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Abstract

Readability formulas are methods used to
match texts with the readers’ reading level.
Several methodological paradigms have pre-
viously been investigated in the field. The
most popular paradigm dates several decades
back and gave rise to well known readability
formulas such as the Flesch formula (among
several others). This paper compares this ap-
proach (henceforth ”classic”) with an emerg-
ing paradigm which uses sophisticated NLP-
enabled features and machine learning tech-
niques. Our experiments, carried on a corpus
of texts for French as a foreign language, yield
four main results: (1) the new readability for-
mula performed better than the “classic” for-
mula; (2) “non-classic” features were slightly
more informative than “classic” features; (3)
modern machine learning algorithms did not
improve the explanatory power of our read-
ability model, but allowed to better classify
new observations; and (4) combining “classic”
and “non-classic” features resulted in a signif-
icant gain in performance.

1 Introduction

Readability studies date back to the 1920’s and have
already spawned probably more than a hundred pa-
pers with research on the development of efficient
methods to match readers and texts relative to their
reading difficulty. During this period of time, sev-
eral methodological trends have appeared in suc-
cession (reviewed in Klare (1963; 1984), DuBay
(2004)). We can group these trends in three ma-
jor approaches: the ”classic studies”, the ”structuro-

cognitivist paradigm” and the “AI readability”, a
term suggested by François (2011a).

The classic period started right after the seminal
work of Vogel and Washburne (1928) and Gray and
Leary (1935) and is characterized by an ideal of sim-
plicity. The models (readability formulas) proposed
to predict text difficulty for a given population are
kept simple, using multiple linear regression with
two, or sometimes, three predictors. The predictors
are simple surface features, such as the average num-
ber of syllables per word and the average number of
words per sentence. The Flesch (1948) and Dale and
Chall (1948) formulas are probably the best-known
examples of this period.

With the rise of cognitivism in psychological
sciences in the 70’s and 80’s, new dimensions of
texts are highlighted such as coherence, cohesion,
and other discourse aspects. This led some schol-
ars (Kintsch and Vipond, 1979; Redish and Selzer,
1985) to adopt a critical attitude to classic readabil-
ity formulas which could only take into account su-
perficial features, ignoring other important aspects
contributing to text difficulty. Kintsch and Vipond
(1979) and Kemper (1983), among others, suggested
new features for readability, based on those newly
discovered text dimensions. However, despite the
fact that the proposed models made use of more so-
phisticated features, they failed to outperform the
classic formulas. It is probably not coincidental that
after these attempts readability research efforts de-
clined in the 90s.

More recently, however, the development of ef-
ficient natural language processing (NLP) systems
and the success of machine learning methods led to
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a resurgence of interest in readability as it became
clear that these developments could impact the de-
sign and performance of readability measures. Sev-
eral studies (Si and Callan, 2001; Collins-Thompson
and Callan, 2005; Schwarm and Ostendorf, 2005;
Feng et al., 2010) have used NLP-enabled feature
extraction and state-of-the-art machine learning al-
gorithms and have reported significant gains in per-
formance, suggesting that the AI approach might be
superior to previous attempts.

Going beyond reports of performance which are
often hard to compare due to a lack of a common
gold standard, we are interested in investigating AI
approaches more closely with the aim of understand-
ing the reasons behind the reported superiority over
classic formulas. AI readability systems use NLP
for richer feature extraction and a machine learning
algorithm. Given that the classic formulas are also
statistical, is performance boosted because of the ad-
dition of NLP-enabled feature extraction or by better
machine learning algorithms? In this paper, we re-
port initial findings of three experiments designed to
explore this question.

The paper is organized as follows. Section 2 re-
views previous findings in the field and the challenge
of providing a uniform explanation for these find-
ings. Section 3 gives a brief overview of prior work
on French readability, which is the context of our
experiments (evaluating the readability of French
texts). Because there is no prior work comparing
classic formulas with AI readablity measures for
French, we first report the results of this compari-
son in Section 3. Then, we proceed with the results
of three experiments (2-4), comparing the contribu-
tions of the AI enabled features with features used
in classic formulas, different machine learning al-
gorithms and the interactions of features with algo-
rithms. There results are reported in Sections 4, 5,
and 6, respectively. We conclude in Section 7 with a
summary of the main findings and future work.

2 Previous findings

Several readability studies in the past decade have
reported a performance gain when using NLP-
enabled features, language models, and machine
learning algorithms to evaluate the reading difficulty
of a variety of texts (Si and Callan, 2001; Collins-

Thompson and Callan, 2005; Schwarm and Osten-
dorf, 2005; Heilman et al., 2008; Feng et al., 2010).

