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Abstract

This paper presents a method for an AAC sys-
tem to predict a whole response given features
of the previous utterance from the interlocu-
tor. It uses a large corpus of scripted dialogs,
computes a variety of lexical, syntactic and
whole phrase features for the previous utter-
ance, and predicts features that the response
should have, using an entropy-based measure.
We evaluate the system on a held-out portion
of the corpus. We find that for about 3.5% of
cases in the held-out corpus, we are able to
predict a response, and among those, over half
are either exact or at least reasonable substi-
tutes for the actual response. We also present
some results on keystroke savings. Finally
we compare our approach to a state-of-the-art
chatbot, and show (not surprisingly) that a sys-
tem like ours, tuned for a particular style of
conversation, outperforms one that is not.

Predicting possible responses automatically
by mining a corpus of dialogues is a
novel contribution to the literature on whole
utterance-based methods in AAC. Also useful,
we believe, is our estimate that about 3.5-4.0%
of utterances in dialogs are in principle pre-
dictable given previous context.

1 Introduction

One of the overarching goals of Augmentative and
Alternative Communication technology is to help
impaired users communicate more quickly and more
naturally. Over the past thirty years, solutions
that attempt to reduce the amount of effort needed
to input a sentence have include semantic com-

paction (Baker, 1990), and lexicon- or language-
model-based word prediction (Darragh et al., 1990;
Higginbotham, 1992; Li and Hirst, 2005; Trost et
al., 2005; Trnka et al., 2006; Trnka et al., 2007;
Wandmacher and Antoine, 2007), among others. In
recent years, there has been an increased interest
in whole utterance-based and discourse-based ap-
proaches (see Section 2). Such approaches have
been argued to be beneficial in that they can speed up
the conversation, thus making it appear more felici-
tous (McCoy et al., 2007). Most commercial tablets
sold as AAC devices contain an inventory of canned
phrases, comprising such items as common greet-
ings, polite phrases, salutations and so forth. Users
can also enter their own phrases, or indeed entire se-
quences of phrases (e.g., for a prepared talk).

The work presented here attempts to take whole
phrase prediction one step further by automatically
predicting appropriate responses to utterances by
mining conversational text. In an actual deploy-
ment, one would present a limited number of pre-
dicted phrases in a prominent location on the user’s
device, along with additional input options. The user
could then select from these phrases, or revert to
other input methods. In actual use, one would also
want such a system to incorporate speech recogni-
tion (ASR), but for the present we restrict ourselves
to typed text — which is perfectly appropriate for
some modes of interaction such as on-line social me-
dia domains. Using a corpus of 72 million words
from American soap operas, we isolate features use-
ful in predicting an appropriate set of responses for
the previous utterance of an interlocutor. The main
results of this work are a method that can automati-
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cally produce appropriate responses to utterances in
some cases, and an estimate of what percentage of
dialog may be amenable to such techniques.

2 Previous Work

Alm et al. (1992) discuss how AAC technology can
increase social interaction by having the utterance,
rather than the letter or word, be the basic unit
of communication. Findings from conversational
analysis suggest a number of utterances common to
conversation, including short conversational openers
and closers (hello, goodbye), backchannel responses
(yeah?), and quickfire phrases (That’s too bad.). In-
deed “small talk” is central to smooth-flowing con-
versation (King et al., 1995). Many modern AAC
systems therefore provide canned small-talk phrases
(Alm et al., 1993; Todman et al., 2008).

More complex conversational utterances are chal-
lenging to predict, and recent systems have used
a variety of approaches to generate longer phrases
from minimal user input. One approach relies on
telegraphic input, where full sentences are con-
structed from a set of uninflected words, as in the
Compansion system (McCoy et al., 1998). This
system employs a semantic parser to capture the
meaning of the input words and generates using
the Functional Unification Formalism (FUF) system
(Elhadad, 1991). One of the limitations of this ap-
proach is that information associated with each word
is primarily hand-coded on the basis of intuition; as
a result, the system cannot handle the problem of un-
restricted vocabulary. Similar issues arise in seman-
tic authoring systems (Netzer and Elhadad, 2006),
where at each step of the sentence creation process,
the system offers possible symbols for a small set of
concepts, and the user can select which is intended.

