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Abstract

Most icon-based augmentative and alternative
communication (AAC) devices require users
to formulate messages in syntactic order in
order to produce syntactic utterances. Re-
liance on syntactic ordering, however, may
not be appropriate for individuals with lim-
ited or emerging literacy skills. Some of these
users may benefit from unordered message
formulation accompanied by automatic mes-
sage expansion to generate syntactically cor-
rect messages. Facilitating communication via
unordered message formulation, however, re-
quires new methods of prediction. This pa-
per describes a novel approach to word predic-
tion using semantic grams, or “sem-grams,”
which provide relational information about
message components regardless of word or-
der. Performance of four word-level predic-
tion algorithms, two based on sem-grams and
two based on n-grams, were compared on a
corpus of informal blogs. Results showed
that sem-grams yield accurate word predic-
tion, but lack prediction coverage. Hybrid
methods that combine n-gram and sem-gram
approaches may be viable for unordered pre-
diction in AAC.

1 Introduction

Many individuals with severe speech impairments
rely on augmentative and alternative communica-
tion (AAC) devices to convey their thoughts and
desires. Those with limited or emerging literacy
skills may use icon-based systems, which often re-
quire that vocabulary items be selected in syntac-
tic order to generate syntactically well-formed mes-

sages; however, selecting vocabulary items serially
and in syntactic order can be physically and cogni-
tively arduous depending on the icon organization
scheme (Udwin and Yule, 1990). Moreover, AAC
productions are often syntactically incomplete or in-
correct (Van Balkom and Welle Donker-Gimbrere,
1996), perhaps for efficiency or due to limited lin-
guistic abilities. For many users, unordered vocabu-
lary selection may alleviate the physical and cogni-
tive demands of message formulation and shift the
onus of generating syntactically complete and ac-
curate messages onto the AAC device. Although
unordered message formulation schemes have been
proposed (Karberis and Kouroupetroglou, 2002; Pa-
tel et al., 2004) and techniques have been devel-
oped for expanding incomplete input (McCoy et al.,
1998), prediction has not been incorporated. This
paper presents an initial step toward text prediction
from a set of unordered vocabulary selections.

Rate enhancement is a commonly cited issue in
AAC because aided message formulation rates are
an order of magnitude slower than spoken interac-
tion (Beukelman and Mirenda, 1998). Prediction
is a common rate enhancement technique. Text
prediction for AAC has primarily focused on well-
ordered, syntactic input and has leveraged both se-
mantic characteristics (Demasco and McCoy, 1992;
Li and Hirst, 2005; Nikolova et al., 2010) and vari-
ations of n-grams (Lesher et al., 1998; Trnka et al.,
2006). For example, semantic networks and linguis-
tic rules have been used to predict missing function
words and to apply affixes to content words (McCoy
et al., 1998). The use of n-grams to predict text en-
try has been extensively studied at both the level of
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letters (Broerse and Zwaan, 1966; Suen, 1979; How
and Kan, 2005) and words (Bickel et al., 2005). For
example, memory based language models have been
used to predict missing content words using trigrams
(Van Den Bosch, 2006). Although some recent work
has attempted to loosen syntactic requirements by
including either left or right context, some direc-
tional context has historically been required (Van
Den Bosch and Berck, 2009). Furthermore, word
prediction approaches in AAC have typically been
implemented for letter-by-letter message formula-
tion (Koester and Levine, 1996; Koester and Levine,
1997; Lesher and Rinkus, 2002; Higginbotham et
al., 2009). The current work is fundamentally novel
in that: (1) no syntactic order is implied or required
during either training or testing; and (2) the predic-
tion is implemented at word level to accommodate
icon-based interaction.

