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Abstract

Many genetic epidemiological studies of hu-
man diseases have multiple variables related
to any given phenotype, resulting from dif-
ferent definitions and multiple measurements
or subsets of data. Manually mapping and
harmonizing these phenotypes is a time-
consuming process that may still miss the
most appropriate variables. Previously, a su-
pervised learning algorithm was proposed for
this problem. That algorithm learns to de-
termine whether a pair of phenotypes is in
the same class. Though that algorithm ac-
complished satisfying F-scores, the need to
manually label training examples becomes a
bottleneck to improve its coverage. Herein
we present a novel active learning solution
to solve this challenging phenotype-mapping
problem. Active learning will make pheno-
type mapping more efficient and improve its
accuracy.

1 Introduction

Phenotypes are observable traits of an individual or-
ganism resulting from the presence and interaction
of its genotype with the environment. Phenotypes
potentially related to human health are of interest in
genetics and epidemiology, including common clin-
ical conditions, inheritance disorders, as well as var-
ious risk factors such as diet. Substantial amounts
of genomic data, including genome-wide genotyp-
ing from GWAS (Genome-Wide Association Stud-
ies) (Hardy and Singleton, 2009; Consortium, 2007)
and sequencing, are being produced in conjunction

with the collection of carefully defined and mea-
sured phenotypes to study the role of genetic vari-
ations in a wide variety of inherited traits and disor-
ders for many decades.

Recently, there is an emerging need to re-use
these valuable phenotype-genotype association data
to boost the statistical power and improve sensitiv-
ity and specificity of the search of associations be-
tween various disorders and genetic variations. New
paradigms of genomic studies may be fostered once
a map of related phenotypes is easily accessible. In
fact, one of such new paradigms, PheWAS (Phe-
nome Wide Association Studies), has been devel-
oped and producing interesting findings (Denny et
al., 2010; Pendergrass et al., 2011) with the help
of phenotype mapping and harmonization. Unlike
GWAS, which focus on calculating the association
between the variation of hundreds of thousands of
genotyped single nucleotide polymorphisms (SNPs)
and a single or small number of phenotypes, Phe-
WAS uses an extensive range of detailed pheno-
typic measurements for comprehensively exploring
the association between genetic variations and phe-
notypes. The investigation of a broad range of phe-
notypes has the potential to identify pleiotropy, re-
veal novel mechanistic insights, generate new hy-
potheses, and define a more complete picture of ge-
netic variations and their impact on human diseases.

To facilitate integration of genomic data sets, the
research community needs to categorize compara-
ble phenotype measurements and match them across
multiple genomic studies to identify data sets of
interest as well as potential future collaborations.
While the naming strategy for genetic variants is
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largely standardized across studies (e.g. rs numbers
for single nucleotide polymorphisms or SNPs), this
is often not the case for phenotype variables. Due
to the lack of a standardized terminologies or other
controlled vocabularies, it becomes increasingly dif-
ficult to find studies with comparable phenotypes as
the genomic data accumulate. A researcher search-
ing for the availability of comparable phenotypes
across multiple studies is confronted with a veritable
mountain of variables to sift through. Even within
a study, there are often numerous versions of se-
mantically equivalent phenotypic variables. Manu-
ally mapping and harmonizing these phenotypes is a
time-consuming process that may still miss the most
appropriate variables.

Previously, (Hsu et al., 2011) have developed a
supervised learning algorithm that learns to deter-
mine whether a pair of phenotypes is semantically
related from their descriptors. Though that algo-
rithm accomplished satisfying F-scores, the need to
manually label training examples becomes a bottle-
neck to improve its coverage. Moreover, the algo-
rithm treats each pair independently, but pairs that
consist of common phenotypes are not independent.
Exploring this dependency may potentially improve
its performance. In this paper, we investigate how
to apply active learning to solve this challenging
phenotype-mapping problem. Application of effec-
tive active learning techniques will make pheno-
type mapping more efficient and improve its accu-
racy and, along with intuitive phenotype query tools,
would provide a major resource for researchers uti-
lizing these genomic data.

