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Montréal, Canada, June 7, 2012. c©2012 Association for Computational Linguistics

An approximation approach to the problem of the acquisition of
phonotactics in Optimality Theory

Giorgio Magri
Laboratoire de Linguistique Formelle, CNRS and University of Paris 7

magrigrg@gmail.com

Abstract

The problem of the acquisition of phono-
tactics in Optimality Theory is intractable.
This paper offers a way to cope with this
hardness result: the problem is reformu-
lated as a well known integer program (the
Assignment problem with linear side con-
straints) paving the way for the applica-
tion to phonotactics of approximation al-
gorithms recently developed for integer
programming.

Knowledge of the phonotactics of a language
is knowledge of its distinction between licit and
illicit forms. The acquisition of phonotactics rep-
resents a distinguished and important stage of lan-
guage acquisition. In fact, in carefully controlled
experimental conditions, nine-month-old infants
already react differently to licit and illicit sound
combinations (Jusczyk et al., 1993). They thus
display knowledge of phonotactics already at an
early stage of language development.

Usually, the problem of the acquisition of the
phonotactics of a language given a finite set of lin-
guistic data is formalized as the problem of find-
ing a smallest language in the typology that is
consistent with the data (Berwick, 1985; Manzini
and Wexler, 1987; Prince and Tesar, 2004; Hayes,
2004; Fodor and Sakas, 2005). Section 1 for-
mulates the problem of the acquisition of phono-
tactics along these lines within the mainstream
phonological framework of Optimality Theory
(Prince and Smolensky, 2004; Kager, 1999).

Unfortunately, (such a formulation of) the prob-
lem of the acquisition of phonotactics in OT turns
out to be intractable (NP-complete): for any at-
tempted efficient solution algorithm, there are
some instances of the problem where the algo-
rithm fails (Magri, 2010; Magri, 2012b). This
hardness result holds for the universal formulation
of the problem, in the sense of Heinz et al. (2009):

there are no restrictions on the constraint set that
defines the OT typology and indeed the OT typol-
ogy itself figures as an input to the problem.

There are two strategies to cope with this hard-
ness result. One approach weakens the formu-
lation of the problem through proper restrictions
on the constraint set: certain constraint sets are
implausible from a phonological perspective, and
should therefore be ignored in the proper formula-
tion of the problem (Magri, 2011; Magri, 2012c).
This approach raises interesting challenges, as it
requires a through investigation of the algorith-
mic implications of various generalizations devel-
oped by phonologists on what counts as a “plausi-
ble” OT constraint set. Another approach is to by-
pass this difficulty, and weaken the formulation of
the problem by lowering the standard for success:
we settle on an approximate solution, namely a
“small” language rather than a smallest language.
This paper paves the way for the latter approach.

I focus on the specific formulation of the prob-
lem of the acquisition of OT phonotactics devel-
oped in Prince and Tesar (2004). In Sections 2 and
3, I show that this formulation of the problem can
be restated as a classical integer program, namely
the Assignment problem with liner side constraints
(AssignLSCsPbm). The theory of approximation
algorithms for integer programing is a blooming
field of Computer Science (Bertsimas and Weis-
mantel, 2005). In particular, powerful approxi-
mation algorithms have been recently developed
for the AssignLSCsPbm. A state-of-the-art algo-
rithm is due to Arora et al. (2002). The integer
programming formulation developed in this paper
thus paves the way for a new approximation ap-
proach to the problem of modeling the acquisition
of phonotactics within OT. In Magri (2012a), I re-
port simulation results with Arora’s et. al. (2002)
algorithm on various instances of the problem of
the acquisition of phonotactics.
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1 Formulation of the problem

1.1 Basic formulation
A typology in Optimality Theory (OT) is defined
through a 4-tuple τ = (X ,Y, Gen,C), where X
is the set of underlying forms; Y is the set of
candidate surface forms; Gen is the generating
function that pairs an underlying form x ∈ X
with a set Gen(x) ⊆ Y of surface forms called
the candidates for x; and C is the set of n con-
straints C1, . . . , Cn. Each constraint Ci is a func-
tion that maps a pair (x, y) of an underlying form
x ∈ X and a candidate y ∈ Gen(x) into a num-
ber Ci(x, y), called the corresponding number of
violations. The constraint set is split into the sub-
setM of markedness constraints and the subset F
of faithfulness constraints. As the constraint set is
finite and can therefore only distinguish among a
finite number of forms, I can assume that the set of
underlying forms X is finite, as well as the candi-
date set Gen(x) for any underlying form x ∈ X .

Let π be a ranking, namely a total order over
the constraint set. I denote by OTπ : X → Y the
OT grammar corresponding to the ranking π, as
defined in Prince and Smolensky (2004). And I
denote by L(π) the language corresponding to the
ranking π, namely the range of the correspond-
ing grammar OTπ (or, more explicitly, the set of
all and only those surface forms ŷ ∈ Y such that
there exists an underlying form x ∈ X such that
OTπ(x) = ŷ). Throughout the paper, I use x for an
underlying form, ŷ for a surface form which is an
intended winner, and y for a surface form which is
an intended loser.

