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Abstract

Recent efforts in biomolecular event extrac-
tion have mainly focused on core event types
involving genes and proteins, such as gene
expression, protein-protein interactions, and
protein catabolism. The BioNLP’11 Shared
Task extended the event extraction approach
to sub-protein events and relations in the Epi-
genetics and Post-translational Modifications
(EPI) and Protein Relations (REL) tasks. In
this study, we apply the Turku Event Ex-
traction System, the best-performing system
for these tasks, to all PubMed abstracts and
all available PMC full-text articles, extract-
ing 1.4M EPI events and 2.2M REL relations
from 21M abstracts and 372K articles. We
introduce several entity normalization algo-
rithms for genes, proteins, protein complexes
and protein components, aiming to uniquely
identify these biological entities. This nor-
malization effort allows direct mapping of
the extracted events and relations with post-
translational modifications from UniProt, epi-
genetics from PubMeth, functional domains
from InterPro and macromolecular structures
from PDB. The extraction of such detailed
protein information provides a unique text
mining dataset, offering the opportunity to fur-
ther deepen the information provided by ex-
isting PubMed-scale event extraction efforts.
The methods and data introduced in this study
are freely available from bionlp.utu.fi.

1 Introduction

Biomedical domain information extraction has in re-
cent years seen a shift from focus on the extraction
of simple pairwise relations (Pyysalo et al., 2008;

Tikk et al., 2010) towards the extraction of events,
represented as structured associations of arbitrary
numbers of participants in specific roles (Ananiadou
et al., 2010). Domain event extraction has been pop-
ularized in particular by the BioNLP Shared Task
(ST) challenges in 2009 and 2011 (Kim et al., 2009;
Kim et al., 2011). While the BioNLP ST’09 em-
phasized protein interactions and regulatory rela-
tionships, the expressive event formalism can also
be applied to the extraction of statements regarding
the properties of individual proteins. Accordingly,
the EPI (Epigenetics and Post-Translational Modi-
fications) subchallenge of the BioNLP ST’11 pro-
vided corpora and competitive evaluations for the
detection of epigenetics and post-translational mod-
ification (PTM) events, while the REL (Entity Re-
lations) subchallenge covers structural and complex
membership relations of proteins (Ohta et al., 2011b;
Pyysalo et al., 2011). The complex memberships
and domains define the physical nature of an indi-
vidual protein, which is closely linked to its func-
tion and biological activity. Post-translational mod-
ifications alter and regulate this activity via struc-
tural or chemical changes induced by the covalent
attachment of small molecules to the protein. In
epigenetic regulation, gene expression is controlled
by the chemical modification of DNA and the his-
tone proteins supporting chromosomal DNA. All of
these aspects are important for defining the biologi-
cal role of a protein, and thus the EPI and REL tasks
enable the development of text mining systems that
can extract a more complete picture of the biomolec-
ular reactions and relations than previously possible
(cf. Table 1). Furthermore, previous work has shown
promising results for improving event extraction by
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integration of “static” entity relations (Pyysalo et al.,
2009), in particular for the previously only available
PTM event, phosphorylation (Van Landeghem et al.,
2010).

Information on protein modifications is avail-
able in general-purpose protein databases such as
UniProt, and there are also a number of dedicated
database resources covering such protein modifica-
tions (Wu and others, 2003; Lee et al., 2006; Li et
al., 2009). While the automatic extraction of PTMs
from text has also been considered in a number of
earlier studies, these have primarily involved single
PTM reactions extracted with special-purpose meth-
ods (Hu et al., 2005; Yuan et al., 2006; Lee et al.,
2008). The EPI task and associated work (Ohta et
al., 2010) were the first to target numerous PTM re-
actions in a general framework using retrainable ex-
traction methods. The automatic detection of mod-
ification statements using keyword matching-based
methods has been applied also in support of DNA
methylation DB curation (Ongenaert et al., 2008;
Fang et al., 2011). However, as for PTM, the EPI
task and its preparatory efforts (Ohta et al., 2011a)
were the first to consider DNA methylation using the
general event extraction approach. To the best of our
knowledge, the present study is the first to extend the
event extraction approach to PTM and DNA methy-
lation event extraction to the scale of the entire avail-
able literature.

