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Abstract

Narrative recall tasks are widely used in neu-
ropsychological evaluation protocols in or-
der to detect symptoms of disorders such
as autism, language impairment, and demen-
tia. In this paper, we propose a graph-based
method commonly used in information re-
trieval to improve word-level alignments in
order to align a source narrative to narra-
tive retellings elicited in a clinical setting.
From these alignments, we automatically ex-
tract narrative recall scores which can then be
used for diagnostic screening. The signifi-
cant reduction in alignment error rate (AER)
afforded by the graph-based method results
in improved automatic scoring and diagnos-
tic classification. The approach described here
is general enough to be applied to almost any
narrative recall scenario, and the reductions in
AER achieved in this work attest to the po-
tential utility of this graph-based method for
enhancing multilingual word alignment and
alignment of comparable corpora for more
standard NLP tasks.

1 Introduction

Much of the work in biomedical natural language
processing has focused on mining information from
electronic health records, clinical notes, and medical
literature, but NLP is also very well suited for ana-
lyzing patient language data, in terms of both con-
tent and linguistic features, for neurological eval-
uation. NLP-driven analysis of clinical language
data has been used to assess language development
(Sagae et al., 2005), language impairment (Gabani

et al., 2009) and cognitive status (Roark et al., 2007;
Roark et al., 2011). These approaches rely on the ex-
traction of syntactic features from spoken language
transcripts in order to identify characteristics of lan-
guage use associated with a particular disorder. In
this paper, rather than focusing on linguistic fea-
tures, we instead propose an NLP-based method for
automating the standard manual method for scoring
the Wechsler Logical Memory (WLM) subtest of the
Wechsler Memory Scale (Wechsler, 1997) with the
eventual goal of developing a screening tool for Mild
Cognitive Impairment (MCI), the earliest observable
precursor to dementia. During standard administra-
tion of the WLM, the examiner reads a brief narra-
tive to the subject, who then retells the story to the
examiner, once immediately upon hearing the story
and a second time after a 30-minute delay. The ex-
aminer scores the retelling in real time by counting
the number of recalled story elements, each of which
corresponds to a word or short phrase in the source
narrative. Our method for automatically extracting
the score from a retelling relies on an alignment be-
tween substrings in the retelling and substrings in
the original narrative. The scores thus extracted can
then be used for diagnostic classification.

Previous approaches to alignment-based narra-
tive analysis (Prud’hommeaux and Roark, 2011a;
Prud’hommeaux and Roark, 2011b) have relied ex-
clusively on modified versions of standard word
alignment algorithms typically applied to large bilin-
gual parallel corpora for building machine transla-
tion models (Liang et al., 2006; Och et al., 2000).
Scores extracted from the alignments produced us-
ing these algorithms achieved fairly high classifi-
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cation accuracy, but the somewhat weak alignment
quality limited performance. In this paper, we com-
pare these word alignment approaches to a new ap-
proach that uses traditionally-derived word align-
ments between retellings as the input for graph-
based exploration of the alignment space in order to
improve alignment accuracy. Using both earlier ap-
proaches and our novel method for word alignment,
we then evaluate the accuracy of automated scoring
and diagnostic classification for MCI.

Although the alignment error rates for our data
might be considered high in the context of building
phrase tables for machine translation, the alignments
produced using the graph-based method are remark-
ably accurate given the small size of our training
corpus. In addition, these more accurate alignments
lead to gains in scoring accuracy and to classification
performance approaching that of manually derived
scores. This method for word alignment and score
extraction is general enough to be easily adapted
to other tests used in neuropsychological evalua-
tion, including not only those related to narrative re-
call, such as the NEPSY Narrative Memory subtest
(Korkman et al., 1998) but also picture description
tasks, such as the Cookie Theft picture description
task of the Boston Diagnostic Aphasia Examination
(Goodglass et al., 2001) or the Renfrew Bus Story
(Glasgow and Cowley, 1994). In addition, this tech-
nique has the potential to improve word alignment
for more general NLP tasks that rely on small cor-
pora, such as multilingual word alignment or word
alignment of comparable corpora.