A first explanation for this superiority would be
related to the new predictors used in recent mod-
els. Classic formulas relied mostly on surface lexical
and syntactic variables such as the average number
of words per sentence, the average number of letters
per word, the proportion of given POS tags in the
text or the proportion of out-of-simple-vocabulary
words. In the AI paradigm, several new features
have been added, including language models, parse
tree-based predictors, probability of discourse rela-
tions, estimates of text coherence, etc. It is rea-
sonable to assume that these new features capture a
wider range of readability factors thus bringing into
the models more and, possibly, better information.

However, the evidence from comparative studies
is not consistent on this question. In several cases,
AI models include features central to classic formu-
las which, when isolated, appear to be the stronger
predictors in the models. An exception to this trend
is the work of Pitler and Nenkova (2008) who re-
ported non-significant correlation for the mean num-
ber of words per sentence (r = 0.1637, p = 0.3874)
and the mean number of characters per word (r =
−0.0859, p = 0.6519). In their study, though, they
used text quality rather than text difficulty as the de-
pendent variable. The data consisted solely of text
from the Wall Street Journal which is “intended for
an educated adult audience” text labelled for de-
grees of reading fluency. Feng et al. (2010) com-
pared a set of similar variables and observed that
language models performed better than classic for-
mula features but classic formula features outper-
formed those based on parsing information. Collins-
Thompson and Callan (2005) found that the classic
type-token ratio or number of words not in the 3000-
words Dale list appeared to perform better than their
language model on a corpus from readers, but were
poorer predictors on web-extracted texts.

In languages other than English, François (2011b)
surveyed a wide range of features for French and
reports that the feature that uses a limited vocabu-
lary list (just like in some classic formulas) has a
stronger correlation with reading difficulty that a un-
igram model and the best performing syntactic fea-
ture was the average number of words per sentences.
Aluisio et al. (2010), also, found that the best corre-
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late with difficulty was the average number of words
per sentence. All in all, while there is sufficient ev-
idence that the AI paradigm outperforms the classis
formulas, classic features have often been shown to
make the single strongest predictors.

An alternative explanation could be that, by com-
parison to the simpler statistical analyses that deter-
mined the coefficients of the classic formulas, ma-
chine learning algorithms, such as support machine
vector (SVM) or logistic regression are more sophis-
ticated and better able to learn the regularities in
training data, thus building more accurate models.
Work in this direction has been of smaller scale but
already reporting inconsistent results. Heilman et al.
(2008) considered the performance of linear regres-
sion, ordinal and multinomial logistic regression,
and found the latter to be more efficient. However,
Kate et al. (2010) obtained contradictory findings,
showing that regression-based algorithms perform
better, especially when regression trees are used for
bagging. For French, François (2011b) found that
SVMs were more efficient than linear regression, or-
dinal and multinomial logistic regression, boosting,
and bagging.

Finally, it is quite possible that there are interac-
tions between types of features and types of statis-
tical algorithms and these interactions are primarily
responsible for the better performance.

In what follows, we present the results of three
studies (experiments 2-4), comparing the contribu-
tions of the AI enabled features with features used
in classic formulas, different machine learning al-
gorithms and the interactions of features with algo-
rithms. As mentioned earlier, all the studies have
been done on French data, consisting of text ex-
tracted from levelled FFL textbooks (French as For-
eign Language). Because there is no prior work
comparing classic formulas with AI readability mea-
sures for FFL, we first report the results of this com-
parison in the next section (experiment 1).

3 Experiment 1: Model comparison for
FFL

To compute a classic readability formula for FFL,
we used the formula proposed for French by Kandel
and Moles (1958). We compared the results of this
formula with the AI model trained on the FFL data

used by François (2011b).
The Kandel and Moles (1958) formula is an adap-

tation of the Flesch formula for French, based on a
study of a bilingual corpus:

Y = 207− 1.015lp− 0.736lm (1)

where Y is a readability score ranging from 100
(easiest) to 0 (harder); lp is the average number of
words per sentence and lm is the average number of
syllables per 100 words. Although this formula is
not specifically designed for FFL, we chose to im-
plement it over formulas proposed for FFL (Tharp,
1939; Uitdenbogerd, 2005). FFL-specific formu-
las are optimized for English-speaking learners of
French while our dataset is agnostic to the native
language of the learners.

The computation of the Kandel and Moles (1958)
formula requires a syllabification system for French.
Due to unavailability of such a system for French,
we adopted a hybrid syllabification method. For
words included in Lexique (New et al., 2004), we
used the gold syllabification included in the dictio-
nary. For all other words, we generated API pho-
netic representations with espeak 1, and then applied
the syllabification tool used for Lexique3 (Pallier,
1999). The accuracy of this process exceeded 98%.

