its feature vector φ(p) and the weight vector w.

s(p) =

m∑
i=1

wiφi(p) (2)

Let L be the n-best list of parses produced by the
generative parser for a given sentence. The highest
scoring parse p̂ is selected as output of the reranker:

p̂ = argmax
p∈L

s(p) (3)

MIRA learning consists in using training sen-
tences and their reference parses to determine the
weight vector w. It starts with w = 0 and modifies
it incrementally so that parses closest to the refer-
ence get higher scores. Let l(p), loss of parse p,
be the number of erroneous dependencies (governor,
dependent, label) compared to the reference parse.
We define o, the oracle parse, as the parse with the
lowest loss in L.

Training examples are processed in sequence as
an instance of online learning. For each sentence,
we compute the score of each parse in the n-best
list. If the highest scoring parse differs from the or-
acle (p̂ 6= o), the weight vector can be improved.
In this case, we seek a modification of w ensuring
that o gets a better score than p̂ with a difference
at least proportional to the difference between their
loss. This way, very bad parses get pushed deeper
than average parses. Finding such weight vector
can be formulated as the following constrained opti-
mization problem:

minimize: ||w||2 (4)

subject to: s(o)− s(p̂) ≥ l(o)− l(p̂) (5)

Since there is an infinity of weight vectors that
satisfy constraint 5, we settle on the one with the
smallest magnitude. Classical constrained quadratic
optimization methods can be applied to solve this

problem: first, Lagrange multipliers are used to in-
troduce the constraint in the objective function, then
the Hildreth algorithm yields the following analytic
solution to the non-constrained problem:

w? = w + α (φ(o)− φ(p̂)) (6)

α = max
[
0,
l(o)− l(p̂)− [s(o)− s(p̂)]

||φ(o)− φ(p̂)||2

]
(7)

Here, w? is the new weight vector, α is an up-
date magnitude and [φ(o)− φ(p̂)] is the difference
between the feature vector of the oracle and that of
the highest scoring parse. This update, similar to
the perceptron update, draws the weight vector to-
wards o while pushing it away from p̂. Usual tricks
that apply to the perceptron also apply here: (a) per-
forming multiple passes on the training data, and (b)
averaging the weight vector over each update2. Al-
gorithm 1 details the instructions for MIRA training.

Algorithm 1 MIRA training
for i = 1 to t do

for all sentences in training set do
Generate n-best list L from generative parser
for all p ∈ L do

Extract feature vector φ(p)
Compute score s(p) (eq. 2)

end for
Get oracle o = argminp l(p)
Get best parse p̂ = argmaxp s(p)
if p̂ 6= o then

Compute α (eq. 7)
Update weight vector (eq. 6)

end if
end for

end for
Return average weight vector over updates.

3.2 Features
The quality of the reranker depends on the learning
algorithm as much as on the feature set. These fea-
tures can span over any subset of a parse tree, up to
the whole tree. Therefore, there are a very large set
of possible features to choose from. Relevant fea-
tures must be general enough to appear in as many

2This can be implemented efficiently using two weight vec-
tors as for the averaged perceptron.
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parses as possible, but specific enough to character-
ize good and bad configurations in the parse tree.

We extended the feature set from (McDonald,
2006) which showed to be effective for a range of
languages. Our feature templates can be categorized
in 5 classes according to their domain of locality.
In the following, we describe and exemplify these
templates on the following sentence from the Penn
treebank, in which we target the PMOD dependency
between “at” and “watch.”

Probability Three features are derived from the
PCFG-LA parser, namely the posterior proba-
bility of the parse (eq. 1), its normalized prob-
ability relative to the 1-best, and its rank in the
n-best list.

Unigram Unigram features are the most simple as
they only involve one word. Given a depen-
dency between position i and position j of type
l, governed by xi, denoted xi

l→ xj , two fea-
tures are created: one for the governor xi and
one for the dependent xj . They are described
as 6-tuples (word, lemma, pos-tag, is-governor,
direction, type of dependency). Variants with
wildcards at each subset of tuple slots are also
generated in order to handle sparsity.