The Turku Event Extraction System (TEES), first
introduced for the BioNLP ST’09 (Björne et al.,
2009), was updated and generalized for participa-
tion in the BioNLP ST’11, in which it had the best
performance on both the EPI and REL challenges
(Björne and Salakoski, 2011). With an F-score of
53.33% for the EPI and 57.7% for the REL task, it
performed over 16 pp better than the next best sys-
tems, making it well suited for our study. We apply
this system to the extraction of EPI events and REL
relations from all PubMed abstracts and all PMC
open access articles, using a pipeline of open source
text mining tools introduced in Björne et al. (2010).

We further process the result using a recently
created bibliome-scale gene normalization dataset1.
This normalization effort connects protein and gene
mentions in text to their database IDs, a prerequi-

1Data currently under review.

site for effective use of text mining results for most
bioinformatics applications. In addition to protein
names, the EPI and REL challenges refer to the
protein substructures, modifications and complexes,
which we also need to normalize in order to deter-
mine the biological context of these events. In this
work, we develop a number of rule-based algorithms
for the normalization of such non-protein entities.

With both proteins and other entities normalized,
we can align the set of events extracted from the
literature with biological databases containing an-
notations on protein features, such as UniProt. We
can determine how many known and unknown fea-
tures we have extracted from text, and what percent-
age of various protein feature annotations our text
mining results cover. This association naturally also
works in the other direction, as we can take a gene or
protein and find yet unannotated post-translational
modifications, domains, or other features from sci-
entific articles, a promising use case for supporting
biomedical database curation.

2 Methods

2.1 PMC preprocessing

PMC full texts are distributed in an XML format that
TEES cannot use directly for event extraction. We
convert this XML into a flat ASCII text format with
a pipeline built on top of BioNLP ST’11 supporting
resource tools (Stenetorp et al., 2011). This process-
ing resolves embedded LATEX expressions, separates
blocks of text content (titles, sections, etc.) from
others, maps non-ASCII characters to corresponding
ASCII sequences, and normalizes whitespace. Re-
solving non-ASCII characters avoids increased error
rates from NLP tools trained on ASCII-only data.

2.2 Event Extraction

We use the Turku Event Extraction System for ex-
tracting both REL relations and EPI events. TEES is
a modular event extraction pipeline, that has recently
been extended for all the subtasks of the BioNLP’11
ST, including EPI and REL (Björne and Salakoski,
2011). TEES performs all supported tasks using
a shared graph scheme, which can represent both
events and relations (Figure 1 D). The system also
provides confidence scores enabling selection of the
most likely correct predictions. Before event extrac-
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Event/relation type Example
Hydroxylation HIF-alpha proline hydroxylation
Phosphorylation (D) siRNA-mediated ATM depletion blocks p53 Serine-15 phosphorylation.
Ubiquitination K5 ubiquitinates BMPR-II on a Membrane-proximal Lysine
DNA methylation RUNX3 is frequently inactivated by P2 methylation in solid tumors.
Glycosylation Also, two asparagine residues in alpha-hCG were glycosylated.
Acetylation This interaction was regulated by Tat acetylation at lysine 50.
Methylation Methylation of lysine 37 of histone H2B is conserved.
Catalysis GRK2 catalyzed modest phosphorylation of BAC1.

Protein-Component Three enhancer elements are located in the 40 kb intron of the GDEP gene.
Subunit-Complex The most common form is a heterodimer composed of the p65/p50 subunits.