Recent work has also tried to handle the complex-
ity of conversation by providing full sentences with
slots that can be filled in by the user. Dempster et
al. (2010) define an ontology where pieces of hand-
coded knowledge are stored and realized within sev-
eral syntactic templates. Users can generate utter-
ances by entering utterance types and topics, and
these are filled into the templates. The Frametalker
system (Higginbotham et al., 1999) uses contextual
frames — basic sentences for different contexts —
with a set vocabulary for each. The intuition be-

hind this system is that there are typical linguistic
structures for different situations and the kinds of
words that the user will need to fill in will be se-
mantically related to the context. Wisenburn and
Higginbotham (2008) extend this technology using
ASR on the speech of the interlocutor. The system
extracts noun phrases from the speech and presents
those noun phrases on the AAC device, with frame
sentences that the user can then select. Thus, if the
interlocutor says Paris, the AAC user will be able to
select from phrases like Tell me more about Paris or
I want to talk about Paris.

Other approaches provide a way for users to
quickly find canned utterances. WordKeys (Langer
and Hickey, 1998) allows users to access stored
phrases by entering key words. This system ap-
proaches generation as a text retrieval task, using a
lexicon derived from WordNet to expand user input
to find possible utterances. Dye et al. (1998) intro-
duce a system that utilizes scripts for specific situa-
tions. Although pre-stored scripts work reasonably
well for specific contexts, the authors find (not unex-
pectedly) that a larger number of scripts are needed
for the system to be generally effective.

3 The Soap Opera Corpus

In this work we attempt a different approach, devel-
oping a system that can learn appropriate responses
to utterances given a corpus of conversations.

Part of the difficulty in automatically generating
conversational utterances is that very large corpora
of naturally occurring dialogs are non-existent. The
closest such corpus is Switchboard (Godfrey and
Holliman, 1997), which contains 2,400 two-sided
conversations with about 1.4 million words. The in-
terlocutors in Switchboard are not acquainted with
each other and they are instructed to discuss a par-
ticular topic. While the dialogs are “natural” to a
point, because they involve people who have never
previously met, they are not particularly reflective of
the kinds of conversations between intimates that we
are interested in helping impaired users with.

We thus look instead to a corpus of scripted di-
alogs taken from American soap operas. The web-
site tvmegasite.net contains soap opera scripts
that have been transcribed by aficionados of the var-
ious series. The scripts include utterances marked
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with information on which character is speaking,
and a few dramatic cues. We downloaded 72 mil-
lion words of text, with 5.5 million utterances. Soap
opera series downloaded were: All my Children, As
the World Turns, The Bold and the Beautiful, Days
of our Lives, General Hospital, Guiding Light, One
Life to Live and The Young and the Restless. The text
was cleaned to remove HTML markup and other ex-
traneous material, and the result was a set of 550,000
dialogs, with alternating utterances by (usually) two
speakers. These dialogs were split 0.8/0.1/0.1 into
training, development testing and testing portions,
respectively. All results reported in this paper are on
the development test set.

While soap operas may not be very representative
of most people’s lives, the corpus nonetheless has
three advantages. First of all, the corpus is large.
Second, the language tends to be fairly colloquial.
Third, many of the dialogs take place between char-
acters who are supposed to know each other well,
often intimately; thus the topics might be more re-
flective of casual conversation between friends and
intimates than the dialogs one finds in Switchboard.