Previous work in information retrieval has ex-
plored relationships between words with regard to
distance (Lin and Hovy, 2003; Lv and Zhai, 2009),
grammatical purpose (Tzoukermann et al., 1997; Al-
lan and Raghavan, 2002), and semantic characteris-
tics (Westerman and Cribbin, 2000; Fang and Zhai,
2006; Hemayati et al., 2007), particularly for re-
trieving highly relevant documents or passages. One
study in this area resulted in an approach called s-
grams, a generalization of n-grams, in which the
distance between words directly affects the strength
of their semantic relationship (Järvelin et al., 2007).
Another approach to predicting semantically related
words is to use collocation to indicate topic changes
within a moving window of fixed length (Matiasek
and Baroni, 2003). Rather than relying on distance
to indicate relationship strength, the current work
combines frequency analysis with syntactic indica-
tions of semantic coherence.

1.1 Semantic Grams

Semantic grams, or “sem-grams,” provide an alter-
native approach to quantifying the relationship be-
tween co-occurring words. A sem-gram is defined
as a multiset of words that can appear together in a
sentence (Table 1). In English, a sentence is one of
the smallest units of language that is typically both
coherent, in terms of semantic content, and cohesive,
in that the semantic content is inter-related. Addi-
tionally, because sentences are demarcated with syn-

Table 1: Example of Sem-Grams of Length 2
Sentence: “I like to play chess with my brother.”

Filtered Words: i, like, play, chess, brother
Sem-grams and Counts:

brother, chess (1) brother, i (1)
brother, like (1) brother, play (1)
chess, i (1) chess, like (1)
chess, play (1) i, like (1)
i, play (1) like, play (1)

tactic cues such as punctuation, semantically related
items can be efficiently identified using sentence
boundary detection (Kiss and Strunk, 2006). Thus,
sem-grams leverage sentence-level co-occurrence to
extract semantic content at different levels of gran-
ularity, depending on the allowable lengths of mul-
tisets. Sem-grams can be viewed as non-directional
s-grams with a uniform weight applied to all rela-
tionships between any words in a given sentence.

In a sentence of length L (in words), the number
of n-grams of length n (in words), where L ≥ n, is
given by the expression L − n + 3, which includes
the beginning and ending n-grams that contain null
elements. By contrast, the number of sem-grams of
length n is given by the expression

(L
n

)
. Thus, there

will typically be many more sem-grams of length n
in a single sentence than n-grams of the same length.
Unlike n-grams, it is not necessary for sem-grams to
contain null elements because a sem-gram of length
S with a null element is equivalent to a sem-gram of
length S − 1 without null elements. Sem-grams of
length one, containing a single word, are equivalent
to the prior probability of that word.

1.2 Prediction Algorithms

Unordered word prediction poses the following
problem: given a multiset of existing words E that
have already been selected by a user and a set of can-
didate words C that the user may select from, which
candidate word c ∈ C is the user most likely to se-
lect in order to complete the message? As an initial
step toward addressing this problem, the following
four algorithms, two based on sem-grams and two
based on n-grams, were compared:

S1: Naive Bayesian Sem-grams Given existing
words E, rank all candidate words c ∈ C in de-
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scending order of probability according to:

P (c|E) = P (c)
∏

w∈E

P (w|c)

S1 is a modification of the Bayesian ranking of
sem-grams in that it assumes independence of ex-
isting words to each other, conditional on the given
candidate word. Using true Bayesian probabili-
ties for sem-grams, the probability of a candidate
word could be represented as the following for each
P (c|E), given w ∈ E and |E| = 3:

P (c)P (w1|c, w2, w3)P (w2|c, w3)P (w3|c)
P (w1, w2, w3)

The exact form of this equation depends on the or-
dering branch chosen, but it also requires joint prob-
abilities for sem-grams of different lengths. Assum-
ing conditional independence of the existing words
to each other, S1 only requires sem-grams of length
two.