Table 1: Sentences with examples of the eight EPI event and two REL relation types, with highlighted triggers, and
protein and site arguments. Relations have no trigger and Catalysis takes as an argument another event.
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Figure 1: Event and relation extraction. Article text is
split into sentences (A), where gene/protein entities are
detected and normalized to their Entrez Gene IDs (B).
Each sentence with at least one entity is then parsed
(C). EPI events and REL relations are extracted from
the parsed sentences (D) and following conversion to
the BioNLP ST format are imported into a database (E).
(Adapted from Björne and Salakoski (2011)).

tion, protein/gene names are detected and sentences
are parsed. TEES handles all these preprocessing
steps via a pipeline of tool wrappers for the GE-
NIA Sentence Splitter (Kazama and Tsujii, 2003),
the BANNER named entity recognizer (Leaman and
Gonzalez, 2008), the McClosky-Charniak-Johnson
(McCCJ) parser (Charniak and Johnson, 2005; Mc-
Closky, 2010) and the Stanford tools (de Marneffe
et al., 2006). For a detailed description of TEES
we refer to Björne and Salakoski (2011) and for the
computational requirements of PubMed-scale event
extraction to Björne et al. (2010).

2.3 Entity normalization

The extraction of events and relations as described in
the previous sections is purely text-based and does
not rely on any domain information from external
resources. This ensures generalizability of the meth-
ods to new articles possibly describing novel inter-
actions. However, practical use cases often require
integration of text mining results with external re-
sources. To enable such an integration, it is crucial to
link the retrieved information to known gene/protein
identifiers. In this section, we describe how we link
text mining data to biomolecular databases by pro-
viding integration with Entrez Gene, UniProt, Inter-
Pro and the Protein Data Bank.

2.3.1 Protein annotations
A crucial step for integrating statements in do-

main text with data records is gene name normaliza-
tion As part of a recent PubMed-scale effort,2 gene

2Data currently under review.
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normalizations were produced by the GenNorm sys-
tem (Wei and Kao, 2011), assigning unique Entrez
Gene identifiers (Sayers and others, 2010) to am-
biguous gene/protein symbols. The GenNorm sys-
tem represents the state-of-the-art in gene normal-
ization, having achieved first rank by several evalua-
tion criteria in the BioCreative III Challenge (Lu and
others, 2011).

For practical applications, the Entrez Gene iden-
tifiers have been mapped to UniProt (The UniProt
Consortium, 2011) through conversion tables pro-
vided by the NCBI. As Entrez Gene and UniProt
are two of the most authoritative resources for gene
and protein identification, these annotations ensure
straightforward integration with other databases.

2.3.2 Complex annotations
The REL task Subunit-Complex relations all in-

volve exactly one protein complex and one of its
subunits, but the same complex may be involved in
many different Subunit-Complex relations (Pyysalo
et al., 2011). A key challenge for making use
of these relations thus involves retrieving a unique
identification of the correct complex. To identify
protein complexes, we use the Protein Data Bank
(PDB), an archive of structural data of biological
macromolecules (Berman et al., 2000). This re-
source currently contains more than 80,000 3-D
structures, and each polymer of a structure is anno-
tated with its respective UniProt ID.

To assign a unique PDB ID to an entity involved
in one or more Subunit-Complex relations, there
is usually no other lexical context than the protein
names in the sentence, e.g. “the Rad9-Hus1-Rad1
complex”. Consequently, we rely on the normal-
ized protein names (Section 2.3.1) to retrieve a list
of plausible complexes, using data downloaded from
UniProt to link proteins to PDB entries. Ambiguity
is resolved by selecting the complex with the high-
est number of normalized proteins and giving pref-
erence to so-called representative chains. A list of
representative chains is available at the PDB web-
site, and they are determined by clustering similar
protein chains3 and taking the most confident ones
based on resolution quality.

Each assignment of a PDB identifier is annotated
with a confidence value between 0 and 1, express-

3Requiring at least 40% sequence similarity.

ing the percentage of proteins in the complex that
could be retrieved and normalized in text. For ex-
ample, even if one out of three UniProt identifiers is
wrongly assigned for a mention, the correct complex
might still be assigned with 0.66 confidence.