Active learning queries a user for labels of unla-
beled phenotypes that may improve the learning of
phenotype mapping the most and thereby reduce the
need of labeling efforts. To select the most useful
training examples to query, different selection strate-
gies have been proposed in the past (Settles, 2010):

• Uncertainty Sampling In this strategy, an ac-
tive learner chooses an instance that is the most
uncertain for the current model to label (Lewis
and Catlett, 1994).

• Query-By-committee This strategy (Seung et
al., 1992) is also known as maximum dis-
agreement (Ayache and Quénot, 2007; Di and
Crawford, 2011) because the idea is to choose

an instance for which a committee of models
disagrees the most among its members about
its label.

• Expected Model Change The general princi-
ple of this strategy is to choose an instance to
query when if its label is available, the model
will be changed the most (Settles and Craven,
2008).

• Expected Error Reduction Active learning is
useful when the selected instance reduce the er-
ror the most and this strategy looks for an in-
stance that can achieve this ultimate goal di-
rectly.

• Variance Reduction Inspired by the bias-
variance analysis of the generalization perfor-
mance, the variance reduction principle seeks
to query for instances that reduce the variance
of the model the most. A similar approach is
applied in the optimal experimental design in
statistics (Federov, 1972). However, usually
this also requires to solve expensive optimiza-
tion problems.

• Density-Weighted Methods By considering
the distribution of the instances, this strategy
addresses an issue of uncertainty sampling and
query-by-committee where outliers are likely
to be selected but contribute limitedly to im-
proving the learning (Fujii et al., 1998; Das-
gupta and Hsu, 2008).

The method reported here basically follows
the maximum disagreement principle of query-by-
committee to select unlabeled pairs of phenotypes
to query. A committee must be formed in order for
this strategy to be applied, but it has been shown that
even a small committee works well in practice. Vari-
ous approaches can be applied to create committees.
For example, co-testing (Muslea et al., 2006) applies
this principle by combining forward and backward
parsing models for information extraction. A key to
the success of this strategy is that member models
in the committee complement strengths and weak-
nesses.

The idea of our method is to compare the match-
or-not assignments by the model trained by super-
vised learning and the class assignments derived
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from exploring linkages of the labeled and unlabeled
phenotypes. The most useful pairs to query are those
whose assignments from the two different sources
disagree with the highest confidence.

Exploring linkages may improve classifier learn-
ing when the classes of instances depend on each
other. This idea has been studied in the context
of classification of network data, such as pages on
the Web, co-reference resolution, word sense disam-
biguation, and statistical relational learning (see e.g.,
(Macskassy, 2007; McCallum and Wellner, 2005;
Popescul et al., 2003)).

In this paper, we present an algorithm that im-
plement our idea. This algorithm can be divided
into two major steps. The first step of the algo-
rithm explores the linkages and the second step pri-
oritizes pairs of phenotypes to query. By identify-
ing maximum disagreement pair instances between
the model classification results and exploring link-
ages between labeled and unlabeled phenotype vari-
ables, our active learner queries users for labels of
unlabeled phenotypes that may improve the map-
ping the most and therefore will reduce the need of
labeling efforts. Our experimental results show that
exploring linkages can perfectly infer the match-or-
not labels for a large number of pairs, and that ac-
tive learning from maximum disagreement pairs im-
proves the performance faster than from randomly
selected pairs, suggesting that active learning by ex-
ploring linkages is a promising approach to the prob-
lem of phenotype mapping.

2 Phenotype Mapping

2.1 Problem Definition

Phenotype mapping is a task of searching for all
databases of participating studies to find a set of phe-
notype variables that match a requested variable that
the researcher is interested in. This is similar to the
definition given in (Hsu et al., 2011) where the task
is defined as the assignment of every phenotype vari-
able from each participating study to one of a set
categories, or classes, which corresponds to the “re-
quested variable.”