S2: Independent Sem-grams Given existing
words E, rank all candidate words c ∈ C in de-
scending order of probability according to:

P (c|E) =
∏

w∈E

P (w, c)

The approach of S2 is a “hand of cards” approach
that treats the message formulation task as a random
drawing of sem-grams from a pool. While the for-
mula above is specified for sem-grams of length 2, it
can be extended to support sem-grams of any length.

N1: Naive Bayesian N-grams Given existing
words E, rank all candidate words c ∈ C in de-
scending order of probability according to:

P (c|E) = P (c)
∏

w∈E

P (w|c)

N1 is a copy of S1, except that the definition of the
joint probability P (w, c) includes the counts for n-
grams that contain both w and c, regardless of order.
This algorithm was designed to compare whether the
information provided by n-grams can be used to ap-
proximate the information provided by sem-grams.
N1 assigns high ranks to candidate words that are
likely to appear adjacent to all other words in the
sentence.

N2: Applied N-grams Given existing words E,
rank all candidate words c ∈ C in descending order
of probability according to:

P (c|E) =
∑
w∈E

P (w, c)

N2 is designed to leverage the strength of n-grams
and rank candidate words based on the probability
of them appearing adjacent to any of the existing
words. N2 uses the same definition of joint prob-
ability as N1, where P (w, c) includes the counts for
n-grams that contain both w and c, irrespective of
order.

2 Method

2.1 Corpus Selection and Preparation

Given the lack of large corpora of AAC message for-
mulations (Lesher and Sanelli, 2000), approxima-
tions have often been used (Wandmacher and An-
toine, 2006; Trnka and McCoy, 2007). Despite re-
cent efforts to create AAC-like corpora (Vertanen
and Kristensson, 2011), statistical prediction is of-
ten more effective with larger data sets. The Blog
Authorship Corpus (Schler et al., 2006) was se-
lected because it is freely available and tends to be
written in an informal style, such as might be seen
in diary entries or personal emails. The corpus is
both large and diverse, comprising over 140 million
words written by 19,320 bloggers in August 2004.
The bloggers ranged in age from 13 - 48 and were
equally divided between males and females.

To prepare the corpus, all blog posts were ex-
tracted as ASCII text. Every blog post was split into
sentences using the PunktSentenceTokenizer (Kiss
and Strunk, 2006) of the Natural Language Toolkit
(NLTK) (Bird et al., 2009) and then split into words
using the following regular expression:

\w+(\w*([\-\’\.]\w+)*)*

English stop words were removed according to
a popular list (Ranks, 2012) and remaining words
were stemmed using the NLTK’s PorterStemmer,
which is a modified implementation of the original
Porter stemming algorithm (Porter, 1997). Finally,
all stemmed words were examined for membership
in a stemmed American-English dictionary (Ward,
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Table 2: Sample Test Results for N1 and S1
Original Sentence: “but i went to church yesterday with the fam.”
Target Stem: went
Input Stems: yesterday, church
N1 Candidate List: went, morn, today, go, attend, work, afternoon, church, got, day, back, ...
S1 Candidate List: went, go, church, today, got, day, like, time, just, well, one, get, peopl, ...
Original Sentence: “You never see signs like that in cities.”
Target Stem: like
Input Stems: never, see, sign, citi
N1 Candidate List: just, show, sign, realli, say, want, go, seen, thought, hall, citi, live, ...
S1 Candidate List: never, will, like, can, go, love, one, just, know, want, get, live, time, ...
Original Sentence: “This semester Im taking six classes.”
Target Stem: class
Input Stems: take, semest, six
N1 Candidate List: next, month, class, hour, last, second, week, year, first, five, flag, ...
S1 Candidate List: class, month, year, last, time, one, go, day, get, school, will, first, ...
Original Sentence: “Hey, they’re in first, by a game and a half over the Yankees.”
Target Stem: game
Input Stems: yanke, hey, first, half
N1 Candidate List: game, stadium, like, hour, time, year, day, guy, hey, fan, say, one, two, ...
S1 Candidate List: game, got, like, red, time, play, team, sox, hour, go, fan, one, get, day, ...
Note: Uncommon spelling (e.g. semest) is due to stemming.