2 Background

The act of retelling or producing a narrative taps into
a wide array of cognitive functions, not only mem-
ory but also language comprehension, language pro-
duction, executive function, and theory of mind. The
inability to coherently produce or recall a narrative
is therefore associated with many different cogni-
tive and developmental disorders, including demen-
tia, autism (Tager-Flusberg, 1995), and language im-
pairment (Dodwell and Bavin, 2008; Botting, 2002).
Narrative tasks are widely used in neuropsycholog-
ical assessment, and many commonly used instru-
ments and diagnostic protocols include a task in-
volving narrative recall or production (Korkman et

al., 1998; Wechsler, 1997; Lord et al., 2002).
In this paper, we focus on evaluating narrative re-

call within the context of Mild Cognitive Impair-
ment (MCI), the earliest clinically significant pre-
cursor of dementia. The cognitive and memory
problems associated with MCI do not necessarily
interfere with daily living activities (Ritchie and
Touchon, 2000) and can therefore be difficult to
diagnose using standard dementia screening tools,
such as the Mini-Mental State Exam (Folstein et al.,
1975). A definitive diagnosis of MCI requires an
extensive interview with the patient and a family
member or caregiver. Because of the effort required
for diagnosis and the insensitivity of the standard
screening tools, MCI frequently goes undiagnosed,
delaying the introduction of appropriate treatment
and remediation. Early and unobtrusive detection
will become increasingly important as the elderly
population grows and as research advances in delay-
ing and potentially stopping the progression of MCI
into moderate and severe dementia.

Narrative recall tasks, such as the test used in re-
search presented here, the Wechsler Logical Mem-
ory subtest (WLM), are often used in conjunction
with other cognitive measures in attempts to identify
MCI and dementia. Multiple studies have demon-
strated a significant difference in performance on the
WLM between subjects with MCI and typically ag-
ing controls, particularly in combination with tests
of verbal fluency and memory (Storandt and Hill,
1989; Peterson et al., 1999; Nordlund et al., 2005).
The WLM can also serve as a cognitive indicator of
physiological characteristics associated with symp-
tomatic Alzheimers disease, even in the absence of
previously reported dementia (Schmitt et al., 2000;
Bennett et al., 2006).

Some previous work on automated analysis of the
WLM has focused on using the retellings as a source
of linguistic data for extracting syntactic and pho-
netic features that can distinguish subjects with MCI
from typically aging controls (Roark et al., 2011).
There has been some work on automating scoring
of other narrative recall tasks using unigram overlap
(Hakkani-Tur et al., 2010), but Dunn et al. (2002)
are among the only researchers to apply automated
methods to scoring the WLM for the purpose of
identifying dementia, using latent semantic analysis
to measure the semantic distance between a retelling
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Dx n Age Education
MCI 72 88.7 14.9 yr
Non-MCI 163 87.3 15.1 yr

Table 1: Subject demographic data.

and the source narrative. Although scoring automa-
tion is not typically used in a clinical setting, the
objectivity offered by automated measures is par-
ticularly important for tests like the WLM, which
are often administered by practitioners working in a
community setting and serving a diverse population.

Researchers working on NLP tasks such as para-
phrase extraction (Barzilay and McKeown, 2001),
word-sense disambiguation (Diab and Resnik,
2002), and bilingual lexicon induction (Sahlgren and
Karlgren, 2005), often rely on aligned parallel or
comparable corpora. Recasting the automated scor-
ing of a neuropsychological test as another NLP task
involving the analysis of parallel texts, however, is a
relatively new idea. We hope that the methods pre-
sented here will both highlight the flexibility of tech-
niques originally developed for standard NLP tasks
and attract attention to the wide variety of biomed-
ical data sources and potential clinical applications
for these techniques.

3 Data

3.1 Subjects

The data examined in this study was collected from
participants in a longitudinal study on brain aging
at the Layton Aging and Alzheimers Disease Cen-
ter at the Oregon Health and Science University
(OHSU), including 72 subjects with MCI and 163
typically aging seniors roughly matched for age and
years of education. Table 1 shows the mean age
and mean years of education for the two diagnos-
tic groups. There were no significant between-group
differences in either measure.