Table 1 shows a fragment of the phenotype map-
ping results of the phenotype variables that we
matched manually from a consortium of cohort stud-
ies for a set of 70 requested variables. In this frag-

ment, we show the phenotype variables assigned to
one of the requested variables, the phenotype class
‘hypertension’. The real ID of a phenotype in
a Cohort is given in column Variable. In this ex-
ample, seven cohort studies have a total of 13 phe-
notype measurements related to hypertension.

Column Description is the main clue for au-
tomatic matching. The variable descriptions usu-
ally contain less than 10 words. As we can see
in Table 1, the description contains abbreviations
(e.g., ’HTN’, ’HBP’,dx), aliases (e.g., ’High
Blood Pressure’ vs. Hypertension), mea-
surement criteria (e.g., DBP>90 MMHG, sys GE
140, per JNC7, JNC VI), and tokens irrelevant
to our task. As a result, word-by-word string sim-
ilarity or sophisticated edit-distance based metrics
can only match a small number of them. These ex-
amples are phenotypes that share similar semantics
and are manually mapped to the same classes but
their descriptions contain few or no common words.
It is impossible for a model solely using the given
descriptions to figure out that they refer to related
phenotypes without bringing to bear additional in-
formation.

Other challenges of the phenotype problem in-
clude: not knowing in advance how many classes
there are, unavailability of comprehensive catego-
rization of phenotypes, and that the solution should
scale well for a large number of phenotypes.

2.2 Supervised Learning for Phenotype
Mapping

Here, we review the supervised learning method de-
scribed in (Hsu et al., 2011), where phenotype map-
ping was casted as a pair matching problem and ap-
plied supervised learning to learn to tag a pair as a
match or not. A pair of phenotypes are considered as
a match if they are assigned to the same class, other-
wise it is not. 13 phenotype variables in Table 1 will
yield 78 pairs of positive examples of matched pairs.
A maximum entropy classifier (MaxEnt) (Hastie et
al., 2009) was used as the model to estimate the
probability that a pair is a match. Two types of fea-
tures were considered. The first type is based on
string similarity metrics to combine the strength of
a variety of string similarity metrics to measure the
edit distance between the descriptions of a pair of
phenotypes and use the result to determine if they
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Requested
Cohort Variables Variable Description
ARIC Hypertension HYPERT06 HYPERTENSION, DEFINITION 6
CARDIA Hypertension Y01DBP HYPERTENSION BASED ON DBP> 90 MMHG
CARDIA Hypertension Y01HTN HIGH BLOOD PRESSURE
CARDIA Hypertension Y01HTNTP TYPE OF HYPERTENSION
CFS Hypertension htn HTN: abnormal bp (sys GE 140 or dia GE 90) or meds
CFS Hypertension htndx HTN: self report of MD dx of HTN
CHS Hypertension HYPER CALCULATED HTN STATUS
FHS Hypertension A70 HISTORY OF HYPERTENSION
FHS Hypertension B373 HYPERTENSION-ON TREAT OR ELEVATED BP
FHS Hypertension C332 HBP status
JHS Hypertension HTN017 Hypertension Status Per JNC7
MESA Hypertension HIGHBP1 HYPERTENSION: SELF-REPORT
MESA Hypertension HTN1C Hypertension by JNC VI (1997) criteria

Table 1: Example variables of phenotype class ’hypertension’

match each other. The other type is the weighted
Jaccard where appearence of tokens and bi-grams
in both or one of the descriptions of a given phe-
notype pair is used as the features. The training al-
gorithm for MaxEnt will virtually assign to each to-
ken or bi-gram a weight when it appears in the de-
scriptions of an input phenotype pair. Weighted Jac-
card is superior to string similarity features because
string similarity metrics treat all tokens equally and
the information provided by these metrics is limited.
Therefore weighted jaccard was shown to outper-
form string similarity features by a large margin in
the experimental evaluation.