The Problem of the acquisition of phonotactics
in OT can be stated as in (1) in its universal for-
mulation (Berwick, 1985; Manzini and Wexler,
1987; Prince and Tesar, 2004; Hayes, 2004). We
are given an OT typology as well as a finite set
P ⊆ X × Y of linguistic data. These data consist
of pairs (x, ŷ) of an underlying form x ∈ X and a
corresponding intended winner form ŷ ∈ Gen(x).
I assume that P is consistent, namely that there
exists at least a ranking π such that OTπ(x) = ŷ
for every pair (x, ŷ) ∈ P . We are asked to return
a ranking π which has two properties. First, π is
consistent: the corresponding OT grammar maps
x into ŷ for every pair (x, ŷ) ∈ P . Second, π is
restrictive: there exists no other ranking π′ consis-
tent with P too such that the language L(π′) cor-
responding to π′ is a proper subset of the language
L(π) corresponding to π. A solution algorithm

needs to run in time polynomial in the number of
constraints |C| and the numbers of forms |X |, |Y|
(recall that X and Y are finite).

(1) given: an OT typology τ = (X ,Y, Gen,C)
and a finite set P ⊆ X × Y of data;

find: a ranking π s.t. P ⊆ OTπ and there is
no π′ s.t. P ⊆ OTπ′ and L(π′) ⊂ L(π);

time: max{|C|, |X |, |Y|}.

Problem (1) is NP-complete: there exists no effi-
cient algorithm that is able to solve any instance of
the problem (Magri, 2010; Magri, 2012b).

An interesting variant of the problem (1) as-
sumes that we are given only the surface forms but
not the corresponding underlying forms. Prince
and Tesar (2004) and Hayes (2004) suggest that
we can circumvent this difficulty as follows. As-
sume that the set of underlying forms and the
set of surface forms coincide, namely X = Y .
Assume furthermore that the typology is output
driven (Tesar, 2008): a surface form ŷ belongs to
the languageL(π) corresponding to a ranking π iff
the corresponding grammar OTπ maps that form ŷ
(construed as an underlying form) into itself (con-
strued as a surface form), as stated in (2)

(2) ŷ ∈ L(π) ⇐⇒ OTπ(ŷ) = ŷ.

In this case, a way to cope with the lack of the
underlying forms is to assume that the underlying
form corresponding to a given surface form ŷ is
the completely faithful underlying form ŷ itself.
For this reason, I stick with the formulation (1) of
the problem, whereby we are provided with both
surface and underlying forms.

1.2 ERC notation

Consider an underlying form x ∈ X and two dif-
ferent candidate forms y, ŷ ∈ Gen(x), with the
convention that ŷ is the intended winner for x
while y is a loser. Following Prince (2002), all
the relevant information concerning the underly-
ing/winner/loser form triplet (x, ŷ, y) can be sum-
marized into the corresponding elementary rank-
ing condition (ERC), namely the n-tuple e with
entries e1, . . . , en ∈ {L, e,W} defined as in (3).

(3) (x, ŷ, y) =⇒ e = e1 . . . ei . . . en

ei
.
=


W if Ci(x, ŷ) < Ci(x, y)
L if Ci(x, ŷ) > Ci(x, y)
e if Ci(x, ŷ) = Ci(x, y)
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In words, The ith entry ei is ei = W iff con-
straint Ci assigns more violations to (x, y) than to
(x, ŷ) and thus favors the intended winner ŷ over
the loser y; ei = L iff the opposite holds; finally,
ei = e iff the constraint Ci assigns the same num-
ber of violations to the two pairs (x, y) and (x, ŷ).

A ranking π can be represented as a permuta-
tion over {1, . . . , n}, with the understanding that
π(i) = j means that the ranking π assigns con-
straint Ci to the jth stratum of the ranking, with
the convention that the stratum corresponding to
j = n (to j = 1) is the top (bottom) of the rank-
ing. For every such permutation π, let eπ be the
n-tuple e with the components reordered accord-
ing to π in decreasing order, as in (4).

(4) eπ
.
= (eπ(n), . . . , eπ(1))

The ERC e is OT-consistent with π provided the
left-most component of eπ different from e is a W.

For each of the pairs (x, ŷ) in the set P given
with an instance of the problem (1), consider each
loser candidate y ∈ Gen(x) different from ŷ,
construct the ERC corresponding to the underly-
ing/winner/loser form triplet (x, ŷ, y) as in (3) and
organize all these ERCs one underneath the other
into an ERC matrix with n columns and many
rows (the order of the ERCs does not matter). I
denote a generic ERC matrix by E and I say that
a ranking π is OT-consistent with E provided it is
consistent with each of its ERCs. The problem of
the acquisition of phonotactics in (1) can thus be
equivalently restated in ERC notation as in (5).

(5) given: an OT typology τ = (X ,Y, Gen,C)
and an ERC matrix E;

find: a ranking π s.t. π is OT-consistent with
E and there is no π′ consistent with E
too s.t. L(π′) ⊂ L(π);

time: max{|C|, |X |, |Y|}.

