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Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Learning to Interpret Natural Language Instructions
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Abstract

This paper addresses the problem of training
an artificial agent to follow verbal instructions
representing high-level tasks using a set of in-
structions paired with demonstration traces of
appropriate behavior. From this data, a map-
ping from instructions to tasks is learned, en-
abling the agent to carry out new instructions
in novel environments.

1 Introduction

Learning to interpret language from a situated con-
text has become a topic of much interest in recent
years (Branavan et al., 2009; Branavan et al., 2010;
Branavan et al., 2011; Clarke et al., 2010; Chen
and Mooney, 2011; Vogel and Jurafsky, 2010; Gold-
wasser and Roth, 2011; Liang et al., 2011; Atrzi and
Zettlemoyer, 2011; Tellex et al., 2011). Instead of
using annotated training data consisting of sentences
and their corresponding logical forms (Zettlemoyer
and Collins, 2005; Kate and Mooney, 2006; Wong
and Mooney, 2007; Zettlemoyer and Collins, 2009;
Lu et al., 2008), most of these approaches leverage
non-linguistic information from a situated context
as their primary source of supervision. These ap-
proaches have been applied to various tasks such as
following navigational instructions (Vogel and Ju-
rafsky, 2010; Chen and Mooney, 2011; Tellex et
al., 2011), software control (Branavan et al., 2009;
Branavan et al., 2010), semantic parsing (Clarke et
al., 2010; Liang et al., 2011) and learning to play
games based on text (Branavan et al., 2011; Gold-
wasser and Roth, 2011).

In this paper, we present an approach to inter-
preting language instructions that describe complex
multipart tasks by learning from pairs of instruc-
tions and behavioral traces containing a sequence
of primitive actions that result in these instructions
being properly followed. We do not assume a one-
to-one mapping between instructions and primitive
actions. Our approach uses three main subcom-
ponents: (1) recognizing intentions from observed
behavior using variations of Inverse Reinforcement
Learning (IRL) methods; (2) translating instructions
to task specifications using Semantic Parsing (SP)
techniques; and (3) creating generalized task speci-
fications to match user intentions using probabilis-
tic Task Abstraction (TA) methods. We describe
our system architecture and a learning scenario. We
present preliminary results for a simplified version
of our system that uses a unigram language model,
minimal abstraction, and simple inverse reinforce-
ment learning.

Early work on grounded language learning used
features based on n-grams to represent the natural
language input (Branavan et al., 2009; Vogel and
Jurafsky, 2010). More recent methods have relied
on a richer representation of linguistic data, such as
syntactic dependency trees (Branavan et al., 2011;
Goldwasser and Roth, 2011) and semantic templates
(Tellex et al., 2011) to address the complexity of the
natural language input. Our approach uses a flexi-
ble framework that allows us to incorporate various
degrees of linguistic knowledge available at differ-
ent stages in the learning process (e.g., from depen-
dency relations to a full-fledged semantic model of
the domain learned during training).
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2 System Architecture

We represent tasks using the Object-oriented
Markov Decision Process (OO-MDP) formal-
ism (Diuk et al., 2008), an extension of Markov De-
cision Processes (MDPs) to explicitly capture rela-
tionships between objects. Specifically, OO-MDPs
add a set of classes C, each with a set of attributes
TC . Each OO-MDP state is defined by an unordered
set of instantiated objects. In addition to these ob-
ject definitions, an OO-MDP also defines a set of
propositional functions that operate on objects. For
instance, we might have a propositional function
toyIn(toy, room) that operates on an object
belonging to class “toy” and an object belonging to
class “room,” returning true if the specified “toy”
object is in the specific “room” object. We extend
OO-MDPs to include a set of propositional function
classes (F) associating propositional functions that
describe similar properties. In the context of defin-
ing a task corresponding to a particular goal, an OO-
MDP defines a subset of states β ⊂ S called ter-
mination states that end an action sequence and that
need to be favored by the task’s reward function.

Example Domain. To illustrate our approach, we
present a simple domain called Cleanup World, a 2D
grid world defined by various rooms that are con-
nected by open doorways and can contain various
objects (toys) that the agent can push around to dif-
ferent positions in the world. The Cleanup World
domain can be represented as an OO-MDP with four
object classes: agent, room, doorway, and toy, and a
set of propositional functions that specify whether
a toy is a specific shape (such as isStar(toy)),
the color of a room (such as isGreen(room)),
whether a toy is in a specific room (toyIn(toy,
room)), and whether an agent is in a specific room
(agentIn(room)). These functions belong to
shape, color, toy position or agent position classes.