Before the feature extraction step, descriptions
will be augmented with the definitions given in the
Merriam-Webster Medical Dictionary (2006)1. For
example, ’hypertension’ will be augmented
with its definition in the dictionary ’abnormally
high arterial blood pressure’ and
converted into ’hypertension abnormally
high arterial blood pressure’. Aug-
mented ’hypertension’ will have many shared
tokens with ’high blood pressure’. This
augmentation step was proven to be effective in
boosting recall, as semantically equivalent pairs
described by totally different sets of tokens can be
matched.

(Hsu et al., 2011) also reported a transitive in-
ference method to take advantage of the transitive
relationship of matched phenotype pairs. The idea
is that if v1 and v2 are a match, so are v2 and v3,

1www.m-w.com/browse/medical/a.htm

then v1 and v3 must be a match, too. Applying tran-
sitive inference did improve the performance, but
when all possible transitive relations are explored,
the performance degraded because false positives
accumulated. The transitive inference method does
not fully explore the dependency between pairs that
share common phenotype variables. A more sophis-
ticated approach is required.

3 Methods

Figure 1 illustrates our active learning idea. The idea
is that, given a training set of phenotype variables
X manually matched with class labels and a test set
of unlabeled phenotype variables, the first step is to
infer the class of each unlabeled variable by explor-
ing the pairwise match scores assigned by the model
trained by the training set. When we obtain a plausi-
ble class assignment to each unlabeled variable, we
can classify each pair of unlabeled variables v1 and
v2 by the trained model again to determine if they
are a match or not and compare the result with their
plausible class assignments.

If it turns out that the results agree with each other,
we will move the pair to a set called sure pairs, oth-
erwise, we will move the pair to a queue which will
be sorted in descreasing order by how much the re-
sults disagree. Then we can query for true labels of
the pairs in the queue to add to the training set the
most useful examples and thus accomplish the active
learning.
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Figure 1: Inferernce of match between unlabeled pheno-
type variables by exploring their linkages to labeled pairs

3.1 Assigning Phenotype Categories

Procedure LabelA is to assign a class label to each
unlabeled test variable by matching them to labeled
training variables. Let A denote the set of all pairs
between a test variable and a training variable. For
each variable, the output contains an element of the
variable, its assigned class label (may be null) and
a score (log-likelihood). Function I(.) in line 2 is
the indicator function that returns 1 if its parameter
is true and 0 otherwise. H is the model learned by
calling the supervised training procedure. In line 7,
PH

vx is the probability that variables v and x are a
match estimated by H . In line 8, LabelA assigns v
to a class c, which is the class of the training variable
x that maximizes PH

vx. That is to assign the class of
x as that of v if PH

vx is the largest. Other selection
can be used. For example, for each class c, we can
estimate PH

vx for all training variables x in c, and se-
lect c as the class of v if 1

n

∑
log PH

vx, the geometric
mean of the probabilities, is the largest. These selec-
tion criteria are based on different assumptions and
we will empirically compare which one is a better
choice. In fact, any type of average can potentially
be considered here.

3.2 Prioritizing Unlabeled Pairs

Procedure LabelB orders pairs of test variables to
query for match-or-not and class labels. Let B be
the set of all pairs of test variables. LabelB also
generates a set called SurePairs. For each pair
in B, LabelB checks if the model H considers the
pair as a match (PH

vx ≥ 0.5) or not, and then checks
if the pair is assigned by LabelA to the same class

Algorithm 1 Procedure LabelA
1: Initialization

• Training variables X with their class anno-
tated class(x) = c ∈ C,∀x ∈ X

• Test variables V with unknown class
class(v),∀v ∈ V

2: H ← Train({(x1, x2, m)|x1, x2 ∈ X, m =
I(class(x1) = class(x2))})

3: A← {(v, x)|v ∈ V ∧ x ∈ X}
4: procedure LABELA(A, H)
5: Output← ∅
6: for v ∈ V do
7: ∀x ∈ X, PH

vx ← H(v, x)
8: c← arg maxc(P

H
vx)

9: LH
vx ← maxC(logPH

vx)
10: if LH

vx < −2 then
11: c← null,
12: s← log(1− 2LH

vx)
13: else
14: s← LH

vx

15: end if
16: Add (v, c, s) to Output
17: end for
18: Return Output
19: end procedure

or not. If it is a match and assigned to the same class,
or not a match and assigned to different classes, that
is, if H and LabelA agree, then the pair will be
moved to SurePairs, otherwise, the pair will be
moved to Queue. For a disagreed pair, LabelB
also estimate the degree of disagreement by the sum
of the log-probabilities of the class assignments (LH

c1
and LH

c2) and the match-or-not by the model (PH
v1v2

).
SurePairs can then be used for training.