The latter formulation of the problem is only par-
tially stated in terms of ERC notation, as the con-
dition L(π′) ⊂ L(π) still requires knowledge of
the entire OT typology. This difficulty is tackled
in the next Subsection.

1.3 Restrictiveness measures
Let a restrictiveness measure be a function µ
which takes a ranking π and returns a number
µ(π) ∈ N that provides a relative measure of the
size of the language L(π) corresponding to π, in
the sense that the (strict) monotonicity property in

(6) holds for any two rankings π, π′.

(6) If L(π′) ⊂ L(π), then µ(π′) < µ(π).

Any solution of the optimization problem (7) is a
solution of the corresponding instance (5) of the
problem of the acquisition of phonotactics. In fact,
if π solves (7) then there cannot exist any other
ranking π′ consistent with the ERC matrix that
corresponds to a smaller language L(π′) ⊂ L(π),
since (6) would imply that µ(π′) < µ(π), contra-
dicting the hypothesis that π is a solution of (7).

(7) minimize: µ(π);
subject to: π is OT-consistent with the given

ERC matrix E;
time: number of columns and rows of E.

As problem (7) is stated completely in terms of
the ERC matrix E, the time required by a solution
algorithm needs to scale just with the size of E.

From now on, I will focus on the new formu-
lation (7). Thus, I need a restrictiveness measure
(6). Of course, not just any restrictiveness mea-
sure will do. For instance, the function (8), which
pairs a ranking π with the cardinality of its lan-
guage L(π), trivially satisfies (6).

(8) µ(π)
.
= |L(π)|.

Yet, this is not a good restrictiveness measure, be-
cause there seems to be no way to compute µ(π)
without actually computing the language L(π),
which requires knowledge of the entire typology.

Prince and Tesar (2004) suggest a better can-
didate, which is defined for any ranking π as in
(9). Recall that the constraint set C = F ∪ M
is split up into the subset F of faithfulness con-
straints and the subset M of markedness con-
straints. For each faithfulness constraint F ∈ F ,
determine the number µ(F ) of markedness con-
straints M ∈ M ranked by π below that faithful-
ness constraint, i.e. π(F ) > π(M). Finally, add
up all these numbers µ(F ) together to determine
the value µ(π).

(9) µ(π)
.
=
∑
F∈F

∣∣∣{M ∈M|π(F ) > π(M)}
∣∣∣︸ ︷︷ ︸

µ(F )

Is the function µ defined in (9) is a restrictive-
ness measure? namely, does it satisfy condition
(6)? Prince and Tesarconjecture that it is, based
on the following intuition. Markedness (faith-
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fulness) constraints work against (towards) the
preservation of the underlying contrasts. Thus, a
small (large) language should arise by ranking the
markedness (faithfulness) constraints as high as
possible. And a ranking that ranks the markedness
(faithfulness) constraints as high (low) as possi-
ble is a ranking that minimizes Prince and Tesar’s
function (9).

I endorse Prince and Tesar’s conjecture that (9)
is a restrictiveness measure, at least for the cases of
interest.1 In Magri (2012a), I backup this claim by
looking at a case study, namely the typology cor-
responding to the large constraint set considered in
Pater and Barlow (2003). In the rest of this paper, I
thus focus on the reformulation (7) of the problem
of the acquisition of phonotactics, with µ defined
as in (9). The latter formulation of the problem of
the acquisition of phonotactics is NP-complete too
(Magri, 2010; Magri, 2012b). In the rest of this
paper, I thus develop an integer programming for-
mulation of the latter problem, that allows approx-
imation algorithms for integer programming to be
used in order to tackle the problem of the acquisi-
tion of phonotactics. The reasoning is split up into
two steps. In Section, 2, I develop an integer pro-
gramming formulation of the objective function,
namely the alleged restrictiveness measure in (9).
And in Section 3, I turn to an integer programming
formulation of the OT-consistency condition.

2 An integer programming restatement
of the restrictiveness measure

A square matrix of order n is a collection of
n2 real numbers displayed into n columns and

1 Prince and Tesar’s conjecture that (9) is a restrictive-
ness measure runs into a straightforward problem when the
constraint set C contains both positional and faithfulness con-
straints. Yet, there are various ways to circumvent this diffi-
culty posed by positional constraints. One way could be to
weigh differently the two types of faithfulness constraints in
the determination of restrictiveness. Thus, we could switch
from the definition in (9) to the variant in (i), where Fpos is
the set of positional faithfulness constraints,Fgen is the set of
general faithfulness constraints and α is a positive coefficient.

(i) µα(π)
.
=

∑
F∈Fpos

∣∣∣∣{M ∈M ∣∣∣π(F ) > π(M)
}∣∣∣∣+

+α
∑

F∈Fgen

∣∣∣∣{M ∈M ∣∣∣π(F ) > π(M)
}∣∣∣∣

Another way to deal with positional faithfulness constraints
could be to ignore altogether rankings where a positional
faithfulness constraint is ranked below the corresponding
general faithfulness constraint. This is trivial to obtain, by
adding a proper ERC to the ERC matrix given with an in-
stance of the problem (7).

n rows. I denote a square matrix of order n as
X = [xi,j ]

n
i,j=1, with the understanding that xi,j

is the element of the matrix X which sits in the
ith row and the jth column. I denote by Rn×n the
vector space of all square matrices of order n.