4 Data Analysis, Feature Extraction and
Utterance Prediction

Each dialog was processed using the Stanford Core
NLP tools. The Stanford tools perform part of
speech tagging (Toutanova et al., 2003), constituent
and dependency parsing (Klein and Manning, 2003),
named entity recognition (Finkel et al., 2005), and
coreference resolution (Lee et al., 2011). From
the output of the Stanford tools, the following fea-
tures were extracted for each utterance: word bi-
grams (pairs of adjacent words); dependency-head
relations, along with the type of dependency rela-
tion (basically, governors — e.g., verbs — and their
dependents — e.g., nouns); named entities (per-
sons, organizations, etc.); and the whole utterance.
Extracted named entities include noun phrases that
were explicitly tagged as named entities, as well as
any phrases that were marked as coreferential with
named entities. Thus if the pronoun she occurred in
an utterance, and was marked as coreferential with a
previous or following named entity Amelia, then the
feature Amelia as a named entity was added for this
utterance. We also include the whole utterance as a

feature, which turns out to be the most useful predic-
tor for an appropriate response to an input utterance.

The dialogs were divided into turns, with each
turn consisting of one or more utterances. For our
experiments, we are interested in predicting the first
utterance of a turn (which in many cases may be the
whole turn) given features of all the utterances of
the previous turns — the exception being that for
the whole sentence feature, only the last sentence of
the previous turn is used. The method of using fea-
tures of a turn to predict features of the next turn is
related to the work reported in Purandare and Lit-
man (2008), though their goal was to analyze dialog
coherence rather than to predict the next utterance.

We are particularly interested in feature values
that are highly skewed in their predictions, mean-
ing that if the turn has a given value, then the first
sentence of the next utterance is much more likely
to have some values than others. A useful measure
of this is the difference between the entropy of the
predicted feature values fi of a feature g:

H(g) = −
n∑

i=0

log(p(fi)) · p(fi) (1)

and the maximum possible entropy of g given n pre-
dicted features, namely:

Hmax(g) = −log(
1

n
) (2)

The larger the difference Hmax(g)−H(g), the more
skewed the distribution.

For the purposes of this experiment and to keep
the computation reasonably tractable, we computed
the entropic values described above for like features:
thus we used bigram features to predict bigram fea-
tures, dependency features to predict dependency
features, and so forth. We also filtered the output of
the process so that each feature of the prior context
had a minimum of 10 occurrences, and the entropy
of the feature was no greater than 0.9 of the max-
imum entropy as defined above. For each feature
value, the 2 most strongly associated values for the
predicted utterance were stored.

To take a simple example (Figure 1) the bigram ’m
fine has a strong association with the bigrams you ’re
and , I, these co-occurring 486 and 464 times in the
training corpus, respectively. For this feature, the

11



’m fine 8.196261 9.406976 you ’re 486
’m fine 8.196261 9.406976 , i 464

you’re kidding . __SENT 4.348040 4.852030
no. . __SENT 32
you’re kidding . __SENT 4.348040 4.852030
i wish . __SENT 7

Figure 1: Examples of bigram and full-sentence features.

entropy is 8.20 and the maximum entropy is 9.41.
Or consider a full-sentence feature You’re kidding.
This is strongly associated with the predicted sen-
tence features no.. and I wish..

Utterances in the training data were stored and as-
sociated with predicted features. In order to pro-
duce a rank-ordered list of possible responses to a
test utterance, the features of the test utterance are
extracted. For each of these features, the predicted
features and their entropies are retrieved. Those
training data utterances that match on one or more
of these predicted features are retrieved in this step,
and a score is assigned which is simply the sum of
the predicted feature entropies. However, since we
want to favor full-sentence matches, entropies for
full-sentence matches are multiplied by a positive
number (currently set to 100).

5 Experimental Results

5.1 Whole sentence prediction

The first question we were interested in is how of-
ten, based on the approach described here, one could
predict a sentence that is close to what the speaker
actually intended to say. For this purpose, we sim-
ply took as the gold standard the utterance that was
written in the script for the speaker, and considered
the prediction of the system described above, when
it was able to make one. The prediction could be
an exact match to what was actually said, something
close enough to be a reasonable substitute, some-
thing appropriate given the context but not the one
intended, or something that is wholly inappropriate.