In our example, the dependency between
“looked” and “at” generates two features:

[at, at, IN, G, R, PMOD] and
[looked, look, NN, D, L, PMOD]

And also wildcard features such as:

[-, at, IN, G, R, PMOD], [at,
-, IN, G, R, PMOD] ...
[at, -, -, -, -, PMOD]

This wildcard feature generation is applied to
all types of features. We will omit it in the re-
mainder of the description.

Bigram Unlike the previous template, bigram fea-
tures model the conjunction of the governor
and the dependent of a dependency relation,

like bilexical dependencies in (Collins, 1997).
Given dependency xi

l→ xj , the feature cre-
ated is (word xi, lemma xi, pos-tag xi, word
xj , lemma xj , pos-tag xj , distance3 from i to
j, direction, type).

The previous example generates the following
feature:

[at, at, IN, watch, watch, NN,
2, R, PMOD]

Where 2 is the distance between “at” and
“watch”.

Linear context This feature models the linear con-
text between the governor and the dependent
of a relation by looking at the words between
them. Given dependency xi

l→ xj , for each
word from i + 1 to j − 1, a feature is created
with the pos-tags of xi and xj , and the pos tag
of the word between them (no feature is create
if j = i + 1). An additional feature is created
with pos-tags at positions i− 1, i, i+ 1, j − 1,
j, j + 1. Our example yields the following fea-
tures:

[IN, PRP$, NN], and [VBD, IN,
PRP$, PRP$, NN, .].

Syntactic context: siblings This template and the
next one look at two dependencies in two con-
figurations. Given two dependencies xi

l→ xj

and xi
m→ xk, we create the feature (word,

lemma, pos-tag for xi, xj and xk, distance from
i to j, distance from i to k, direction and type of
each of the two dependencies). In our example:

[looked, look, VBD, I, I, PRP,
at, at, IN, 1, 1, L, SBJ, R,
ADV]

Syntactic context: chains Given two dependencies
xi

l→ xj
m→ xk, we create the feature (word,

lemma, pos-tag of xi, xj and xk, distance from
i to j, distance from i to k, direction and type of
each of the two dependencies). In our example:

[looked, look, VBD, at, at, IN,
watch, watch, NN, 1, 2, R, ADV,

3In every template, distance features are quantified in 7
classes: 1, 2, 3, 4, 5, 5 to 10, more.
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R, PMOD]

It is worth noting that our feature templates only
rely on information available in the training set, and
do not use any external linguistic knowledge.

4 Experiments

In this section, we evaluate our architecture on
two corpora, namely the Penn Treebank (Marcus et
al., 1994) and the French Treebank (Abeillé et al.,
2003). We first present the corpora and the tools
used for annotating and converting structures, then
the performances of the phrase structure parser alone
and with the discriminative reranker.

4.1 Treebanks and Tools
For English, we use the Wall Street Journal sections
of the Penn Treebank. We learn the PCFG-LA from
sections 02-214. We then use FUNTAG (Chrupała
et al., 2007) to add functions back to the PCFG-LA
analyses. For the conversion to dependency struc-
tures we use the LTH tool (Johansson and Nugues,
2007). In order to get the gold dependencies, we run
LTH directly on the gold parse trees. We use sec-
tion 22 for development and section 23 for the final
evaluation.

For French, we use the Paris 7 Treebank (or
French Treebank, FTB). As in several previous ex-
periments we decided to divide the 12,350 phrase
structure trees in three sets: train (80%), develop-
ment (10%) and test (10%). The syntactic tag set for
French is not fixed and we decided to use the one
described in (Candito and Crabbé, 2009) to be able
to compare this system with recent parsing results
on French. As for English, we learn the PCFG-LA

without functional annotations which are added af-
terwards. We use the dependency structures devel-
oped in (Candito et al., 2010b) and the conversion
toolkit BONSAÏ. Furthermore, to test our approach
against state of the art parsing results for French
we use word clusters in the phrase-based parser as
in (Candito and Crabbé, 2009).