A square matrix X = [xi,j ]
n
i,j=1 is called a per-

mutation matrix iff its elements xi,j satisfy the fol-
lowing three conditions: (i) they are all 0 or 1; (ii)
each column contains a unique 1; (iii) each row
contains a unique 1. I denote by Pn the set of all
n! permutation matrices of order n. To illustrate, I
list Pn with n = 3 in (10).

(10)

[
1 0 0
0 1 0
0 0 1

] [
1 0 0
0 0 1
0 1 0

] [
0 1 0
1 0 0
0 0 1

]
[

0 0 1
1 0 0
0 1 0

] [
0 1 0
0 0 1
1 0 0

] [
0 0 1
0 1 0
1 0 0

]

Permutation matrices play a special role in convex
geometry (Webster, 1984, par. 5.8).

There is a natural correspondence between per-
mutation matrices of order n and rankings over n
constraints C1, . . . , Cn. Recall that a ranking π
is a permutation over {1, 2, . . . , n}, with the un-
derstanding that π(i) = j means that the rank-
ing π assigns the constraint Ci to the jth stratum,
with the convention that the stratum correspond-
ing to j = n is the top stratum. I use i as the
index ranging over constraints and j as the in-
dex ranging over strata. Thus, a ranking π can
be identified with that (unique) permutation ma-
trix X = [xi,j ]

n
i,j=1 ∈ Pn such that xi,j = 1 iff the

ranking π assigns the constraint Ci to the jth stra-
tum, namely π(i) = j. To illustrate, I list in (11)
the rankings over {C1, C2, C3} corresponding to
the six permutation matrices in (10), respectively.

(11) C3�C2�C1, C2�C3�C1, C3�C1�C2,
C1�C3�C2, C2�C1�C3, C1�C2�C3

I denote by πX the ranking corresponding to a per-
mutation matrix X ∈ Pn and by Xπ ∈ Pn the
permutation matrix corresponding to a ranking π.
Prince and Tesar’s restrictiveness measure (9) of
a ranking π can be straightforwardly read off the
corresponding permutation matrix Xπ, as follows.

Define the scalar product 〈X,Y〉 ∈ R
between two arbitrary square matrices X =
[xi,j ]

n
i,j=1,Y = [yi,j ]

n
i,j=1 ∈ Rn×n as in (12)

(namely as the Euclidean scalar product of Rn2
).
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(12) 〈X,Y〉 .=
n∑

i,j=1

xi,jyi,j .

A function f : Rn×n → R is called linear iff there
exists a square matrix Σ ∈ Rn×n such that (13)
holds for any square matrix X ∈ Rn×n.

(13) f(X) = 〈Σ,X〉.

Linear functions are the “simplest” possible con-
vex functions, namely the ones that yield the easi-
est optimization problems.

Let me assume that the first m constraints in
C are the faithfulness constraints while the re-
maining n − m constraints are the markedness
constraints, namely that F = {C1, . . . , Cm} and
M = {Cm+1, . . . , Cn}. Consider the matrix
Σn,m ∈ Rn×n defined as follows: its first m rows
each have the form [0, 1, . . . , n− 2, n− 1]; the re-
maining n − m rows are all null. To illustrate, I
give in (14) the matrix Σn,m with n = 7,m = 4.

(14) Σ7,4
.
=



0 1 2 3 4 5 6
0 1 2 3 4 5 6
0 1 2 3 4 5 6
0 1 2 3 4 5 6

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


The following Claim 1 explains how to compute

the restrictiveness µ(π) of a ranking π according
to (9) out of the corresponding permutation ma-
trix Xπ; see Appendix A.1. This Claim shows an
important property of Prince and Tesar’s restric-
tiveness measure: it can be described as a linear
function over the set of permutation matrices.

Claim 1 The restrictiveness µ(π) of a ranking π
according to (9) can be computed as follows:

(15) µ(π) = 〈Σn,m,Xπ〉 −
1

2
m(m− 1)

namely as the scalar product 〈Σn,m,X〉 between
the matrix Σn,m and the corresponding permuta-
tion matrix Xπ, minus the constant 1

2m(m − 1)
which does not depend on the ranking.2 �

2I have noted in footnote 1 that the conjecture that the
function µ in (9) is a restrictiveness measure runs into prob-
lems for constraint sets that contain both general and posi-
tional faithfulness constraints. And I have suggested that a
possible way out is to to switch from the definition (9) to the
variant in (i). Let me now point out that the latter variant too
can be described as a linear function over permutation ma-
trices. In fact, let Σn,m,α be as the matrix Σn,m defined

The problem of the acquisition of phonotactics
(7) with Prince and Tesar’s alleged restrictiveness
measure (9) can thus be restated as the optimiza-
tion problem (16).

(16) minimize: 〈Σn,m,X〉;
subject to: X ∈ Pn and πX is consis-

tent with the given ERC ma-
trix E.

Here, I have dropped the constant 1
2m(m − 1)

which appears in (15), as it does not affect the op-
timization problem.