2.1 Interaction among IRL, SP and TA

The training data for the overall system is a set of
pairs of verbal instructions and behavior. For exam-
ple, one of these pairs could be the instruction Push
the star to the green room with a demonstration of
the task being accomplished in a specific environ-
ment containing various toys and rooms of different
colors. We assume the availability of a set of fea-

tures for each state represented using the OO-MDP
propositional functions descibed previously. These
features play an important role in defining the tasks
to be learned. For example, a robot being taught
to move furniture around would have information
about whether or not it is currently carrying a piece
of furniture, what piece of furniture it needs to be
moving, which room it is currently in, which room
contains each piece of furniture, etc. We present
briefly the three components of our system (IRL, SP
and TA) and how they interact with each other dur-
ing learning.

Inverse Reinforcement Learning. Inverse Re-
inforcement Learning (Abbeel and Ng, 2004) ad-
dresses the task of learning a reward function from
demonstrations of expert behavior and information
about the state-transition function. Recently, more
data-efficient IRL methods have been proposed,
including the Maximum Likelihood Inverse Rein-
forcement Learning (Babeş-Vroman et al., 2011)
or MLIRL approach, which our system builds on.
Given even a small number of trajectories, MLIRL
finds a weighting of the state features that (locally)
maximizes the probability of these trajectories. In
our system, these state features consist of one of the
sets of propositional functions provided by the TA
component. For a given task and a set of sets of
state features, MLIRL evaluates the feature sets and
returns to the TA component its assessment of the
probabilities of the various sets.

Semantic Parsing. To address the problem of
mapping instructions to semantic parses, we use
a constraint-based grammar formalism, Lexical-
ized Well-Founded Grammar (LWFG), which has
been shown to balance expressiveness with practical
learnability results (Muresan and Rambow, 2007;
Muresan, 2011). In LWFG, each string is associ-
ated with a syntactic-semantic representation, and
the grammar rules have two types of constraints: one
for semantic composition (Φc) and one for seman-
tic interpretation (Φi). The semantic interpretation
constraints, Φi, provide access to a semantic model
(domain knowledge) during parsing. In the absence
of a semantic model, however, the LWFG learnabil-
ity result still holds. This fact is important if our
agent is assumed to start with no knowledge of the
task and domain. LWFG uses an ontology-based se-
mantic representation, which is a logical form repre-
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sented as a conjunction of atomic predicates. For ex-
ample, the representation of the phrase green room
is 〈X1.is=green, X.P1 = X1, X.isa=room〉. The
semantic representation specifies two concepts—
green and room—connected through a property
that can be uninstantiated in the absence of a seman-
tic model, or instantiated via the Φi constraints to
the property name (e.g, color) if such a model is
present.

During the learning phase, the SP component, us-
ing an LWFG grammar that is learned offline, pro-
vides to TA the logical forms (i.e., the semantic
parses, or the unlabeled dependency parses if no se-
mantic model is given) for each verbal instruction.
For example, for the instruction Move the chair into
the green room, the semantic parser knows initially
that move is a verb, chair and room are nouns, and
green is an adjective. It also has grammar rules of
the form S → Verb NP PP: Φc1,Φi1,

1 but it has
no knowledge of what these words mean (that is, to
which concepts they map in the domain model). For
this instruction, the LWFG parser returns the logical
form:

〈(X1.isa=move, X1.Arg1= X2)move,
(X2.det=the)the, (X2.isa=chair)chair,
(X1.P1 = X3, P2.isa=into)into, (X3.det=the)the,
(X4.isa=green, X3.P2 = X2)green,
(X3.isa=room)room〉.

The subscripts for each atomic predicate in-
dicate the word to which that predicate corre-
sponds. This logical form corresponds to the
simplified logical form move(chair1,room1),
P1(room1,green), where predicate P1 is unin-
stantiated. A key advantage of this framework is that
the LWFG parser has access to the domain (seman-
tic) model via Φi constraints. As a result, when TA
provides feedback about domain-specific meanings
(i.e., groundings), the parser can incorporate those
mappings via the Φi constraints (e.g., move might
map to the predicate blockToRoom with a certain
probability).