For both languages we constructed 10-fold train-
ing data from train sets in order to avoid overfitting
the training data. The trees from training sets were
divided into 10 subsets and the parses for each sub-
set were generated by a parser trained on the other

4Functions are omitted.

9 subsets. Development and test parses are given by
a parser using the whole training set. Development
sets were used to choose the best reranking model.

For lemmatisation, we use the MATE lemmatiser
for English and a home-made lemmatiser for French
based on the lefff lexicon (Sagot, 2010).

4.2 Generative Model
The performances of our parser are summarised in
Figure 2, (a) and (b), where F-score denotes the Par-
seval F-score5, and LAS and UAS are respectively
the Labelled and Unlabelled Attachment Score of
the converted dependency structures6. We give or-
acle scores (the score that our system would get if
it selected the best parse from the n-best lists) when
the parser generates n-best lists of depth 10, 20, 50
and 100 in order to get an idea of the effectiveness
of the reranking process.

One of the issues we face with this approach is
the use of an imperfect functional annotator. For
French we evaluate the loss of accuracy on the re-
sulting dependency structure from the gold develop-
ment set where functions have been omitted. The
UAS is 100% but the LAS is 96.04%. For English
the LAS from section 22 where functions are omit-
ted is 95.35%.

From the results presented in this section we can
make two observations. First, the results of our
parser are at the state of the art on English (90.7%
F-score) and on French (85.7% F-score). So the
reranker will be confronted with the difficult task of
improving on these scores. Second, the progression
margin is sensible with a potential LAS error reduc-
tion of 41% for English and 40.2% for French.

4.3 Adding the Reranker
4.3.1 Learning Feature Weights

The discriminative model, i.e. template instances
and their weights, is learnt on the training set parses
obtained via 10-fold cross-validation. The genera-
tive parser generates 100-best lists that are used as
learning example for the MIRA algorithm. Feature
extraction produces an enormous number of fea-
tures: about 571 millions for English and 179 mil-

5We use a modified version of evalb that gives the ora-
cle score when the parser outputs a list of candidates for each
sentence.

6All scores are measured without punctuation.
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(a) Oracle Scores on PTB dev set (b) Oracle Scores on FTB dev set
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Figure 2: Oracle and reranker scores on PTB and FTB data on the dev. set, according to the depth of the n-best.

lions for French. Let us remark that this large set of
features is not an issue because our discriminative
learning algorithm is online, that is to say it consid-
ers only one example at a time, and it only gives
non-null weights to useful features.

4.3.2 Evaluation
In order to test our system we first tried to eval-

uate the impact of the length of the n-best list over
the reranking predictions7. The results are shown in
Figure 2, parts (c) and (d).

For French, we can see that even though the LAS
and UAS are consistently improving with the num-
ber of candidates, the F-score is maximal with 50
candidates. However the difference between 50 can-
didates and 100 candidates is not statistically signifi-
cant. For English, the situation is simpler and scores
improve continuously on the three metrics.

Finally we run our system on the test sets for both
treebanks. Results are shown8 in Table 1 for En-
glish, and Table 2 for French. For English the im-
provement is 0.9% LAS, 0.7% Parseval F-score and

7The model is always trained with 100 candidates.
8F < 40 is the parseval F-score for sentences with less than

40 words.

0.8% UAS.

Baseline Reranker
F 90.4 91.1
F < 40 91.0 91.7
LAS 88.9 89.8
UAS 93.1 93.9

Table 1: System results on PTB Test set

For French we have improvements of 0.3/0.7/0.9.
If we add a template feature indicating the agree-
ment between part-of-speech provided by the PCFG-
LA parser and a part-of-speech tagger (Denis
and Sagot, 2009), we obtain better improvements:
0.5/0.8/1.1.