3 An integer programming formulation
of the OT-consistency condition

The reformulation in (16) makes use of the notion
of OT-consistency with a given ERC matrix and
this notion is currently stated in terms of rankings
rather than in terms of the corresponding permu-
tation matrices. We need to restate the latter con-
dition directly in terms of permutation matrices.
In this Section, I point out two strategies for do-
ing that. The first approach hinges on a classical
observation by Prince and Smolensky (2004) that
OT consistency can be restated as linear consis-
tency in the case of exponentially spaced weights.
The second approach requires a larger number of
linear conditions, but is shown to provide a better
reformulation (i.e. a tighter relaxation).

3.1 An initial formulation of OT-consistency

Given an ERC e = [e1, . . . , en], consider the
corresponding square matrix Ae = [ai,j ]

n
i,j=1 ∈

Rn×n defined in (17). Here, ti is the sign of the
ERC’s entry ei, namely ti is equal to −1, 0 or
+1 depending on whether ei is equal to L, e or
W. Thus, the entry ai,j in the ith row and the jth
column of the matrix (17) consists of the sign ti
multiplied by 2j .

(17) Ae =


21t1 22t1 . . . 2jt1 . . . 2nt1

...
21ti 22ti . . . 2jti . . . 2nti

...
21tn 22tn . . . 2jtn . . . 2ntn


Intuitively, this entry ai,j = 2jti is the weight of
the sign ti under the assumption that the constraint

above, but with the rows corresponding to general faithful-
ness constraints multiplied by α. Then, µα(X) coincides
with 〈Σn,m,α,X〉, but for a constant.
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Ci is assigned to the jth stratum.
The following claim offers a restatement of

OT-consistency between an ERC and a ranking
in terms of the permutation matrix correspond-
ing to that ranking. This claim is just a re-
statement in matrix form of the observation by
Prince and Smolensky (2004) that OT consistency
is equivalent to a linear condition with exponen-
tially spaced weights; see Subsection A.2.

Claim 2 A ranking π is OT-consistent with an
ERC e iff 〈Ae,Xπ〉 ≥ 0, where 〈Ae,Xπ〉 is the
scalar product (12) between the matrix Ae corre-
sponding to the ERC e and the permutation matrix
Xπ corresponding to the ranking π. �

The current formulation (16) of the problem of
the acquisition of phonotactics can thus be restated
as the optimization problem in (18).

(18) FIRST INTEGER REFORMULATION:
minimize: 〈Σn,m,X〉;

subject to: X∈Pn s.t. 〈Ae,X〉 ≥ 0 for ev-
ery ERC e of the ERC matrix E.

Problem (18) is an optimization problem over per-
mutation matrices X∈Pn. The objective function
is the linear function 〈Σn,m,X〉. And the feasi-
ble set is defined in terms of linear side condi-
tions 〈Ae,X〉 ≥ 0. Problem (18) is thus an in-
teger program. In particular, it is an Assignment
problem with linear side constraints (AssignLSC-
sPbm) (Bertsimas and Weismantel, 2005).

3.2 Another formulation of OT-consistency

Let `(e) be the number of entries equal to L in
an ERC e = [e1, . . . , en]. Assume without loss
of generality that `(e) > 0, as ERCs with no L’s
can be ignored. For every stratum  ∈ {1, . . . , n},
consider the square matrix A

e = [ai,j ]
n
i,j=1 with

n rows and n columns whose generic element ai,j
is defined as in (19).

(19) ai,j
.
=


1 if ei = L, j ≥ 
−1 if ei = W, j ≥ + `
0 otherwise

The following claim offers another restatement
of OT-consistency between an ERC and a ranking
in terms of the permutation matrix corresponding
to that ranking; see Subsection A.3.

Claim 3 A ranking π is OT-consistent with an
ERC e iff 〈A

e,Xπ〉 ≤ 0 for every  ∈ {1, . . . , n},

where 〈A
e,Xπ〉 is the scalar product (12) be-

tween the matrix A
e corresponding to the ERC e

and the stratum  and the permutation matrix Xπ

corresponding to the ranking π. �

The current formulation (16) of the problem of
the acquisition of phonotactics can thus be alter-
natively restated as the optimization problem (20).

(20) SECOND INTEGER REFORMULATION:
minimize: 〈Σn,m,X〉;
subject to: X ∈ Pn s.t. 〈A

e,X〉 ≤ 0 for
every ERC e of the ERC matrix
E and every  ∈ {1, . . . , n}.

Again, (20) is another instance of the AssignLSC-
sPbm. The feasible set in the latter formulation
(20) involves n times more inequalities than the
formulation (18).

3.3 Comparing the two formulations

Problems (18) and (20) are two different formula-
tions of the original problem (16) of the acquisi-
tion of phonotactics. They are thus equivalent, in
the sense that a solution to any of the two prob-
lems is also a solution to the other and further-
more to the original problem. This Subsection
explains why, nonetheless, the latter formulation
(20) is better than the former formulation (18).

Both (18) and (20) are optimization problems
over permutation matrices X ∈ Pn. The latter
condition on the matrix X = [xi,j ]

n
i,j=1 means that

conditions (21) hold for any i, j = 1, . . . , n.