2002). Any stemmed words not found in the dictio-
nary were removed to further constrain the vocabu-
lary and account for spelling errors and nonsensical
text.

The corpus was then randomly split into a train-
ing and testing set based on authorship, with 80%
of the authors (15,451) being placed in the training
set and 20% of the authors (3,871) being placed in
the testing set. The training set comprised over 7
million sentences written by 7,682 males and 7,768
females with a combined average age of 22 years.
All n-gram and sem-gram statistics, with plus-one
smoothing, were gathered using only sentences in
the training set and both n-grams and sem-grams
were limited to a word length of 2 (bigrams).

2.2 Evaluation
Testing was conducted on 2,000 sentences that were
randomly selected from the test corpus. The same
processing steps used during training were per-
formed on the test sentences: stop words were re-
moved, the remaining words were stemmed, and all
stems not in the dictionary were filtered out. To
avoid run-on sentences and sentence boundary de-

tection errors, all test sentences were also truncated
to a maximum of 20 words. The words in each test
sentence were then shuffled and one word was re-
moved at random and designated as the target word.
Each of the four algorithms were provided the shuf-
fled words as input; as output, each algorithm at-
tempted to identify the target word by generating a
ranked list of candidates (Table 2).

In addition to the shuffled multiset of input words,
each algorithm required a seed list of candidate
words. Ideally, all known words in the corpus would
be used as candidate words. To constrain the com-
putational requirements, the two algorithms based
on n-grams (N1 and N2) were provided with the list
of most frequently co-occurring words that appeared
as n-grams with any of the multiset of input words,
limited to the top 10 n-grams for a given input word.
Similarly, each sem-gram algorithm (S1 and S2) re-
ceived a list of most frequently co-occurring words
that appeared as sem-grams with any of the multiset
of input words, limited to the top 10 sem-grams for
a given input word. With a limit of 19 input words
(20 minus the target word), each algorithm received
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at most 190 unique candidate words to rank.
Two evaluation metrics were used to quantify the

performance of each algorithm: (1) a boolean value
that was true if the output list contained the target
word in any position, indicating that the target word
had been successfully predicted; (2) if the algorithm
successfully predicted the target word, the algorithm
received a positive integer score corresponding to
the position of the target word in the output list,
with lower scores indicating more accurate predic-
tion. For example, if an algorithm suggested the tar-
get word as the first item in its ranked list, it received
a score of 1; if it suggested the target word as the
second item in its ranked list, it received a score of
2. For computational convenience, the output lists of
each algorithm were truncated to the first 100 items;
thus, if an algorithm’s output list contained the tar-
get word in a position after 100, it was marked as
failing to predict the target word.

3 Results

The n-gram algorithms successfully predicted 32%
of the 2,000 test sentences while the sem-gram al-
gorithms successfully predicted 22% (Table 3). Al-
though both n-gram algorithms performed similarly,
N1 consistently predicted the target word more ac-
curately than N2. On average, N1 suggested the tar-
get word as the 16th word in its ranked list, where
N2 suggested the target word as the 20th word in its
list. While the sem-gram algorithms predicted fewer
sentences than the n-gram algorithms, they were al-
most twice as accurate on sentences that they did
predict. On average, S1 suggested the target word
as the 9th word in its ranked list; for S2, the target
word was the 13th item.

To further compare the effectiveness of sem-
grams and n-grams, sentences were grouped accord-
ing to their input length, from 1 to 19 words, and
statistics were gathered for each algorithm on each
sentence length (Table 4). For test sentences in
which the algorithms were only given a single in-
put word, both n-gram algorithms ranked the tar-
get word at least one full ranking higher than ei-
ther sem-gram algorithm, thus giving more accu-
rate predictions. For all other sentence lengths, the
sem-gram algorithms were more accurate. Between
the n-gram algorithms, N1 consistently predicted the

Table 3: Summary of Results
N1 N2 S1 S2

Sentences 2000 2000 2000 2000
# Predicted 647 649 435 435

% Predicted 32% 32% 22% 22%
Avg Score 16.26 19.70 9.04 12.67

target word more accurately and more often than N2.
Similarly, S1 consistently predicted the target word
more accurately and more often than S2.