For the comparison with an AI model, we ex-
tracted the same 46 features (see Table 2 for the
complete list) used in François’ model 2 and trained
a SVM model.

For all the study, the gold-standard consisted of
data taken from textbooks and labeled according to
the classification made by the publishers. The cor-
pus includes a wide range of texts, including ex-
tracts from novels, newspapers articles, songs, mail,
dialogue, etc. The difficulty levels are defined by
the Common European Framework of Reference for
Languages (CEFR) (Council of Europe, 2001) as
follows: A1 (Breakthrough); A2 (Waystage); B1
(Threshold); B2 (Vantage); C1 (Effective Opera-
tional Proficiency) and C2 (Mastery). The test cor-
pus includes 68 texts per level, for a total of 408 doc-
uments (see Table 1).

We applied both readability models to this test
corpus. Assessing and comparing the performance

1Available at: http://espeak.sourceforge.net/.
2Details on how to implement these features can be found in

François (2011b).
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A1 A2 B1 B2 C1 C2 Total
68(10, 827) 68(12, 045) 68(17, 781) 68(25, 546) 68(92, 327) 68(39, 044) 408(127, 681)

Table 1: Distribution of the number of texts and tokens per level in our test corpus.

of the two models with accuracy scores (acc), as is
common in classification tasks, has proved challeng-
ing and, in the end, uninformative. This is because
the Kandel and Moles formula’s output scores are
not an ordinal variable, but intervals. To compute
accuracy we would have to define a set of rather
arbitrary cut off points in the intervals and corre-
spond them with level boundaries. We tried three
approaches to achieve this task. First, we used
correspondences between Flesch scores and seven
difficulty levels proposed for French by de Land-
sheere (1963): “very easy” (70 to 80) to “very dif-
ficult” (-20 to 10). Collapsing the “difficult” and
“very difficult” categories into one, we were able
to roughly match this scale with the A1-C2 scale.
The second method was similar, except that those
levels were mapped on the values from the original
Flesch scale instead of the one adapted for French.
The third approach was to estimate normal distribu-
tion parameters µj and σj for each level j for the
Kandel and Moles’ formula output scores obtained
on our corpus. The class membership of a given ob-
servation i was then computed as follows:

arg
6

max
j=1

P (i ∈ j | N(µj , σj)) (2)

Since the parameters were trained on the same cor-
pus used for the evaluation, this computation should
yield optimal class membership thresholds for our
data.

Given the limitations of all three approaches, it is
not surprising that accuracy scores were very low:
9% for the first and 12% for the second, which is
worse than random (16.6%). The third approach
gave a much improved accuracy score, 33%, but still
quite low. The problem is that, in a continuous for-
mula, predictions that are very close to the actual
will be classified as errors if they fall on the wrong
side of the cut off threshold. These results are, in
any case, clearly inferior to the AI formula based on
SVM, which classified correctly 49% of the texts.

A more suitable evaluation measure for a contin-
uous formula would be to compute the multiple cor-

relation (R). The multiple correlation indicates the
extent to which predictions are close to the actual
classes, and, when R2 is used, it describes the per-
centage of the dependent variable variation which
is explained by the model. Kandel and Moles’ for-
mula got a slightly better performance (R = 0.551),
which is still substantially lower that the score (R =
0.728) obtained for the SVM model. To check if
the difference between the two correlation scores
was significant, we applied the Hotelling’s T-test for
dependent correlation (Hotelling, 1940) (required
given that the two models were evaluated on the
same data). The result of the test is highly signif-
icant (t = −19.5; p = 1.83e−60), confirming that
the SVM model performed better that the classic for-
mula.

Finally, we computed a partial Spearman corre-
lation for both models. We considered the output
of each model as a single variable and we could,
therefore, evaluate the relative predictive power of
each variable when the other variable is controlled.
The partial correlation for the Kandel and Moles for-
mula is very low (ρ = −0.11; p = 0.04) while
the SVM model retains a good partial correlation
(ρ = −0.53; p < 0.001).

4 Experiment 2: Comparison of features

In this section, we compared the contribution of the
features used in classic formulas with the more so-
phisticated NLP-enabled features used in the ma-
chine learning models of readability. Given that the
features used in classic formulas are very easy to
compute and require minimal processing by com-
parison to the NLP features that require heavy pre-
processing (e.g., parsing), we are, also, interested in
finding out how much gain we obtain from the NLP
features. A consideration that becomes important
for tasks requiring real time evaluation of reading
difficulty.