Task Abstraction. The termination conditions
for an OO-MDP task can be defined in terms of the
propositional functions. For example, the Cleanup

1For readability, we show here just the context-free back-
bone, without the augmented nonterminals or constraints.

World domain might include a task that requires the
agent to put a specific toy (t1) in a specific room
(r1). In this case, the termination states would be
defined by states that satisfy toyIn(t1, r1) and the
reward function would be defined as Ra(s, s′) =
{1 : toyIn(ts

′
1 , r

s′
1 );−1 : otherwise}. However,

such a task definition is overly specific and cannot
be evaluated in a new environment that contains dif-
ferent objects. To remove this limitation, we define
abstract task descriptions using parametric lifted re-
ward and termination functions. A parametric lifted
reward function is a first-order logic expression in
which the propositional functions defining the re-
ward can be selected as parameters. This repre-
sentation allows much more general tasks to be de-
fined; these tasks can be evaluated in any environ-
ment that contains the necessary object classes. For
instance, the reward function for an abstract task
that encourages an agent to take a toy of a certain
shape to a room of a certain color (resulting in a re-
ward of 1) would be represented as Ra(s, s′) = {1 :
∃ts′∈toy∃rs′∈roomP1(t) ∧ P2(r) ∧ toyIn(t, r);−1 :
otherwise}, where P1 is a propositional function
that operates on toy objects and P2 is a propositional
function that operates on room objects. An analo-
gous definition can be made for termination condi-
tions. Given the logical forms provided by SP, TA
finds candidate tasks that might match each logi-
cal form, along with a set of possible groundings
of those tasks. A grounding of an abstract task is
the set of propositional functions to be applied to
the specific objects in a given training instance. TA
then passes these grounded propositional functions
as the features to use in IRL. (If there are no can-
didate tasks, then it will pass all grounded proposi-
tional functions of the OO-MDP to IRL.) When IRL
returns a reward function for these possible ground-
ings and their likelihoods of representing the true re-
ward function, TA determines whether any abstract
tasks it has defined might match. If not, TA will
either create a new abstract task that is consistent
with the received reward functions or it will modify
one of its existing definitions if doing so does not
require significant changes. With IRL indicating the
intended goal of a trace and with the abstract task in-
dicating relevant parameters, TA can then inform SP
of the task/domain specific meanings for the logical
forms.
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A Learning from Scratch Scenario. Our sys-
tem is trained using a set of sentence–trajectory
pairs ((S1, T1), ..., (SN , TN )). Initially, the sys-
tem does not know what any of the words mean
and there are no pre-existing abstract tasks. Let’s
assume that S1 is Push the star into the green
room.This sentence is first processed by the SP com-
ponent, yielding the following logical forms: L1

is push(star1, room1), amod(room1, green) and
L2 is push(star1), amod(room1, green),
into(star1, room1). These logical forms and
their likelihoods are passed to the TA compo-
nent, and TA induces incomplete abstract tasks,
which define only the number and kinds of ob-
jects that are relevant to the corresponding re-
ward function. TA can send to IRL a set of
features involving these objects, together with T1,
the demonstration attached to S1. This set of
features might include: agentTouchToy(t1),
toyIn(t1, r1), toyIn(t1, r2), agentIn(r1). IRL
sends back a weighting of the features, and TA
can select the subset of features that have the
highest weights (e.g, (1.91, toyIn(t1, r1)), (1.12,
agentTouchToy(t1)), (0.80, agentIn(r1)). Us-
ing information from SP and IRL, TA can now create
a new abstract task, perhaps called blockToRoom,
adjust the probabilities of the logical forms based on
the relevant features obtained from IRL, and send
these probabilities back to SP, enabling it to adjust
its semantic model.

The entire system proceeds iteratively. While it is
designed, not all features are fully implemented to
be able to report experimental results. In the next
section, we present a simplified version of our sys-
tem and show preliminary results.

3 A Simplified Model and Experiments

In this section, we present a simplified version of our
system with a unigram language model, inverse rein-
forcement learning and minimal abstraction. We call
this version Model 0. The input to Model 0 is a set
of verbal instructions paired with demonstrations of
appropriate behavior. It uses an EM-style algorithm
(Dempster et al., 1977) to estimate the probability
distribution of words conditioned on reward func-
tions (the parameters). With this information, when
the system receives a new command, it can behave

in a way that maximizes its reward given the pos-
terior probabilities of the possible reward functions
given the words.