Following (Shankle et al., 2005), we assign a di-
agnosis of MCI according to the Clinical Dementia
Rating (CDR) (Morris, 1993). A CDR of 0.5 corre-
sponds to MCI (Ritchie and Touchon, 2000), while
a CDR of zero indicates the absence of MCI or any
dementia. The CDR is measured via the Neurobe-
havioral Cognitive Status Examination (Kiernan et
al., 1987) and a semi-structured interview with the

patient and a family member or caregiver that allows
the examiner to assess the subject in several key ar-
eas of cognitive function, such as memory, orienta-
tion, problem solving, and personal care. The CDR
has high inter-annotator reliability (Morris, 1993)
when conducted by trained experts. It is crucial to
note that the calculation of CDR is completely inde-
pendent of the neuropsychological test investigated
in this paper, the Wechsler Logical Memory subtest
of the Wechsler Memory Scale. We refer readers to
the above cited papers for a further details.

3.2 Wechsler Logical Memory Test

The Wechsler Logical Memory subtest (WLM) is
part of the Wechsler Memory Scale (Wechsler,
1997), a diagnostic instrument used to assess mem-
ory and cognition in adults. In the WLM, the subject
listens to the examiner read a brief narrative, shown
in Figure 1. The subject then retells the narrative to
the examiner twice: once immediately upon hearing
it (Logical Memory I, LM-I) and again after a 30-
minute delay (Logical Memory II, LM-II). The nar-
rative is divided into 25 story elements. In Figure 1,
the boundaries between story elements are denoted
by slashes. The examiner notes in real time which
story elements the subject uses. The score that is re-
ported under standard administration of the task is
a summary score, which is simply the raw number
of story elements recalled. Story elements do not
need to be recalled verbatim or in the correct tempo-
ral order. The published scoring guidelines describe
the permissible substitutions for each story element.
The first story element, Anna, can be replaced in the
retelling with Annie or Ann, while the 16th story
element, fifty-six dollars, can be replaced with any
number of dollars between fifty and sixty.

An example LM-I retelling is shown in Figure 2.
According to the published scoring guidelines, this
retelling receives a score of 12, since it contains the
following 12 elements: Anna, employed, Boston, as
a cook, was robbed of, she had four, small children,
reported, station, touched by the woman’s story,
took up a collection, and for her.

3.3 Word alignment data

The Wechsler Logical Memory immediate and de-
layed retellings for all of the 235 experimental sub-
jects were transcribed at the word level. We sup-

3



Anna / Thompson / of South / Boston / em-
ployed / as a cook / in a school / cafeteria /
reported / at the police / station / that she had
been held up / on State Street / the night be-
fore / and robbed of / fifty-six dollars. / She
had four / small children / the rent was due /
and they hadn’t eaten / for two days. / The po-
lice / touched by the woman’s story / took up
a collection / for her.

Figure 1: Text of WLM narrative segmented into 25 story
elements.

Ann Taylor worked in Boston as a cook. And
she was robbed of sixty-seven dollars. Is that
right? And she had four children and reported
at the some kind of station. The fellow was
sympathetic and made a collection for her so
that she can feed the children.

Figure 2: Sample retelling of the Wechsler narrative.

plemented the data collected from our experimental
subjects with transcriptions of retellings from 26 ad-
ditional individuals whose diagnosis had not been
confirmed at the time of publication or who did
not meet the eligibility criteria for this study. Par-
tial words, punctuation, and pause-fillers were ex-
cluded from all transcriptions used for this study.
The retellings were manually scored according to
published guidelines. In addition, we manually pro-
duced word-level alignments between each retelling
and the source narrative presented in Figure 1.

Word alignment for phrase-based machine trans-
lation typically takes as input a sentence-aligned
parallel corpus or bi-text, in which a sentence on
one side of the corpus is a translation of the sen-
tence in that same position on the other side of the
corpus. Since we are interested in learning how to
align words in the source narrative to words in the
retellings, our primary parallel corpus must consist
of source narrative text on one side and retelling
text on the other. Because the retellings contain
omissions, reorderings, and embellishments, we are
obliged to consider the full text of the source narra-
tive and of each retelling to be a “sentence” in the
parallel corpus.