(21) xi,j ∈ {0, 1}
n∑
i=1

xi,j = 1,
n∑
j=1

xi,j = 1

Problems (18) and (20) are integer optimization
problems because of the condition xi,j ∈ {0, 1}
in (21). This condition can be relaxed, requiring
the entires xi,j to be not necessarily 0 or 1 but in-
stead any number in between 0 and 1. Thus, let
Pnrel be the set of matrices that satisfy the relaxed
conditions (22), known as the Birkhoff polytope.

(22) xi,j ∈ [0, 1]
n∑
i=1

xi,j = 1,
n∑
j=1

xi,j = 1

Relaxing the integer constraint X ∈ Pn into the
continuous constraint X ∈ Pnrel, yields the two
corresponding problems (23) and (24).
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(23) FIRST RELAXATION:
minimize: 〈Σn,m,X〉;

subject to: X ∈ Pnrel s.t. 〈Ae,X〉 ≤ 0 for
any ERC e of the ERC matrix.

(24) SECOND RELAXATION:
minimize: 〈Σn,m,X〉;

subject to: X ∈ Pnrel s.t. 〈A
e,X〉 ≥ 0 for

any ERC e of the ERC matrix
and any stratum  ∈ {1, . . . , n}.

These linear programs (23) and (24) are the relax-
ations of the two integer programs (18) and (20).

The relaxation of an integer program provides
a lower bound on the solution of that integer pro-
gram. This lower bound is used by solution al-
gorithms for the integer program. Of course, lin-
ear relaxations that provide tight bounds yield im-
proved solution algorithms for the original integer
problem (Bertsimas and Weismantel, 2005). De-
spite the fact that the two original integer programs
(18) and (20) are equivalent, the two correspond-
ing relaxations (23) and (24) are not. Claim 4 en-
sures that the feasible set of the relaxation (24) is
a subset of that of the relaxation (23), so that the
lower bound provided by a solution of the former
will be at least as tight as the lower bound provided
by a solution of the latter.

Claim 4 If a matrix X belongs to the feasible set
of problem (24), then it also belongs to the feasible
set of problem (23). �

The following counterexample shows that the
lower bound provided by the relaxation (24) is
not just as tight as but actually tighter than the
bound provided by the relaxation (23). Given the
ERC matrix (25), the solution to the corresponding
problem (7) is the ranking F2 � M � F1: the
faithfulness constraint F1 is redundant and should
therefore be ranked at the bottom.

(25) E =

[ F1 F2 M

W W L

e W L

]
The solutions of the two corresponding relaxations
(23) and (24) are provided in (26).3

3These solutions have been computed with the Mat-
lab codes RelaxedSubPbmFirstFormulation.m and
RelaxedSubPbmSecondFormulation.m, that solve
the two relaxations (23) and (24), respectively. These codes
are available on the author’s website. The two codes use the
two subroutines MatrixToVectorConverter.m and
VectorToMatrixConverter.m, that are available on
the author’s website too.

(26) X(23) =


st1st2st3

F1 1 0 0
F2 0 1

2
1
2

M 0 1
2

1
2

X(24) =


st1st2st3

F1 1 0 0
F2 0 0 1
M 0 1 0


The relaxation (23) has a non-integral solution; the
relaxation (24) is thus stronger because its solution
is integral. The latter solution indeed represents
the desired ranking, as it assigns F2 to the top 3rd
stratum (because of the 1 in the second column
and third row) and F1 to the bottom 1st stratum
(because of the 1 in the first row and first column).

4 Conclusion

In this paper, I have focused on Prince and Tesar’s
(2004) formulation (7) of the problem of the ac-
quisition of phonotactics, in terms of the alleged
restrictiveness measure (9). This problem is NP-
complete. To cope with this hardness result, in this
paper I have looked for an integer programming
formulation of the latter problem. The formulation
in (20) has emerged as the best formulation among
those considered, namely the one that yields the
tightest relaxation. This problem (20) is an in-
stance of a classical integer program, namely the
Assignment problem with linear side constraints
(AssignLSCsPbm). The result obtained in this pa-
per thus paves the way for the efficient application
of approximation algorithms for the AssignLSC-
sPbm to the problem of the acquisition of phono-
tactics in OT. In Magri (2012a), I report simula-
tion results with Arora’s et. al. (2002) algorithm,
a state-of-the-art approximation algorithm for the
AssignLSCsPbm.
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Appendix: proof of the main results

A.1 Proof of claim 1

Consider the example of the permutation matrix X
in (27). There are seven constraints (hence n = 7),
four of which are faithfulness constraints (hence
m = 4). I have fringed each row of X with the
name of the constraint it corresponds to and I have
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fringed each column of X with the stratum it cor-
responds to.

(27) X =



st1 st2 st3 st4 st5 st6 st7

F1 0 1 0 0 0 0 0
F2 0 0 0 0 0 1 0
F3 0 0 1 0 0 0 0
F4 0 0 0 0 0 0 1
M5 0 0 0 1 0 0 0
M6 1 0 0 0 0 0 0
M7 0 0 0 0 1 0 0


As prescribed by our conventions, the first four
rows correspond to the four faithfulness con-
straints, the bottom three rows correspond to the
markedness constraints; the leftmost column cor-
responds to the bottom stratum and the rightmost
column corresponds to the top stratum.