In the ensuing discussion we will focus on whole
sentence features, since these were the most useful
for predicting reasonable whole sentences. We re-
turn to the use of other features in Section 5.2.

Some examples can be found in Figure 2. In
each case, we give the final sentence of the previous
turn, the actual utterance, and the two predicted ut-

PREV really ?
ACTUAL yeah .
PRED 232.3099 yeah . __SENT 4
PRED 230.9528 mm-hmm . __SENT 3

PREV love you .
ACTUAL i love you , too , baby doll .
PRED 83.4519 i love you , too . __SENT 3
PRED 74.1185 love you . __SENT 3

PREV ok ?
ACTUAL i’m sorry , laurie , about j.r. ,

about everything .
PRED 86.2623 yeah . __SENT 2
PRED 86.2623 ok . __SENT 2

Figure 2: Whole sentence prediction examples.

terances, along with the predicted utterances’ scores
and the counts with which they co-occurred in the
training data with the previous utterance in question.
For the first example Really?, the actual response
was Yeah, and this was also the highest ranked re-
sponse of the system. In the second example, the ac-
tual response was I love you, too, baby doll, whereas
a response of the system was I love you too. While
not exact, this is arguably close enough, and could
be selected by an impaired user who did not wish to
type the whole message. In the third example, the
predictions Yeah. and Ok. do not substitute at all for
the actual response.

Of the 276,802 utterance-response pairs in the de-
velopment test data, the system was able to make
predictions for 9,794 cases, or 3.5%. Evaluating
9,794 responses is labor intensive, so two evalua-
tions based on random samples were performed.

In the first, the authors evaluated a random sam-
ple of 455 utterance pairs, assigning the following
scores to each response: 4 exact match; 3 equiva-
lent meaning; 2 good answer but not the right one;
1 inappropriate. The results are given in Table 1, for
the best score of the pair of responses generated. In
other words, if the first response has a score of 2 and
the second a score of 3, then the pair of responses
will receive a score of 3: in that pair, there was one
generated response that was close enough to use.
From Table 1, we see that between 38% to 40.7%
of the response pairs contained a response that was
exact, or close enough to have the same meaning.
59.3% to 62% had at best a reasonable answer, but
not the one intended. Finally, none contained only
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Score Judge 1 Judge 2
Exact match 110 24.2% 109 24.0%
Equivalent meaning 63 13.8% 76 16.7%
Good answer (but wrong) 282 62.0% 270 59.3%
Inappropriate 0 0.0% 0 0.0%

Table 1: Judgments of a sample of 455 utterance pairs by
the authors.

inappropriate answers: this is not surprising, given
that all of the predicted responses were based on
what was found in the training data, which one may
assume involved largely felicitous interactions.

We also used Amazon’s Mechanical Turk (AMT)
to collect judgements from unbiased judges. Based
on our previous evaluation, we expanded the equiv-
alent meaning category into two more fine-grained
categories, essentially the same and similar mean-
ing, in order to capture phrases with slightly differ-
ent connotations. This results in the 4-point scale
in Table 2. Exact matches were found automatically
before giving response pairs to Turkers, and account
for a large portion of the data — 2,330 of the 9,794
response pairs, or 23.8%. For the remaining 76.2%,
138 participants were asked to judge how close the
predicted response was to the actual response.

Each AMT participant was presented with six
prompts (three entropy-based conversational turns
and three chatbot-based conversational turns, dis-
cussed below). Each prompt listed the utterance,
actual response, and predicted response. Two ad-
ditional prompts with known answers were included
to automatically flag participants who were not fo-
cusing on the task. Evaluation results are given in

4 Essentially
the same:

They’re pretty close, and mean
basically the same thing.

3 Similar
meaning:

They’re similar, but the pre-
dicted response has a slightly
different connotation from the
actual response.

2 Good answer,
but not the
right one:

They’re different, but the pre-
dicted response is still a reason-
able response to the comment.