We compiled three parallel corpora to be used for
the word alignment experiments:

• Corpus 1: A roughly 500-line source-to-
retelling corpus consisting of the source narra-

tive on one side and each retelling on the other.

• Corpus 2: A roughly 250,000-line pairwise
retelling-to-retelling corpus, consisting of ev-
ery possible pairwise combination of retellings.

• Corpus 3: A roughly 900-line word identity
corpus, consisting of every word that appears
in every retelling and the source narrative.

The explicit parallel alignments of word identities
that compose Corpus 3 are included in order to en-
courage the alignment of a word in a retelling to that
same word in the source, if it exists.

The word alignment techniques that we use are
entirely unsupervised. Therefore, as in the case
with most experiments involving word alignment,
we build a model for the data we wish to evalu-
ate using that same data. We do, however, use the
retellings from the 26 individuals who were not ex-
perimental subjects as a development set for tuning
the various parameters of our system, which is de-
scribed below.

4 Word Alignment

4.1 Baseline alignment

We begin by building two word alignment models
using the Berkeley aligner (Liang et al., 2006), a
state-of-the-art word alignment package that relies
on IBM mixture models 1 and 2 (Brown et al., 1993)
and an HMM. We chose to use the Berkeley aligner,
rather than the more widely used Giza++ alignment
package, for this task because its joint training and
posterior decoding algorithms yield lower alignment
error rates on most data sets and because it offers
functionality for testing an existing model on new
data and for outputting posterior probabilities. The
smaller of our two Berkeley-generated models is
trained on Corpus 1 (the source-to-retelling parallel
corpus described above) and ten copies of Corpus
3 (the word identity corpus). The larger model is
trained on Corpus 1, Corpus 2 (the pairwise retelling
corpus), and 100 copies of Corpus 3. Both models
are then tested on the 470 retellings from our 235 ex-
perimental subjects. In addition, we use both mod-
els to align every retelling to every other retelling so
that we will have all pairwise alignments available
for use in the graph-based model.
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Figure 3: Depiction of word graph.

The first two rows of Table 2 show the preci-
sion, recall, F-measure, and alignment error rate
(AER) (Och and Ney, 2003) for these two Berkeley
aligner models. We note that although AER for the
larger model is lower, the time required to train the
model is significantly larger. The alignments gen-
erated by the Berkeley aligner serve not only as a
baseline for comparison but also as a springboard
for the novel graph-based method of alignment we
will now discuss.

4.2 Graph-based refinement
Graph-based methods, in which paths or random
walks are traced through an interconnected graph of
nodes in order to learn more about the nodes them-
selves, have been used for various NLP tasks in in-
formation extraction and retrieval, including web-
page ranking (PageRank (Page et al., 1999)) and ex-
tractive summarization (LexRank (Erkan and Radev,
2004; Otterbacher et al., 2009)). In the PageRank al-
gorithm, the nodes of the graph are web pages and
the edges connecting the nodes are the hyperlinks
leading from those pages to other pages. The nodes
in the LexRank algorithm are sentences in a docu-
ment and the edges are the similarity scores between
those sentences. The likelihood of a random walk
through the graph starting at a particular node and
ending at another node provides information about
the relationship between those two nodes and the im-
portance of the starting node.

In the case of our graph-based method for word
alignment, each node represents a word in one of the
retellings or in the source narrative. The edges are

Figure 4: Changes in AER as λ increases.

the normalized posterior-weighted alignments that
the Berkeley aligner proposes between each word
and (1) words in the source narrative, and (2) words
in the other retellings, as depicted in Figure 3. Start-
ing at a particular node (i.e., a word in one of the
retellings), our algorithm can either walk from that
node to another node in the graph or to a word in
the source narrative. At each step in the walk, there
is a set probability λ that determines the likelihood
of transitioning to another retelling word versus a
word in the source narrative. When transitioning to
a retelling word, the destination word is chosen ac-
cording to the posterior probability assigned by the
Berkeley aligner to that alignment. When the walk
arrives at a source narrative word, that word is the
new proposed alignment for the starting word.