2.3.3 Domain annotations
Protein-Component relations define a relation be-

tween a gene/protein and one of its components,
such as a gene promoter or a protein domain. To
identify at least a substantial subset of these di-
verse relations, we have integrated domain knowl-
edge extracted from InterPro. InterPro is a rich re-
source on protein families, domains and functional
sites, integrating data from databases like PROSITE,
PANTHER, Pfam, ProDom, SMART and TIGR-
FAMs (Hunter and others, 2012). Over 23,000 dis-
tinct InterPro entries were retrieved, linking to more
than 16.5 million protein identifiers.

To assign an InterPro ID to an entity involved in
one or more Protein-Component relations, a set of
candidates is generated by inspecting the InterPro
associations of each of the proteins annotated with
that domain in text. For each such candidate, the
description of the InterPro entry is matched against
the lexical context around the entity by comparing
the number of overlapping tokens, excluding gen-
eral words, such as domain, and prepositions. The
amount of overlap is normalized against the length
of the InterPro description and expressed as a per-
centage, creating confidence values between 0 and 1.

Additionally, a simple pattern matching algorithm
recognizes statements expressing an amino acid in-
terval, e.g. “aristaless domain (aa 527-542)”. When
such expressions are found, the intervals as anno-
tated in InterPro are matched against the retrieved
interval from text, and the confidence values express
the amount of overlap between the two intervals.

2.3.4 PTM site normalization
Six of the eight4 EPI event types refer to

post-translational modification of proteins. These
events are Hydroxylation, Phosphorylation, Ubiq-
uitination, Glycosylation, Acetylation and (Protein)
Methylation. To evaluate the events predicted

4As we are interested in PTM sites, we make no distinc-
tion between “additive” PTMs such as Acetylation and their “re-
verse” reactions such as Deacetylation.

85



from text, we compare these to annotated post-
translational modifications in UniProt. UniProt is
one of the largest manually curated databases for
protein knowledge, and contains annotations corre-
sponding to each of the EPI PTM event types.

We use the reviewed and manually annotated
UniProtKB/Swiss-Prot dataset (release 2012 02) in
XML format. We take for each protein all feature
elements of types modified residue, cross-link and
glycosylation site. Each of these feature elements
defines the site of the modification, either a single
amino acid, or a sequence of amino acids. We select
only annotations based on experimental findings,
that is, features that do not have a non-experimental
status (potential, probable or by similarity) to avoid
e.g. features only inferred from the sequence.

The modified residue feature type covers the event
types Hydroxylation, Phosphorylation, Acetylation
and Methylation. We determine the class of the mod-
ification with the UniProt controlled vocabulary of
post-translational modifications5. The description
attribute is the ID attribute of an entry in the vocabu-
lary, through which we can determine the more gen-
eral keyword (KW) for that description, if defined.
These keywords can then be connected to the corre-
sponding event types in the case of Hydroxylation,
Phosphorylation, Acetylation and Methylation. For
Ubiquitination events, we look for the presence of
the string “ubiquitin” in the description attribute of
cross-link features. Finally, features corresponding
to Glycosylation events are determined by their fea-
ture element having the type glycosylation site.

The result of this selection process is a list of in-
dividual modification features, which contain a type
corresponding to one of the EPI PTM event types,
the UniProt ID of the protein, and the position and
amino acid(s) of the modification site. This data can
be compared with extracted events, using their type,
normalized protein arguments and modification site
arguments. However, we also need to normalize the
modification site arguments.