1 Inappropriate: Different, and the predicted re-
sponse is a totally unreasonable
response to the comment.

Table 2: Four-point scale for AMT evaluation. Exact
matches were found automatically.

Essentially the same 89 16.4%
Similar meaning 81 14.9%
Good answer (but wrong) 165 30.4%
Inappropriate 79 14.5%

Table 3: Evaluation results from AMT on a random
sample of 414 predicted utterances (excluding exact
matches).

Table 3. Percentages are multiplied by the propor-
tion of results they represent (.762). Of the evalu-
ated cases, we find that 31.3% of the predicted re-
sponses were judged to be essentially the same or
similar to the actual response. 30.4% were judged
to be a reasonable answer, and the remaining 14.5%
were judged to be inappropriate.

Evaluation by AMT judges was thus much more
favorable towards the prediction-based system than
the authors’ evaluation. Where the authors found
13.8%-16.7% to be essentially the same or similar,
unbiased judges found just under a third of the data
to meet these criteria. Coupled with the automati-
cally detected exact matches, 55.1% of the predicted
responses were found to be a reasonable approxima-
tion of (or exactly) the intended response. A smaller
portion of the data was thought to be a good answer
(but wrong), or wholly inappropriate.

5.2 Prediction with features plus a prefix of the
intended utterance

It is of course not necessary for the system to predict
the whole response without any input from the user.
As with word prediction, the user might type a pre-
fix of the intended utterance, and the system could
then produce a small set of corresponding responses,
among which would often be the one desired.

In order to evaluate such a scenario, we consid-
ered the shortest prefix of the actual intended re-
sponse that would be consistent with a maximum
of five sentences predicted from the features of the
previous turn. Thus, we gathered the entire set of
sentences from the training data that matched one or
more of the predicted features, then began (virtually)
typing the actual response. There are two possible
outcomes. If the actual response is not in the set,
then at some point the typed prefix will be consistent
with none of the sentences in the set. In this worst
case, the user would simply have to type the whole
sentence (possibly using whatever word-completion
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technology is already available on the device). But
if the intended response is in the set, then at some
point the set consistent with the prefix will be win-
nowed down to at most five members. The length of
the prefix at that point, subtracted from the length of
the intended sentence, is the keystroke savings.

Of the 276,802 utterances in the development test
responses, 11,665 (4.2%) had a keystroke savings
of greater than zero: thus, in 4.2% of cases, the in-
tended utterance was to be found among the set of
sentences consistent with the predicted features. The
total keystroke savings was 102,323 characters out
of a total of 8,725,508, or about 1%. While this is
clearly small, note that it is over and above whatever
keystroke savings one would gain by other methods,
such as language modeling.

5.3 ALICE

A final experiment involved using a chatbot to gen-
erate responses. Previous approaches have used
stored sentence templates that are generated based
on keyword input from the user; a similar approach
is used in a chatbot, where the input utterances are
themselves triggers for the generated content. For
this experiment, we used the publicly available AL-
ICE (Wallace, 2012), which won the Loebner Prize
(a Turing test) in 2000, 2001, and 2004. ALICE
makes use of a large library of pattern-action pairs
written in AIML (Artificial Intelligence Markup
Language): if an input sentence matches a partic-
ular pattern, a response is generated by a rule that is
associated with that pattern. ALICE follows conver-
sational context by using a notion of TOPIC (what
the conversation is currently about, based on key-
words) and of THAT (the bot’s previous utterance).
Both are used along with the input utterance when
selecting what next to say. In essence, ALICE is a
much more sophisticated version of the 1960s Eliza
program (Weizenbaum, 1966).

In order to use the chatbot for this task, we use an
AIML interpreter (Stratton, 2010) on the most recent
set of ALICE knowledge.1 ALICE was given the
utterances for each conversation in our development
testing set, which allows the system to store some
of the dialogue context under its THAT and TOPIC

1http://code.google.com/p/aiml-en-us-foundation-alice/, re-
trieved February 2012.