For each word in each retelling, we perform 1000
of these random walks, thereby generating a distri-
bution for each retelling word over all of the words
in the source narrative. The new alignment for the
word is the source word with the highest frequency
in that distribution.

We build two graphs on which to carry out these
random walks: one graph is built using the align-
ments generated by the smaller Berkeley alignment
model, and the other is built from the alignments
generated by the larger Berkeley alignment model.
Alignments with posterior probabilities of 0.5 or
greater are included as edges within the graph, since
this is the default posterior threshold used by the
Berkeley aligner. The value of λ, the probability of
walking to a retelling word node rather than a source
word, is tuned to the development set of retellings,
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Model P R F AER
Berkeley-Small 72.1 79.6 75.6 24.5
Berkeley-Large 78.6 80.5 79.5 20.5

Graph-Small 77.9 81.2 79.5 20.6
Graph-Large 85.4 76.9 81.0 18.9

Table 2: Aligner performance comparison.

discussed in Section 3.3. Figure 4 shows how AER
varies according to the value of λ for the two graph-
based approaches.

Each of these four alignment models produces,
for each retelling, a set of word pairs containing one
word from the original narrative and one word from
the retelling. The manual gold alignments for the
235 experimental subjects were evaluated against
the alignments produced by each of the four models.
Table 2 shows the accuracy of word alignment us-
ing these two graph-based models in terms of preci-
sion, accuracy, F-measure, and alignment error rate,
alongside the same measures for the two Berkeley
models. We see that each of the graph-based models
outperforms the Berkeley model of the same size.
The performance of the small graph-based model is
especially remarkable since it an AER comparable
to the large Berkeley model while requiring signif-
icantly fewer computing resources. The difference
in processing time between the two approaches was
especially remarkable: the graph-based model com-
pleted in only a few minutes, while the large Berke-
ley model required 14 hours of training.

Figures 5 and 6 show the results of aligning
the retelling presented in Figure 2 using the small
Berkeley model and the large graph-based model,
respectively. Comparing these two alignments, we
see that the latter model yields more precise align-
ments with very little loss of recall, as is borne out
by the overall statistics shown in Table 2.

5 Scoring

The published scoring guidelines for the WLM spec-
ify the source words that compose each story ele-
ment. Figure 7 displays the source narrative with
the element IDs (A− Y ) and word IDs (1− 65) ex-
plicitly labeled. Element Q, for instance, consists of
the words 39 and 40, small children. Using this in-
formation, we extract scores from the alignments as
follows: for each word in the original narrative, if

[A anna1] [B thompson2] [C of3 south4]
[D boston5] [E employed6] [F as7 a8

cook9] [G in10 a11 school12] [H cafeteria13]
[I reported14] [J at15 the16 police17] [K
station18] [L that19 she20 had21 been22 held23

up24] [M on25 state26 street27] [N the28

night29 before30] [O and31 robbed32 of33] [P
fifty-six34 dollars35] [Q she36 had37 four38]
[R small39 children40] [S the41 rent42 was43
due44] [T and45 they46 had47 n’t48 eaten49]
[U for50 two51 days52] [V the53 police54] [W
touched55 by56 the57 woman’s58 story59] [X
took60 up61 a62 collection63] [Y for64 her65]

Figure 7: Text of Wechsler Logical Memory narrative
with story-element labeled bracketing and word IDs.

anna(1) : A
thompson(2) : B
employed(6) : E

boston(5) : D
cook(9) : F

robbed(32) : O
fifty-six(34) : P

four(38) : Q
children(40) : R
reported(14) : I

station(18) : K
took(60) : X

collection(63) : X
for(64) : Y
her(65) : Y

Figure 8: Source content words from the alignment in
Figure 6 with corresponding story element IDs.

that word is aligned to a word in the retelling, the
story element that it is associated with is considered
to be recalled. Figure 8 shows the story elements
extracted from the word alignments in Figure 6.