The ranking πX that corresponds to X can be
obtained as follows: the 1 in the first column of
X says that the markedness constraint M6 is as-
signed by πX to the bottom stratum j = 1; the 1
in the second column of X says that the faithful-
ness constraint F1 is assigned to the next stratum
j = 2; and so on. Thus, πX is the ranking (28).

(28) F4 � F2 �M7 �M5 � F3 � F1 �M6

According to (9), the restrictiveness µ(πX) of this
ranking πX is 8 = 3+3+1+1: 3 markedness con-
straints underneath F4, another 3 underneath F2, 1
underneath and F3 as all as underneath F1. Here
is a way to quickly compute this number directly
from the permutation matrix X.

Consider the matrix (29) obtained from the ma-
trix (27) through the following two steps. First, all
1’s which appear in the bottom three rows of X
(and thus correspond to markedness constraints)
are replaced with 0’s.

(29)



st1 st2 st3 st4 st5 st6 st7

F1 0 1 0 0 0 0 0
F2 0 0 0 0 0 5 0
F3 0 0 2 0 0 0 0
F4 0 0 0 0 0 0 6
M1 0 0 0 0 0 0 0
M2 0 0 0 0 0 0 0
M3 0 0 0 0 0 0 0


Second, each 1 which appears in one of the top
four rows of X (and thus corresponds to a faith-
fulness constraint) is replaced with the number
which identifes the corresponding column, dimin-
ished by 1. Thus for example, the 1 in the second

row in the matrix X in (27) is replaced by a 5 in
(29), since it occurs in the sixth column.

Next, let’s scan the columns of the matrix (29)
from left to right, assigning to each column which
is not all zeros a progressive index k starting from
k = 0, as made explicit in (30).

(30)



k1=0 k3=1 k2=2 k4=3

F1 0 1 0 0 0 0 0
F2 0 0 0 0 0 5 0
F3 0 0 2 0 0 0 0
F4 0 0 0 0 0 0 6
M1 0 0 0 0 0 0 0
M2 0 0 0 0 0 0 0
M3 0 0 0 0 0 0 0


Now we can straightforwardly read out of (30) the
number of markedness constraints ranked by πX

below each faithfulness constraint: F1 has only
one markedness constraint ranked below it, which
is precisely the number i1 = 1 which appears in
the row corresponding to F1 diminished by the
value k1 = 0 which corresponds to the column
where that number appears; F2 has three marked-
ness constraints ranked below it, which is pre-
cisely the number i2 = 5 which appears in the
row corresponding to F2 diminished by the value
k2 = 2 which corresponds to the column where
that number appears; and so on.

Since µ(πX) is defined in (9) as the sum
over each faithfulness constraint of the number of
markedness constraints ranked below that faithful-
ness constraint, we get the right result as in (31).

(31) µ(πX) =
=µ(F1) + µ(F2) + µ(F3) + µ(F4)
=(i1−k1) + (i2−k2) + (i3−k3) + (i4−k4)
=(1− 0) + (5− 2) + (2− 1) + (6− 3)
=8

Note that the sum in the second line of (31) can be
rearranged as follows:

(32) µ(πX) =
=(i1 + i2 + i3 + i4)− (k1 + k2 + k3 + k4)
=(i1 + i2 + i3 + i4)− (0 + 1 + 2 + 3)

It is trivial to check directly from the definition
(12) of scalar product that the first term i1 + i2 +
i3 + i4 in the second line of (32) is the scalar prod-
uct 〈Σ7,4,X〉 between the permutation matrix X
in (27) and the matrix Σ7,4 in (14). Thus, the first
term in the second line of (32) corresponds to the
first term in (15). It is also trivial to check that the
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second term 0 + 1 + 2 + 3 in the second line of
(32) is equal to 1

2m(m− 1) for m = 4. Thus, the
second term in the second line of (32) corresponds
to the second term in (15).

A.2 Proof of claim 2

Consider a ranking π, namely a permutation over
{1, . . . , n}. Let π−1 be its inverse. Recall that
π(i) = j means that constraint Ci is assigned
by the ranking π to the jth stratum, with the top
stratum being the one corresponding to j = n.
Thus, π−1(j) is the constraint assigned by π to the
jth stratum. Given an ERC e = [e1, . . . , en], let
k = k(e) ∈ {1, . . . , n} be univocally defined by
conditions (33): they say that the constraints as-
signed by π to the top strata k + 1, . . . , n all have
an e in the ERC e so that the constraint assigned
by π to the kth stratum is the highest one that does
not have an e in the ERC.

(33) a. eπ−1(k+1) = . . . = eπ−1(n) = e.
b. eπ−1(k) 6= e.

Thus, π is OT-consistent with the ERC e iff
eπ−1(k) = W. To prove Claim 2, I thus prove
the equivalence (34), where Xπ = [xi,j ]

n
i,j=1 is

the permutation matrix corresponding to π and
Ae = [ai,j ]

n
i.j=1 is the matrix defined in (17).