Algorithm 1 shows our EM-style Model 0. For
all possible reward–demonstration pairs, the E-step
of EM estimates zji = Pr(Rj |(Si, Ti)), the prob-
ability that reward function Rj produced sentence-
trajectory pair (Si, Ti), This estimate is given by the
equation below:

zji = Pr(Rj |(Si, Ti)) =
Pr(Rj)

Pr(Si, Ti)
Pr((Si, Ti)|Rj)

=
Pr(Rj)

Pr(Si, Ti)
Pr(Ti|Rj)

∏
wk∈Si

Pr(wk|Rj)

where Si is the ith sentence, Ti is the trajectory
demonstrated for verbal command Si, and wk is an
element in the set of all possible words (vocabulary).
If the reward functions Rj are known ahead of time,
Pr(Ti|Rj) can be obtained directly by solving the
MDP and estimating the probability of trajectory Ti
under a Boltzmann policy with respect to Rj . If the
Rjs are not known, EM can estimate them by run-
ning IRL during the M-step (Babeş-Vroman et al.,
2011).

The M-step in Algorithm 1 uses the current esti-
mates of zji to further refine the probabilities xkj =
Pr(wk|Rj):

xkj = Pr(wk|Rj) =
1
X

Σwk∈Si Pr(Rj |Si) + ε

ΣiN(Si)zji + ε

where ε is a smoothing parameter, X is a normalizing
factor andN(Si) is the number of words in sentence
Si.

To illustrate our Model 0 performance, we se-
lected as training data six sentences for two tasks
(three sentences for each task) from a dataset we
have collected using Amazon Mechanical Turk for
the Cleanup Domain. We show the training data
in Figure 1. We obtained the reward function for
each task using MLIRL, computed the Pr(Ti|Rj),
then ran Algorithm 1 and obtained the parameters
Pr(wk|Rj). After this training process, we pre-
sented the agent with a new task. She is given the
instruction SN : Go to green room. and a starting
state, somewhere in the same grid. Using parame-
ters Pr(wk|Rj), the agent can estimate:
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Algorithm 1 EM-style Model 0
Input: Demonstrations {(S1, T1), ..., (SN , TN )},
number of reward functions J , size of vocabulary
K.
Initialize: x11, . . . , xJK , randomly.
repeat

E Step: Compute
zji = Pr(Rj)

Pr(Si,Ti)
Pr(Ti|Rj)

∏
wk∈Si

xkj .

M step: Compute
xkj = 1

X

Σwk∈Si
Pr(Rj |Si)+ε

ΣiN(Si)zji+ε
.

until target number of iterations completed.

Pr(SN |R1) =
∏
wk∈SN

Pr(wk|R1) = 8.6 × 10−7,
Pr(SN |R2) =

∏
wk∈SN

Pr(wk|R2) = 4.1 × 10−4,
and choose the optimal policy corresponding to re-
ward R2, thus successfully carrying out the task.
Note that R1 and R2 corresponded to the two tar-
get tasks, but this mapping was determined by EM.
We illustrate the limitation of the unigram model by
telling the trained agent to Go with the star to green,
(we label this sentence S′N ). Using the learned
parameters, the agent computes the following esti-
mates:
Pr(S′N |R1) =

∏
wk∈S′N

Pr(wk|R1) = 8.25× 10−7,

Pr(S′N |R2) =
∏
wk∈S′N

Pr(wk|R2) = 2.10× 10−5.
The agent wrongly chooses reward R2 and goes to
the green room instead of taking the star to the green
room. The problem with the unigram model in this
case is that it gives too much weight to word fre-
quencies (in this case go) without taking into ac-
count what the words mean or how they are used
in the context of the sentence. Using the system de-
scribed in Section 2, we can address these problems
and also move towards more complex scenarios.

4 Conclusions and Future Work

We have presented a three-component architecture
for interpreting natural language instructions, where
the learner has access to natural language input and
demonstrations of appropriate behavior. Our future
work includes fully implementing the system to be
able to build abstract tasks from language informa-
tion and feature relevance.

Figure 1: Training data for 2 tasks: Taking the star to the
green room (left) and Going to the green room (right).
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