We can then query for true labels of pairs in
Queue. We can either query whether a pair is a
match or not or query for their class label. After a
certain number of queries, we can repeat the pro-
cedure to compute a new set of SurePairs and
Queue, until all phenotypes are correctly assigned
to a class.
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Algorithm 2 Procedure LabelB
1: Initialization
2: H,A as in LabelA
3: B ← {(v1, v2)|v1, v2 ∈ V }
4: SurePairs← ∅; Queue← ∅
5: ∀v1, v2 ∈ V, PH

v1v2
← H(v1, v2)

6: (v, class(v), LH
c ),∀v ∈ V ← LabelA(A,H)

7: procedure LABELB(B, A, H)
8: for (v1, v2) ∈ B do
9: if PH

v1,v2
≥ 0.5 then

10: if c1 = c2 then
11: Add (v1, v2, 1) to SurePairs
12: else
13: s← LH

c1 + LH
c2 + log(1−PH

v1v2
)

14: Add (v1, v2, s) to Queue
15: end if
16: else
17: if c1 = c2 then
18: s← LH

c1 + LH
c2 + log PH

v1v2

19: Add (v1, v2, s) to Queue
20: else
21: Add (v1, v2, 0) to SurePairs
22: end if
23: end if
24: end for
25: Sort (v1, v2, m) in Queue by m
26: Return Queue and SurePairs
27: end procedure

4 Results

4.1 Data

We manually selected 1,177 phenotype variables
from a total of 35,041 in the databases of seven co-
hort studies as shown in Table 1 and assigned them
to one of 70 requested variables that are common
trait classes related to a large consortium study of
cardiovascular disorders. These seven cohorts in-
clude ARIC (the Atherosclerosis Risk In Communi-
ties study www.cscc.unc.edu/aric/), CAR-
DIA (the Coronary Artery Risk In Young Adults
study www.cardia.dopm.uab.edu), CFS (the
Cleveland Family study dceweb1.case.edu/
serc/collab/project_family.shtml),
CHS (the Cardiovascular Heart Study www.
chs-nhlbi.org/), FHS (Framingham Heart
Study www.framinghamheartstudy.org/),

Method / Model Precision Recall F-score
String similarity
MaxEnt 0.5557 0.0660 0.1179
Weighted Jaccard
MaxEnt 0.8791 0.4848 0.6250
w/ dictionary 0.9200 0.6104 0.7339
w/ transitive infer. 0.7735 0.6612 0.7129
w/ both 0.7728 0.8402 0.8051

Table 2: Performance results of supervised learning

JHS (Jackson Heart Study jhs.jsums.edu/
jhsinfo/), and MEC (the Multi-Ethnic Cohort
www.crch.org/multiethniccohort/,
www.uscnorris.com/mecgenetics/).

From these 1,177 phenotypes, 21,886 pairs are
considered matches, that is, they are positive pairs
with both phenotype variables in the same class.
670,190 pairs are negatives.

4.2 Result of Supervised Learning

We divided all pairs in our data set by half into train-
ing and test sets and evaluate different options of the
supervised learning algorithm with different options
as described in (Hsu et al., 2011). The results as
shown in Table 2 are consistent with the conclusions
given in (Hsu et al., 2011). That is, weighted Jaccard
features with dictionary augmentation plus transitive
inference yields the best performance.

We also performed a split-by-variable test, where
the set of all variables is divided into three equal
parts. Two of them are used for training and the
other for testing. This is closer to the realistic appli-
cation scenario and provides a better estimation of
the generalization performance of a trained model.
The results are given as the first two rows in Table 3.