(34) 〈Ae,Xπ〉 > 0 ⇐⇒ eπ−1(k) = W.

Assume that eπ−1(k) = W; then I can reason as
follows, following Prince and Smolensky (2004):

(35)〈Ae,Xπ〉 =
n∑

i,j=1

xi,jai,j =

n∑
i,j=1

xi,j2
jti

=
n∑
i=1

ti

n∑
j=1

xi,j2
j =

n∑
i=1

ti2
π(i)

=
n∑
j=1

tπ−1(j)2
j > 2k −

k−1∑
j=1

2j > 0

The proof of the reverse implication is analogous.

A.3 Proof of claim 3

To illustrate why claim 3 holds, consider the con-
crete case of the ERC e in (36).

(36) t =
[ C1 C2 C3 C4 C5

W W e e L
]

A ranking π is OT-consistent with this ERC e pro-
vided it ranks either C1 or C2 above C5. This con-
dition is equivalent to the set of implications (37).
For example, the the third implication says that if,
π assigns C5 to either stratum 3, or 4 or 5 (the
latter being the top stratum), then π must assign
either C1 or C2 to either stratum 4 or 5.

(37) C5 ∈ {1, 2, 3, 4, 5} =⇒ C1 ∈ {2, 3, 4, 5} ∨ C2 ∈ {2, 3, 4, 5}
C5 ∈ {2, 3, 4, 5} =⇒ C1 ∈ {3, 4, 5} ∨ C2 ∈ {3, 4, 5}
C5 ∈ {3, 4, 5} =⇒ C1 ∈ {4, 5} ∨ C2 ∈ {4, 5}
C5 ∈ {4, 5} =⇒ C1 ∈ {5} ∨ C2 ∈ {5}
C5 ∈ {5} =⇒ C1 ∈ ∅ ∨ C2 ∈ ∅

Consider the permutation matrix X = [xi,j ]
n=5
i,j=1.

Recall that xi,j = 1 iff the corresponding rank-
ing π satisfies the condition π(i) = j namely it
assigns constraint Ci to the jth stratum. Thus,
the implications in (37) can be restated in terms
of permutation matrices rather than rankings as in
(38), in the sense that a ranking π satisfies (37) iff
the corresponding permutation matrix Xπ satisfies
(38). The five inequalities (38) can be written in

(38) x5,1 +x5,2 +x5,3 +x5,4 +x5,5 ≤ x1,2 +x1,3 +x1,4 +x1,5 +x2,2 +x2,3 +x2,4 +x2,5

x5,2 +x5,3 +x5,4 +x5,5 ≤ x1,3 +x1,4 +x1,5 +x2,3 +x2,4 +x2,5

x5,3 +x5,4 +x5,5 ≤ x1,4 +x1,5 +x2,4 +x2,5

x5,4 +x5,5 ≤ x1,5 +x2,5

x5,5 ≤ 0

(39) 2x5,1+4x5,2+8x5,3+16x5,4≤2x1,1+4x1,2+8x1,3+16x1,4+32x1,5+2x2,1+4x2,2+8x2,3+16x2,4+32x2,5

(40) 4x5,1 +4x5,2 +4x5,3 +4x5,4 ≤ 4x1,2 +4x1,3 +4x1,4 +4x1,5 +4x2,2 +4x2,3 +4x2,4 +4x2,5

4x5,2 +4x5,3 +4x5,4 ≤ 4x1,3 +4x1,4 +4x1,5 +4x2,3 +4x2,4 +4x2,5

8x5,3 +8x5,4 ≤ 8x1,4 +8x1,5 +8x2,4 +8x2,5

16x5,4 ≤ 16x1,5 +16x2,5

(41) 4x5,1 +8x5,2 +16x5,3 +32x5,4 ≤ 4x1,2 +8x1,3 +16x1,4 +32x1,5 +4x2,2 +8x2,3 +16x2,4 +32x2,5
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matrix notation as 〈A
e,X〉 ≤ 0 for  = 1, . . . , 5.

A.4 Proof of claim 4
To illustrate why claim 4 holds, consider again the
concrete case of the ERC (36). As just noted, the
conditions 〈A

e,X〉 ≤ 0 for  = 1, . . . , 5 enforced
by the relaxation (24) boil down to the inequali-
ties (38). The condition 〈Ae,X〉 ≥ 0 enforced
by the relaxation (23) boils down to the inequal-
ity (39). In order to prove claim 4 in this specific
case, I thus need to show that, if X ∈ Pnrel satis-
fies inequalities (38), then it also satisfies inequal-
ities (39). Indeed, the last inequality in (38) says
that x5,5 is null, and can thus be dropped from the
other four inequalities (38). Multiplying the first
inequality in (38) by 4, the second by 4, the third
by 8 and the fourth by 16, I get (40). Summing
the inequalities (40) together, I get the inequality
(41). As xi,j ≥ 0, I can weaken the inequality (41)
by dividing the left hand side by 2 and by adding
2x1,1 and 2x2,1 to the right hand side, thus obtain-
ing the desired inequality (39).
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