For every input sentence length greater than one,
S1 outperformed N1 in all gathered metrics. When
comparing the prediction accuracy of N1 and S1,
S1’s prediction accuracy was also more stable, with
N1’s prediction accuracy continuing to degrade as
the length of the input sentence increased (Figure 1).

4 Discussion

Message formulation using AAC devices has histor-
ically relied on serial selection of letters or words
(icons). To produce syntactically correct messages
for icon-based AAC, selection is often required to
proceed in syntactic order. The current work aimed
to facilitate unordered vocabulary selection through
the use of text prediction. Results indicate that word
prediction for unordered message formulation is vi-
able using statistical approaches. Although the n-
gram algorithms predicted a larger number of test
sentences than the sem-gram algorithms, evalua-
tion of the ranked output indicated that the sem-
gram approaches were more accurate. Because n-
grams assume that adjacent words are strongly re-
lated, it was expected that n-grams would provide
more accurate prediction for shorter sentences; how-
ever, this advantage was not maintained as sentence
length increased beyond two words. Prediction ac-
curacy is likely to be more important in AAC de-
vices because the cognitive demands of choosing
from prediction lists can sometimes outweigh rate
enhancements (Koester and Levine, 1996; Koester
and Levine, 1997).

The use of bigrams may have resulted in poor ac-
curacy of the n-gram algorithms because there were
many more sem-grams than n-grams of length 2. In-
creasing n-gram length, up to a cardinality equal to
the number of sem-grams of length 2, could allow n-
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Table 4: Prediction Coverage (%) and Average Scores by Sentence Length
# Words N1 % N1 Avg S1 % S1 Avg N2 % N2 Avg S2 % S2 Avg

1 20.88% 3.44 12.05% 4.47 20.88% 3.42 12.05% 4.47
2 26.55% 6.07 19.47% 5.89 26.55% 6.32 19.47% 6.23
3 22.22% 7.64 16.89% 6.87 22.22% 9.82 16.89% 9.84
4 32.11% 10.46 22.94% 7.62 32.11% 11.91 22.94% 9.94
5 31.25% 12.13 21.88% 6.14 31.25% 14.02 21.88% 9.14
6 38.18% 15.25 26.67% 8.75 38.18% 17.68 26.67% 12.11
7 42.86% 16.17 29.46% 9.52 42.86% 21.77 29.46% 12.73
8 39.60% 18.08 25.74% 11.15 39.60% 22.00 25.74% 15.73
9 29.11% 19.13 20.25% 11.31 29.11% 23.48 20.25% 17.88

10 44.74% 24.47 35.53% 10.52 44.74% 23.56 35.53% 16.22
11 38.46% 28.55 26.92% 15.21 38.46% 26.80 26.92% 17.93
12 46.00% 23.39 14.00% 13.71 46.00% 41.26 14.00% 9.14
13 38.46% 24.47 25.64% 14.30 38.46% 34.07 25.64% 15.90
14 29.41% 26.30 14.71% 10.80 29.41% 39.10 14.71% 26.20
15 46.67% 32.14 20.00% 16.17 46.67% 36.79 20.00% 15.17
16 47.62% 25.70 28.57% 12.83 47.62% 30.50 28.57% 12.67
17 53.85% 23.14 38.46% 12.20 53.85% 35.14 38.46% 21.40
18 40.95% 38.35 25.71% 13.56 42.86% 43.07 25.71% 25.11
19 38.46% 23.80 38.46% 11.00 38.46% 52.40 38.46% 32.00

gram algorithms to potentially match or surpass the
prediction accuracy of sem-grams. For unordered
word prediction, this larger set of n-grams would
need to be indexed in an order-independent man-
ner, which would further increase computational de-
mands. Such prediction lags, however, are unlikely
to be tolerated by users as they engage in interactive
tasks (Higginbotham et al., 2009).