PTM sites are defined with a modification type
and the numbered target amino acid residue. In EPI
events, these residues are defined in the site argu-
ment target entities. To convert these into a form
that can be aligned with UniProt, we apply a set

5http://www.uniprot.org/docs/ptmlist/

Event Type Extracted PMC (%)
Hydroxylation 14,555 34.17
Phosphorylation 726,757 44.00
Ubiquitination 74,027 70.46
DNA methylation 140,531 52.27
Glycosylation 154,523 42.31
Acetylation 114,585 69.40
Methylation 122,015 74.86
Catalysis 45,763 67.86
Total EPI 1,392,756 51.53
Protein-Component 1,613,170 52.59
Subunit-Complex 537,577 51.18
Total REL 2,150,747 52.23

Table 2: Total number of EPI events and REL relations
extracted from PubMed abstracts and PMC full-text arti-
cles, with the fractions extracted from PMC.

of rules that try to determine whether a site is an
amino acid. We start from the main site token, and
check whether it is of the form AA#, where AA is an
amino acid name, or a one or three letter code, and
# an optional site number, which can also be in a to-
ken following the amino acid. For cases where the
site entity is the word “residue” or “residues”, we
look for the amino acid definition in the preceding
and following tokens. All strings are canonicalized
with removal of punctuation, hyphens and parenthe-
sis before applying the rules. In total, of the 177,994
events with a site argument, 75,131 could be nor-
malized to an amino acid, and 60,622 of these to a
specific residue number.

3 Results

The source for extraction in this work is the set of 21
million PubMed abstracts and 372 thousand PMC
open-access full-text articles. From this dataset,
1.4M EPI events and 2.2M REL relations were ex-
tracted (Table 2). For both tasks, about half of the
results were extracted from PMC, confirming that
full-text articles are an important source of infor-
mation for these extraction targets. The total num-
bers of events and relations are considerably lower
than e.g. the 21.3M events extracted for the GENIA
task from PubMed abstracts (Björne et al., 2010;
Van Landeghem et al., 2012), likely relating to the
comparatively low frequency with which EPI and
REL extraction targets are discussed with respect to
the basic GENIA biomolecular reactions.
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Event type UniProt Events Match Coverage Events (site) Match Coverage
Hydroxylation 1,587 14,555 1,526 19 4,298 130 5
Phosphorylation 57,059 726,757 286,978 4,795 86,974 9,732 748
Ubiquitination 792 74,027 4,994 143 10,562 54 20
Glycosylation 6,708 154,523 18,592 897 22,846 68 31
Acetylation 6,522 114,585 15,470 764 25,689 158 30
Methylation 1,135 122,015 2,178 113 27,625 36 10
Total 73,803 1,206,462 329,738 6,731 177,994 10,178 844

Table 3: PTM events. PTMs that are not marked with non-experimental qualifiers are taken from UniProt. The
Events column lists the total number of predicted events, and the Events (site) the number of events that also have a
predicted site-argument. For these groups, Match is the number of events that matches a known PTM from UniProt,
and Coverage the number of UniProt PTMs for which at least one match exists. For Events matching takes into account
the PTM type and protein id, for Events (site) also the amino acid and position of the modified residue.

Event type AA UP # Highest confidence event Article ID
Phosphorylation S9 • 2 p53 isolated from ML1, HCT116 and RKO cells, after short

term genotoxic stress, were phosphorylated on Ser 6, Ser 9
PMC:2777442

Acetylation S15 4 phosphorylated (Ser15), acetylated p53(Lys382) PMC:2557062
Methylation S15 1 phosphorylation of p53 at serine 15 and acetylation PM:10749144
Phosphorylation S15 • 238 Chk2, as well as p53 Ser(15) phosphorylation and its PM:16731759
Phosphorylation T18 • 12 p53 stabilization and its phosphorylation in Thr18 PMC:3046209
Phosphorylation S20 • 45 that phosphorylation of p53 at Ser20 leads to PMC:3050855
Phosphorylation S33 • 14 phosphorylation of p53 at serine 33 may be part of PMC:35361
Phosphorylation S37 • 20 serine 33 of p53 in vitro when serine 37 is already PMC:35361
Phosphorylation S46 • 55 phosphorylation of p53, especially at Serine 46 by PMC:2634840
Phosphorylation T55 • 7 that phosphorylation of p53 at Thr55 inhibits its PMC:3050855
Phosphorylation S99 • 0
Phosphorylation S183 • 0
Phosphorylation S269 • 0
Phosphorylation T284 • 0
Ubiquitination K291 • 0
Acetylation K292 • 0
Ubiquitination K292 • 0
Acetylation K305 • 0
Phosphorylation S313 • 1 hyperphosphorylation of p53, particularly of Ser313 PM:8649812
Phosphorylation S314 • 0
Phosphorylation S315 • 6 to require phosphorylation of p53 at serine 315 (35) PMC:2532731
Methylation K370 • 6 by methylating lysine 370 of p53 PMC:1636665
Acetylation K372 1 for lysine 372 and 383 acetylated p53 (Upstate, PMC:1315280
Methylation K372 • 5 methylation of p53 by the KMT7(SET7/9) methyltransferase