4.3 Result of Active Learning

We implemented the two algorithms and evalu-
ate the performance. We still applied split-by-
variable to divide the data with 1

3 for testing and 2
3

for training. We measured the performance when
SurePairs produced by procedure LabelB was
added to the training set, and then increasingly add
more pairs in Queue, also produced by LabelB,
to the training set, and measured the performance
of the trained models to simulate an active learning
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Method/Model Precision Recall F-score
w/o dictionary 0.8344 0.4106 0.5504
w/ dictionary 0.6310 0.5287 0.5753
Test on A 0.7956 0.5243 0.6321
GM SurePairs
(62622) 0.8772 0.5909 0.7061
Model (62622) 0.9577 0.2936 0.4494
MP SurePairs
(74229) 0.8845 0.6196 0.7287
Model (74229) 0.9660 0.2875 0.4431

Table 3: Performance results of splitting by variables.
Numbers in the parentheses show the number of pairs in
SurePairs.

query sequence.
To ensure a fair comparison, we always use the set

A, the pairs between a labeled and unlabeled pheno-
type variables, as the hold-out set for testing in all
performance evaluations. Note that pairs in the set A
never appear in either SurePairs or Queue, be-
cause pairs in SurePairs or Queue are selected
from the set B, which contains the pairs between
unlabeled phenotype variables. The third row of Ta-
ble 3 shows the performance of the model tested
only on A.

We implemented two versions of procedure
LabelA that are different in the methods they used
to assign a class to an unlabeled variable. The first,
MP, is to use the maximum probability and the other,
GM, is to use the maximum geometric mean of the
probabilities (see Section 3.1).

We start by evaluating the quality of
SurePairs. GM produced 62,622 pairs (1,642
positives) while MP had 74,229 pairs (1,816
positives). The match-or-not labels assigned by
LabelB for both methods turn out to be perfectly
correct, suggesting that combining model training
and linkage exploration can effectively infer the
match-or-not labels.

Adding SurePairs to the training set boosts F-
scores, as shown in Table 3, which also shows that,
in contrast, if we add the same number of pairs to
the training set, but assign them match-or-not labels
with the trained model, they will degrade F-scores.

Next, we added pairs in Queue to the training
set, 280 pairs at a time, and measured the F-scores

achieved by the resulting model. Figure 2 shows
the learning curves of three different ways to order
Queue produced with GM: descreasing, increasing,
and random scores. The decreasing-score one per-
formed the best by improving F-scores the fastest,
confirming that higher-scored pairs are more useful.
The end points of the three curves do not meet be-
cause we have not exhausted all training examples.

Similarly, we evaluated decreasing and random
ordering of Queue produced by applying MP.
We note that MP already produced a large set of
SurePairs. As a result, less pairs are in Queue
compared to that by GM. Therefore, after 9 passes, all
pairs are exhausted and no obvious difference can be
observed between decreasing and random ordering
in the end.

Figure 2: Learning curves of active learning: class as-
signment by maximum geometric mean of probabilities

Figure 3: Learning curves of active learning: class as-
signment by maximum probabilities

5 Conclusions and Future Works

Despite the vast amounts of genomic data available
in repositories, identification of relevant datasets can
be challenging for researchers interested in specific
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phenotypic measures. This paper presents our ac-
tive learning approach that will be implemented as a
component of new informatics tools for the research
community to categorize phenotype measurements
from genomic studies.

We show that comparing class assignment by ex-
ploring linkages and by the model can be effective
in both improving the match-or-not assignments and
ordering unlabeled pairs as queries for active learn-
ing. It is interesting that when two sources of class
assignment agree, the pairs’ match-or-not assign-
ments are perfectly correct. How generalizable for
this result deserves further investigation. We note
that in order to perform a fair comparison, no pair
between labeled and unlabeled phenotype variables
are used for training. In a real application, they can
be added to either SurePairs or Queue by ex-
tending procedure LabelB to include them.
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