Baseline Reranker Rerank + MElt
F 86.6 87.3 87.4
F < 40 88.7 89.0 89.2
LAS 87.9 89.0 89.2
UAS 91.0 91.9 92.1

Table 2: System results on FTB Test set

95



4.3.3 Comparison with Related Work
We compare our results with related parsing re-

sults on English and French.
For English, the main results are shown in Ta-

ble 3. From the presented data, we can see that
indirect reranking on LAS may not seem as good
as direct reranking on phrase-structures compared to
F-scores obtained in (Charniak and Johnson, 2005)
and (Huang, 2008) with one parser or (Zhang et
al., 2009) with several parsers. However, our sys-
tem does not rely on any language specific feature
and can be applied to other languages/treebanks. It
is difficult to compare our system for LAS because
most systems evaluate on gold data (part-of-speech,
lemmas and morphological information) like Bohnet
(2010).

Our system also compares favourably with the
system of Carreras et al. (2008) that relies on a more
complex generative model, namely Tree Adjoining
Grammars, and the system of Suzuki et al. (2009)
that makes use of external data (unannotated text).

F LAS UAS
Huang, 2008 91.7 – –
Bohnet, 2010 – 90.3 –
Zhang et al, 2008 91.4 – 93.2
Huang and Sagae, 2010 – – 92.1
Charniak et al, 2005 91.5 90.0 94.0
Carreras et al. 2008 – – 93.5
Suzuki et al. 2009 – – 93.8
This work 91.1 89.8 93.9

Table 3: Comparison on PTB Test set

For French, see Table 4, we compare our system
with the MATE parser (Bohnet, 2010), an improve-
ment over the MST parser (McDonald et al., 2005)
with hash kernels, using the MELT part-of-speech
tagger (Denis and Sagot, 2009) and our own lemma-
tiser.

We also compare the French system with results
drawn from the benchmark performed by Candito et
al. (2010a). The first system (BKY-FR) is close to
ours without the reranking module, using the Berke-
ley parser adapted to French. The second (MST-
FR) is based on MSTParser (McDonald et al., 2005).
These two system use word clusters as well.

The next section takes a close look at the models

of the reranker and its impact on performance.

F < 40 LAS UAS
This work 89.2 89.2 92.1
MATE + MELT – 89.2 91.8
BKY-FR 88.2 86.8 91.0
MST-FR – 88.2 90.9

Table 4: Comparison on FTB Test set

4.3.4 Model Analysis
It is interesting to note that in the test sets, the

one-best of the syntagmatic parser is selected 52.0%
of the time by the reranker for English and 34.3% of
the time for French. This can be explained by the
difference in the quantity of training data in the two
treebanks (four times more parses are available for
English) resulting in an improvement of the quality
of the probabilistic grammar.

We also looked at the reranking models, specifi-
cally at the weight given to each of the features. It
shows that 19.8% of the 571 million features have
a non-zero weight for English as well as 25.7% of
the 179 million features for French. This can be ex-
plained by the fact that for a given sentence, features
that are common to all the candidates in the n-best
list are not discriminative to select one of these can-
didates (they add the same constant weight to the
score of all candidates), and therefore ignored by the
model. It also shows the importance of feature engi-
neering: designing relevant features is an art (Char-
niak and Johnson, 2005).

We took a closer look at the 1,000 features of
highest weight and the 1,000 features of lowest
weight (negative) for both languages that represent
the most important features for discriminating be-
tween correct and incorrect parses. For English,
62.0% of the positive features are backoff features
which involve at least one wildcard while they are
85.9% for French. Interestingly, similar results hold
for negative features. The difference between the
two languages is hard to interpret and might be due
in part to lexical properties and to the fact that these
features may play a balancing role against towards
non-backoff features that promote overfitting.