enzyme on Lys372
PMC:2794343

Acetylation K373 • 16 p53 and acetylated p53 (lysine-373 and lysine-382) PMC:1208859
Methylation K373 • 4 EHMT1-mediated p53 methylation at K373 PM:20588255
Acetylation K381 • 0
Acetylation K382 • 82 p53 acetylation at lysine 382 was found not PM:17898049
Methylation K382 • 6 SET8 specifically monomethylates p53 at lysine 382 PM:17707234
Methylation K386 • 1 that sumoylation of p53 at K386 blocks subsequent PM:19339993
Phosphorylation S392 • 35 and phosphorylation of p53 at S392 PM:17237827

Table 4: Extracted and known PTM sites of p53. The type and site of the modification are in the first two columns.
UP indicates whether the PTM is present in the UniProt annotation for p53. Column # shows the number of extracted
events, followed by the event with the highest confidence score and the PubMed abstract or PMC full-text article it has
been extracted from.
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3.1 Extracted PTMs compared to UniProt

The EPI PTM events were compared to annotated
PTMs from UniProt (Table 3). The majority of ex-
tracted PTM events (85%) have only a protein ar-
gument, and no information about the modification
site, so these can only be compared by the protein
id and PTM type. For the subset of proteins that
also have a site, which can be normalized to an
amino acid position, we can make a detailed com-
parison with UniProt. Finding a match for these
normalized amino acids is more difficult, and for
both categories, only a small fraction of proteins
from UniProt is covered. In part this may be due
to the limitations of the gene name normalization, as
finding the exact species-specific protein ID remains
a challenging task (Lu and others, 2011). How-
ever, even if the overall coverage is limited, well-
known protein modifications can be assigned to spe-
cific residues, as we show in the next section.

3.2 Extracted PTMs for a single protein

For an in-depth example of PTM modifications, we
study the protein p53, a central tumor suppressor
protein that is the subject of many studies. p53 is
also among the proteins with the most UniProt PTM
sites for which EPI events were predicted, making it
a good example for a case study (see Table 4).

We take from UniProt all known p53 PTMs corre-
sponding to our EPI event types and list the number
of predicted events for them (see Table 4). When
the number of predicted events is high, the most
confident prediction is usually a correctly extracted,
clear statement about the PTM. All events for PTMs
known in UniProt are correct except for the type
of K386. For events not in UniProt, the two S15
ones are false positives, and K372 acetylation, while
correctly extracted, is most likely a typo in the arti-
cle. For the PTMs for which no event was extracted,
we checked the reference article from UniProt an-
notation. K291, K292 ubiquitination, and K305 are
from abstracts, and thus missed events. S183, S269
and T284 are from a non-open access PMC article,
while S99, K292 acetylation, K305, S314 and K381
are from Excel or PDF format supplementary tables,
sources outside our extraction input.

In total, we have extracted 561 PTM events re-
lated to p53, 554 of which correspond to a PTM an-

Item PubMeth Extracted Recall
PMID+UPID 2776 1698 61.2%
UPID 392 363 92.6%
PMID 1163 1120 96.3%

Table 5: Evaluation of DNA methylation event extraction
recall against PubMeth.

notated in UniProt. Of the 28 EPI-relevant PTMs on
p53, 17 have at least one predicted event. The high-
est confidence events are about equally often from
abstracts as from full texts.