Of the two n-gram algorithms, N1 outperformed
N2 on both prediction coverage and accuracy. It was
hypothesized, however, that N2 would yield more
accurate predictions because the target word was de-
fined to be adjacent to at least one of the input words.
It was expected that N1 would unfairly reward can-
didate words that had appeared adjacent to each in-
put word in the training set, while punishing more
desirable candidate words that had not appeared ad-
jacent to some of the input words. Perhaps this bias
was not evident in the current corpus because plus-
one smoothing removed all zero probabilities for
adjacency likelihoods. Additionally, N1 may have
been more successful because it favored candidates
that were related to all input words rather than can-
didates that were strongly related to just a subset of

the input words.

Despite the encouraging prediction coverage of
n-grams and the prediction accuracy of sem-grams,
approximately two-thirds of the test sentences were
not predicted by any of the algorithms. One possible
explanation may relate to the decision to seed each
algorithm with only the top 10 most frequent words
that co-occurred with each input word. Ideally,
each algorithm would have considered all words in
the vocabulary as candidate words; however, be-
cause there were almost 40,000 unique stems in the
processed corpus, the computational requirements
were prohibitive for this initial implementation. An
open empirical question is whether increasing the
seed values to include a larger set of co-occurring
words would result in greater prediction coverage.
It should be noted, however, that while seeding sem-
grams with more candidate words may improve pre-
diction coverage, it is unlikely to increase prediction
accuracy for the n-gram approaches.

Icon-based AAC devices typically have active
vocabularies with much fewer than 40,000 words,
which may negate the need for seeding candidate
words. For example, two commonly used icon
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Figure 1: Average score per sentence length for both N1
and S1 (lower scores indicate more accurate prediction).

sets, the Widgit Symbol Set and the Mayer-Johnson
Picture Communication Symbol collection, each
contain approximately 11,000 icons (Widgit, 2012;
Mayer-Johnson, 2012). While a large dictionary was
used in this work to provide a conservative estimate
of prediction performance, it is possible that using
a smaller and more representative AAC vocabulary
would improve prediction coverage and accuracy.
Additionally, restricting vocabulary size would also
reduce computational demands, making it more fea-
sible to use all vocabulary words as candidates.

5 Conclusion and Future Directions

The current work provides a promising approach to
word prediction for AAC users who may benefit
from unordered message formulation. Sem-grams
make use of co-occurrence between words within a
sentence to improve prediction accuracy. While n-
grams have historically provided a strong founda-
tion for word prediction in letter-by-letter systems,
results indicate that they can also be used for un-
ordered word prediction, although they are not as ac-
curate as sem-grams. A hybrid approach that seeds
both types of algorithms with a superset of can-
didate words and merges the prediction lists may
simultaneously exhibit the wide prediction cover-
age of n-grams and the high prediction accuracy of
sem-grams. Such a hybrid approach could enhance
the speed of unordered message formulation and in-
crease social engagement.

Additional improvements to this work may be
possible using the breadth of information available
within well-documented and comprehensive cor-

pora. For example, while the Blog Authorship Cor-
pus included age and gender information about each
blogger, this information was not used in the present
study. To tailor prediction to individual users, it
may be possible to limit the available vocabulary and
gram-based statistics to information gathered from
users of similar age and gender. This may improve
prediction accuracy for both n-gram and sem-gram
algorithms, as well as provide an approach to de-
signing icon-based AAC devices that can evolve and
adapt to users as their needs and abilities mature, po-
tentially even suggesting new vocabulary words as
the users age.
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