Expectedly, posterior probability features have
the highest weight and the n-best rank feature has the
highest negative weight. As evidenced by Table 5,
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en (+) en (-) fr (+) fr (-)
Linear 30.4 36.1 44.8 44.0
Unigram 20.7 16.3 9.7 8.2
Bigram 27.4 29.1 20.8 24.4
Chain 15.4 15.3 13.7 19.4
Siblings 5.8 3.0 10.8 3.6

Table 5: Repartition of weight (in percentage) in the
1,000 highest (+) and lowest (-) weighted features for En-
glish and French.

among the other feature templates, linear context oc-
cupies most of the weight mass of the 1,000 highest
weighted features. It is interesting to note that the
unigram and bigram templates are less present for
French than for English while the converse seems to
be true for the linear template. Sibling features are
consistently less relevant.

In terms of LAS performance, on the PTB test
set the reranked output is better than the baseline
on 22.4% of the sentences while the opposite is true
for 10.4% of the sentences. In 67.0% of the sen-
tences, they have the same LAS (but not necessar-
ily the same errors). This emphasises the difficulty
of reranking an already good system and also ex-
plains why oracle performance is not reached. Both
the baseline and reranker output are completely cor-
rect on 21.3% of the sentences, while PCFG-LA cor-
rectly parses 23% of the sentences and the MIRA

brings that number to 26%.
Figures 3 and 4 show hand-picked sentences for

which the reranker selected the correct parse. The
French sentence is a typical difficult example for
PCFGs because it involves a complex rewriting rule
which might not be well covered in the training
data (SENT → NP VP PP PONCT PP PONCT PP
PONCT). The English example is tied to a wrong
attachment of the prepositional phrase to the verb
instead of the date, which lexicalized features of the
reranker handle easily.

5 Conclusion

We showed that using a discriminative reranker, on
top of a phrase structure parser, based on converted
dependency structures could lead to significant im-
provements over dependency and phrase structure
parse results. We experimented on two treebanks
for two languages, English and French and we mea-

sured the improvement of parse quality on three dif-
ferent metrics: Parseval F-score, LAS and UAS,
with the biggest error reduction on the latter. How-
ever the gain is not as high as expected by looking
at oracle scores, and we can suggest several possible
improvements on this method.

First, the sequential approach is vulnerable to cas-
cading errors. Whereas the generative parser pro-
duces several candidates, this is not the case of the
functional annotators: these errors are not amend-
able. It should be possible to have a functional tag-
ger with ambiguous output upon which the reranker
could discriminate. It remains an open question as
how to integrate ambiguous output from the parser
and from the functional tagger. The combination
of n-best lists would not scale up and working on
the ambiguous structure itself, the packed forest as
in (Huang, 2008), might be necessary. Another pos-
sibility for future work is to let the phrase-based
parser itself perform function annotation, but some
preliminary tests on French showed disappointing
results.

Second, designing good features, sufficiently gen-
eral but precise enough, is, as already coined
by Charniak and Johnson (2005), an art. More for-
mally, we can see several alternatives. Dependency
structures could be exploited more thoroughly using,
for example, tree kernels. The restricted number of
candidates enables the use of more global features.
Also, we haven’t used any language-specific syntac-
tic features. This could be another way to improve
this system, relying on external linguistic knowledge
(lexical preferences, subcategorisation frames, cop-
ula verbs, coordination symmetry . . . ). Integrating
features from the phrase-structure trees is also an op-
tion that needs to be explored.

Third this architecture enables the integration of
several systems. We experimented on French using a
part-of-speech tagger but we could also use another
parser and either use the methodology of (Johnson
and Ural, 2010) or (Zhang et al., 2009) which fu-
sion n-best lists form different parsers, or use stack-
ing methods where an additional parser is used as
a guide for the main parser (Nivre and McDonald,
2008).

Finally it should be noted that this system does not
rely on any language specific feature, and thus can
be applied to languages other that French or English
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Figure 3: English sentence from the WSJ test set for which the reranker selected the correct tree while the first
candidate of the n-best list suffered from an incorrect attachment.
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Figure 4: Sentence from the FTB for which the best parse according to baseline was incorrect, probably due to the
tendency of the PCFG-LA model to prefer rules with more support. The reranker selected the correct parse.

without re-engineering new reranking features. This
makes this architecture suitable for morphologically
rich languages.
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