Essentially the same 45 10.7%
Similar meaning 96 22.9%
Good answer (but wrong) 135 32.1%
Inappropriate 138 32.9%

Table 4: Evaluation results from AMT on a random sam-
ple of 414 chatbot utterances (excluding exact matches).

variables.
Example responses are given in Figure 3. As with

the previous experiments, some responses are close
to the actual intended message (first example in Fig-
ure 3). In some other cases (second example), the
response is reasonable, though not the one intended.
But in many cases, the response is too “cute”, as in
the examples on the righthand side.

Evaluation with AMT is given in Table 4, us-
ing the same scoring criteria as in Table 3. Exact
matches are again automatically removed, and ac-
count for 142 responses (1.5%). For the remaining
data, participants were asked to judge how close the
chatbot response was to the actual response. Per-
centages are multiplied by the proportion of results
they represent (.9855).

The chatbot is judged to produce less acceptable
utterances than the entropy-based approach, with
10.7% essentially the same as the actual response,
and 22.9% with similar meaning. Coupled with the
automatically detected exact matches, 35% of the
chatbot responses were found to be a reasonable ap-
proximation of (or exactly) the intended response.
Over half of the data (65%) was thought to be a good
answer (but wrong), or wholly inappropriate.

6 Discussion and Future Work

Of the two different methods for automatically gen-
erating responses, the entropy-based approach in
particular produces responses ranging from similar
to exact in a majority of the cases for which it can
make a prediction. These are promising findings
for expanding a system that populates possible re-
sponses from an input utterance.

An obvious limitation of the work presented here
is that it is based on scripted data. More to the point,
to build an effective dialog-based system for an im-
paired user, the best possible data to use would be
data involving the user him/herself along with his
or her interlocutors. Indeed, we are in the process
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PREV okay .
ACTUAL okay .
ALICE Great.

PREV please don’t leave .
ACTUAL i’m right here .
ALICE I’m not going anywhere.

PREV you need to drink water .
ACTUAL no , stay .
ALICE I need to wait and see if the

opportunity presents itself.

PREV okay ?
ACTUAL you were so mad at me

lately , dixie .
ALICE Dude!

Figure 3: Some responses generated by ALICE.

of collecting a corpus of such interactions from a
small number of AAC users in the Portland, Ore-
gon area. But the resulting corpora will obviously
be tiny in comparison with the data used in the ex-
periments here, in no small measure because of the
extreme slowness with which most AAC users are
able to communicate. What can be done about this?
One thing would be to use the results of this work
directly even if it does not model the particular user:
even if it comes from soap opera dialogs, Are you
mad at me? No, I’m not mad at you, still makes
for a perfectly reasonable utterance/response pair.
This, to some extent, counters potential objections
that soap opera dialogs are not reflective of natural
interactions. These kinds of pairs could be supple-
mented by whatever data we are able to learn from a
particular user.

Even better, though, would be to collect large
amounts of data from users before they become im-
paired. Many disorders, such as ALS, are often de-
tected early, before they start to impair communi-
cation. In such cases, one could consider language-
banking the user’s interactions, and building a model
of the ways in which the user interacts with other
speakers, in order to get a good model of that par-
ticular user. While there are obviously privacy con-
cerns, a person who knows that they will lose the
ability to speak over time will likely be very moti-
vated to try to preserve samples of their speech and
language, assuming there exists technology that can
use those samples to provide more sophisticated as-
sistance when it becomes needed.

It may also be possible to use features from the
text to generate utterances, similar to the telegraphic
approaches to generation discussed in Section 2, but
automatically learning words that can be used to
generate appropriate responses to an utterance. As
a first look at the feasibility of this approach, we use

the Midge generator (Mitchell et al., 2012), rebuild-
ing its models from the soap dialogues. Midge re-
quires as input a set of nouns and then builds likely
syntactic structure around them, and so we use the
dialogues to predict possible nouns in response to
an input utterance. For each <utterance, response>
pair in the dialogues, we gather all utterance nouns
nu and all response nouns nr. We then compute nor-
malized pointwise mutual information (nPMI) for
each nu, nr pair type in the corpus. Given a novel in-
put utterance, we tag it to extract the nouns and cre-
ate the set of highest nPMI nouns from the model.
This is then input to Midge, which uses the set to
generate present-tense declarative sentences. Some
examples are given in Figure 4. We hope to expand
on this approach in future work.