3.3 DNA methylation analysis
Two recently introduced databases, PubMeth (On-
genaert et al., 2008) and MeInfoText (Fang et al.,
2011) provide manually curated information on
DNA methylation, primarily as it relates to cancer.
To evaluate the coverage of DNA methylation event
extraction, we focus here on PubMeth, as the full
content of this database could be directly used. Each
PubMeth DB record provides the primary name of
the methylated gene and the PMID of the publica-
tion supporting the curation of the record. We used
these two pieces of information to evaluate the recall
6 of DNA methylation event extraction.

We mapped PubMeth entries to UniProt iden-
tifiers (UPIDs), and extracted all unique (PMID,
UPID) pairs from both PubMeth and the automat-
ically extracted DNA methylation/demethylation
events. The results of comparison of these sets of
ID pairs are given in Table 5. We find that for over
60% of PubMeth entries, the system is able to re-
cover the specific (document, gene) pair. This result
is broadly in line with the recall of the system as
evaluated in the BioNLP ST. However, if the match-
ing constraint is relaxed, asking either 1) can the sys-
tem extract the methylation of each gene in PubMeth
somewhere in the literature or, inversely, 2) can the
system detect some DNA methylation event in each
document included in PubMeth as evidence, recall
is over 90%. In particular, the evaluation indicates
that the system shows very high recall for identify-
ing documents discussing DNA methylation.

6As PubMeth does not aim for exhaustive coverage, preci-
sion cannot be directly estimated in this way. For example, Pub-
Meth covers fewer than 2,000 documents and DNA methylation
events were extracted from over 20,000, but due to differences
in scope, this does not suggest precision is below 10%.
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REL Type Extracted Match (p) Match (e)
Prot-Cmp 1613.1K 561.8K 150.7K
SU-Cmplx 537.6K 226.5K 99.6K

Table 6: Numbers of extracted entity relations, with the
protein (p) or both protein and entity (e) identified.

3.4 REL statistics

Table 6 presents the amount of extracted entity re-
lations and the coverage of the normalization algo-
rithms assigning protein, domain and complex iden-
tifiers. From a total of 537.6K Subunit-Complex re-
lations, 226.5K (42%) involve a protein that could be
unambiguously identified (Section 2.3.1). From this
subset, 99.6K relations (44%) could be assigned to a
PDB complex identifier (Section 2.3.2), accounting
for 3800 representative 3D protein structures.

The Protein-Component relations are much more
frequent in the data (1.6M relations) and here 35%
of the relations (561.8K) involve a normalized pro-
tein mention. The assignment of InterPro domains
to these Protein-Component relations (Section 2.3.3)
further covers 150.7K relations in this subset (27%),
identifying 5500 distinct functional domains. The
vast majority of these annotations (99%) are pro-
duced by matching the lexical context against the
InterPro descriptions, and only a few cases (200)
matched against the amino-acid pattern.

4 Conclusions

We have combined state-of-the-art methods for
gene/protein name normalization together with the
best available methods for event-based extraction
of protein post-translational modifications, reactions
relating to the epigenetic control of gene expres-
sion, and part-of relations between genes/proteins,
their components, and complexes. These methods
were jointly applied to the entire available litera-
ture, both PubMed abstracts and PMC full-text doc-
uments, creating a text mining dataset unique in both
scope and breadth of analysis. We further performed
a comprehensive analysis of the results of this au-
tomatic extraction process against major biological
database resources covering various aspects of the
extracted information. This analysis indicated that
text mining results for protein complexes, substruc-
tures and epigenetic DNA methylation provides al-

ready quite extensive coverage of relevant proteins.
For post-translational modifications, we note that
coverage still needs to be improved, but conclude
that the extracted events already provide a valuable
link to PTM related literature. In future work we
hope to further extend the event types extracted by
our PubMed-scale approach. The extraction meth-
ods as well as all data introduced in this study are
freely available from bionlp.utu.fi.
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