When we convert alignments to scores in this way,
any alignment can be mapped to an element, even an
alignment between function words such as the and
of, which would be unlikely to indicate that the story
element had been recalled. To avoid such scoring er-
rors, we disregard any word-alignment pair contain-
ing a source function word. The two exceptions to
this rule are the final two words, for her, which are
not content words but together make a single story
element.

The element-level scores induced from the four
word alignments for all 235 experimental sub-
jects were evaluated against the manual per-element
scores. We report the precision, recall, and f-
measure for all four alignment models in Table 3. In
addition, report Cohen’s kappa as a measure of reli-
ability between our automated scores and the man-
ually assigned scores. We see that as AER im-
proves, scoring accuracy also improves, with the
large graph-based model outperforming all other
models in terms of precision, f-measure, and inter-
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ann(1) : anna(1)
worked(3) : employed(6)

in(4) : in(10)
boston(5) : boston(5)

as(6) : as(7)
a(7) : a(8)

cook(8) : cook(9)
and(9) : and(31)

robbed(12) : robbed(32)
of(13) : of(33)

dollars(15) : dollars(35)
is(16) : was(43)

that(17) : that(19)
and(19) : and(45)
she(20) : she(36)
had(21) : had(37)

four(22) : four(38)
children(23) : children(40)
reported(25) : reported(14)

at(26) : at(15)
the(27) : the(16)

some(28) : police(17)
station(31) : station(18)

made(37) : up(61)

made(37) : took(60)
a(38) : a(62)

collection(39) : collection(63)
for(40) : for(64)
her(41) : her(65)
so(42) : woman’s(58)

she(44) : she(20)

Figure 5: Word alignment generated by the small Berkeley alignment model with retelling words italicized.

ann(1) : anna(1)
taylor(2) : thompson(2)

worked(3) : employed(6)
in(4) : in(10)

boston(5) : boston(5)
as(6) : as(7)

a(7) : a(8)
cook(8) : cook(9)

robbed(12) : robbed(32)
of(13) : of(33)

sixty-seven(14) : fifty-six(34)
dollars(15) : dollars(35)

she(20) : she(36)
had(21) : had(37)
four(22) : four(38)

children(23) : children(40)
reported(25) : reported(14)

at(26) : at(15)

the(27) : the(16)
station(31) : station(18)

made(37) : took(60)
a(38) : a(62)

collection(39) : collection(63)
for(40) : for(64)
her(41) : her(65)

Figure 6: Word alignment generated by the large graph-based model with retelling words italicized.

Model P R F κ
Berkeley-Small 87.2 88.9 88.0 76.1
Berkeley-Large 86.8 90.7 88.7 77.1
Graph-Small 84.7 93.6 88.9 76.9
Graph-Big 88.8 89.3 89.1 78.3

Table 3: Scoring accuracy results.

rater reliability. The scoring accuracy levels re-
ported here are comparable to the levels of inter-rater
agreement typically reported for the WLM, and re-
liability between our automated scores and the man-
ual scores, as measured by Cohen’s kappa, is well
within the ranges reported in the literature (Johnson
et al., 2003). As will be shown in the following sec-
tion, scoring accuracy is very important for achiev-
ing high diagnostic classification accuracy, which is
the ultimate goal of this work.

6 Diagnostic Classification

As discussed in Section 2, poor performance on the
Wechsler Logical Memory test is associated with
Mild Cognitive Impairment. We now use the scores
we have extracted from the word alignments as fea-
tures with a support vector machine (SVM) to per-
form diagnostic classification for distinguishing sub-
jects with MCI from those without. For each of the
235 experimental subjects, we generate 2 summary
scores: one for the immediate retelling and one for

the delayed retelling. The summary score ranges
from 0, indicating that no elements were recalled,
to 25, indicating that all elements were recalled. In
addition to the summary score, we also provide the
SVM with a vector of 50 per-element scores: for
each of the 25 element in each of the two retellings
per subject, there is a vector element with the value
of 0 if the element was not recalled, or 1 if the el-
ement was recalled. Since previous work has indi-
cated that certain elements may be more powerful in
their ability to predict the presence of MCI, we ex-
pect that giving the SVM these per-elements scores
may improve classification performance. To train
and test our classifiers, we use the WEKA API (Hall
et al., 2009) and LibSVM (Chang and Lin, 2011),
with a second-order polynomial kernel and default
parameter settings.