A further improvement is to take advantage of
synonymy. There are many ways to convey the same
basic message: i am sick, i am not feeling well, i’m
under the weather, are all ways for a speaker to con-
vey that he or she is not in the best of health. In
the current system, these are all treated separately.
Clearly what is needed is a way of recognizing that
these are all paraphrases of each other. Fortunately,
there has been a lot of progress in recent years on
paraphrasing — see Ganitkevitch et al. (2011) for a
recent example — and such work could in princi-
ple be adapted to the problem here. Indeed it seems
likely that incorporating paraphrasing into the sys-
tem will be a major source of improved coverage.

A limitation of the work described here is that
it only models turn-to-turn interactions. Clearly
discourse models need to have more memory than
this, so features that relate to earlier turns would be
needed. The downside is that this would quickly
lead to data sparsity.

There are a variety of machine learning tech-
niques that could also be tried, beyond the rather
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Input: this is n’t the same . this is not like anything i have been
through before . i mean , how am i supposed to make it work with
somebody who ...
Pred. nouns: strength, somebody

Output: strength comes with somebody

Input: i ’ve been a little bit too busy to socialize . i did have an
interesting conversation with your sister , however .
Pred. nouns: bit, conversation, sister

Output: a bit about this conversation with sister

Figure 4: Generating with nPMI: Creating syntactic structure around likely nouns.

simple methods employed in this work. For exam-
ple, particular classes of response types, comprising
a variety of related utterances, may be predictable
using the extracted features.

Finally, we have assumed for this discussion that
the AAC system is only within the control of the im-
paired user. There is no reason to make that assump-
tion in general: many AAC situations in real life in-
volve a helper who will often co-construct with the
impaired user. Such helpers usually know the im-
paired user very well and can often make reasonable
guesses as to the whole utterance intended by the
impaired user. Recent work reported in Roark et al.
(2011) suggests one way in which the results of a
language modeling system and those of a human co-
constructor may be integrated into a single system,
and such an approach could easily be applied here.

7 Conclusions

We have proposed and evaluated an approach to
whole utterance prediction for AAC. While the ap-
proach is fairly simple, it is able to generate correct
or at least reasonable responses in some cases. Such
a system could be used in conjunction with other
techniques, such as language-model-based predic-
tion, or co-construction. One of the potentially use-
ful side-effects of this work is an estimate of what
percentage of interactions in a dialog are likely to be
easily handled by such techniques. In other words,
how many interactions in dialog are sufficiently pre-
dictable that a system could have a reasonable guess
as to what a speaker is going to say given the pre-
vious context? A rough estimate based on what we
have found here is something on the order of 3.5%-
4.0%. Obviously this does not mean that the sys-
tem will always make the right prediction: a reason-

able response to congratulations on your promotion
would often be thank you, but a speaker may wish
to say something else. But what it does mean is that
in about 3.5%-4.0% of cases, one has a reasonable
chance of being able to guess. This percentage is
certainly small, and one might be inclined to con-
clude that the approach does not work. On the other
hand, it is important to bear in mind that not all per-
centages are created equal. Rapid responses to ba-
sic phrases (e.g. Are you mad at me? → No, I’m
not mad at you), could help with the perceived flow
of conversation, even if they do not occur that fre-
quently.

As we noted at the outset, whole utterance pre-
diction is an area that has received increased inter-
est in recent years, because of its potential to speed
communication, and its contribution to increasing
the naturalness of conversational interactions. When
coupled with gains in utterance generation achieved
by other methods, automatically generating utter-
ances can further the range of comments and re-
sponses available to AAC users. The work reported
here is a small contribution towards this goal.
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