We evaluate the performance of the SVMs us-
ing a leave-pair-out validation scheme (Cortes et al.,
2007; Pahikkala et al., 2008). In the leave-pair-out
technique, every pairing between a negative exam-
ple and a positive example is tested using a classi-
fier trained on all of the remaining examples. The
resulting pairs of scores can be used to calculate
the area under the receiver operating characteristic
(ROC) curve (Egan, 1975), which is a plot of the
false positive rate of a classifier against its true pos-
itive rate. The area under this curve (AUC) has a
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Model Summ. (s.d.) Elem. (s.d.)
Manual Scores 73.3 (3.76) 81.3 (3.32)
Berkeley-Small 73.7 (3.74) 77.9 (3.52)
Berkeley-Big 75.1 (3.67) 79.2 (3.45)
Graph-Small 74.2 (3.71) 78.9 (3.47)
Graph-Big 74.8 (3.69) 78.6 (3.49)

Table 4: Classification accuracy results (AUC).

value of 0.5 when the classifier performs at chance
and a value 1.0 when perfect classification accuracy
is achieved.

Table 4 shows the classification results for the
scores derived from the four alignment models along
with the classification results using the examiner-
assigned manual scores. It appears that, in all cases,
the per-element scores are more effective than the
summary scores in classifying the two diagnostic
groups. In addition, we see that our automated
scores have classificatory power comparable to that
of the manual gold scores, and that as scoring ac-
curacy increases from the small Berkeley model to
the graph-based models and bigger models, classifi-
cation accuracy improves. This suggests both that
accurate scores are crucial for accurate classifica-
tion and that pursuing even further improvements in
word alignment is likely to result in improved di-
agnostic differentiation. We note that although the
large Berkeley model achieved the highest classi-
fication accuracy, this very slight margin of differ-
ence may not justify its significantly greater compu-
tational requirements.

7 Conclusions and Future Work

The work presented here demonstrates the utility
of adapting techniques drawn from a diverse set of
NLP research areas to tasks in biomedicine. In par-
ticular, the approach we describe for automatically
analyzing clinically elicited language data shows
promise as part of a pipeline for a screening tool for
Mild Cognitive Impairment. Our novel graph-based
approach to word alignment resulted in large reduc-
tions in alignment error rate. These reductions in er-
ror rate in turn led to human-level scoring accuracy
and improved diagnostic classification.

As we have mentioned, the methods outlined here
are general enough to be used for other episodic
recall and description scenarios. Although the re-

sults are quite robust, several enhancements and im-
provements should be made before we apply the sys-
tem to other tasks. First, although we were able to
achieve decent word alignment accuracy, especially
with our graph-based approach, many alignment er-
rors remain. As shown in Figure 4, the graph-based
alignment technique could potentially result in an
AER of as low as 11%. We expect that our deci-
sion to select as a new alignment the most frequent
source word over the distribution of source words at
the end of 1000 walks could be improved, since it
does not allow for one-to-many mappings. In addi-
tion, it would be worthwhile to experiment with sev-
eral posterior thresholds, both during the decoding
step of the Berkeley aligner and in the graph edges.

In order to produce a viable clinical screening
tool, it is crucial that we incorporate speech recogni-
tion in the pipeline. Our very preliminary investiga-
tion into using ASR to generate transcripts for align-
ment seems promising and surprisingly robust to the
problems that might be expected when working with
noisy audio. In our future work, we also plan to ex-
amine longitudinal data for individual subjects to see
whether our techniques can detect subtle differences
in recall and coherence between a recent retelling
and a series of earlier baseline retellings. Since the
metric commonly used to quantify the progression
of dementia, the Clinical Dementia Rating, relies on
observed changes in cognitive function over time,
longitudinal analysis of performance on the Wech-
sler Logical Memory task may be the most promis-
ing application for our research.
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