To evaluate the relative contribution of each set
of features, we experiment with two sets of fea-
tures (see Table 2. We labeled as ”classic”, not only
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Family Tag Description of the variable ρ Linear

Classic

PA-Alterego
Proportion of absent words from a list

0.652 No
of easy words from AlterEgo1

X90FFFC 90th percentile of inflected forms for content words only −0.641 No
X75FFFC 75th percentile of inflected forms for content words only −0.63 No

PA-Goug2000
Proportion of absent words from 2000 first

0.597 No
of Gougenheim et al. (1964)’s list

MedianFFFC Median of the frequencies of inflected content words −0.56 Yes
PM8 Pourcentage of words longer than 8 characters 0.525 No

NL90P
Length of the word corresponding to

0.521 No
the 90th percentile of word lengths

NLM Mean number of letters per word 0.483 Yes
IQFFFC Interquartile range of the frequencies of inflected content words 0.405 No

MeanFFFC Mean of the frequencies of inflected content words −0.319 No
TTR Type-token ratio based on lemma 0.284 No
NMP Mean number of words per sentence 0.618 No

NWS90 Length (in words) of the 90th percentile sentence 0.61 No
PL30 Percentage of sentences longer than 30 words 0.56 Yes

PRE/PRO Ratio of prepositions and pronouns 0.345 Yes
GRAM/PRO Ratio of grammatical words and pronouns 0.34 Yes

ART/PRO Ratio of articles and pronouns 0.326 Yes
PRE/ALL Proportions of prepositions in the text 0.326 Yes
PRE/LEX Ratio of prepositions and lexical words 0.322 Yes
ART/LEX Ratio of articles and lexical words 0.31 Yes

PRE/GRAM Ratio of prepositions and grammatical words 0.304 Yes
NOM-NAM/ART Ratio of nouns (common and proper) and gramm. words −0.29 Yes

PP1P2 Percentage of P1 and P2 personal pronouns −0.333 No
PP2 Percentage of P2 personal pronouns −0.325 Yes
PPD Percentage of personal pronouns of dialogue 0.318 No

BINGUI Presence of commas 0, 462 No

Non-classic

Unigram Probability of the text sequence based on unigrams 0.546 No
MeanNGProb-G Average probability of the text bigrams based on Google 0.407 Yes

FCNeigh75 75th percentile of the cumulated frequency of neighbors per word −0.306 Yes
MedNeigh+Freq Median number of more frequent neighbor for words −0.229 Yes
Neigh+Freq90 90th percentile of more frequent neighbor for words −0.192 Yes

PPres Presence of at least one present participle in the text 0.44 No
PPres-C Proportion of present participle among verbs 0.41 Yes
PPasse Presence of at least one past participle 0.388 No

Infi Presence of at least one infinive 0.341 No
Impf Presence of at least one imperfect 0.272 No
Subp Presence of at least one subjunctive present 0.266 Yes
Futur Presence of at least one future 0.252 No
Cond Presence of at least one conditional 0.227 No

PasseSim Presence of at least one simple past 0.146 No
Imperatif Presence of at least one imperative 0.019 Yes

Subi Presence of at least one subjunctive imperfect 0.049 Yes
avLocalLsa-Lem Average intersentential cohesion measured via LSA 0, 63 No

ConcDens
Estimate of the conceptual density

0.253 Yes
with Densidées (Lee et al., 2010)

NAColl Proportion of MWE having the structure NOUN ADJ 0.286 Yes
NCPW Average number of MWEs per word 0.135 Yes

Table 2: List of the 46 features used by François (2011b) in his model. The Spearman correlation reported here also
comes from this study.
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the features that are commonly used in traditional
formulas like Flesch (length of words and number
of words per sentence) but also other easy to com-
pute features that were identified in readability work.
Specifically, in the ”classic” set we include num-
ber of personal pronouns (given as a list) (Gray and
Leary, 1935), the Type Token Ratio (TTR) (Lively
and Pressey, 1923), or even simple ratios of POS
(Bormuth, 1966).

The ”non-classic” set includes more complex
NLP-enabled features (coherence measured through
LSA, MWE, n-grams, etc.) and features suggested
by the structuro-cognitivist research (e.g., informa-
tion about tense and variables based on orthograph-
ical neighbors).

For evaluation, we first computed and compared
the average bivariate correlations of both sets. This
test yielded a better correlation for the classic fea-
tures (r̄ = 0.48 over the non-classic features r̄ =
0.29)

As a second test, we trained a SVM model on each
set and evaluated performances in a ten-fold cross-
validation. For this test, we reduced the number of
classic features by six to equal the number of pre-
dictors of the non-classic set. Our hypothesis was
the SVM model using non-classic features would
outperform the classic set because the non-classic
features bring richer information. This assumption
was not strictly confirmed as the non-classic set per-
formed only slightly better than the classic set. The
difference in the correlation scores was small (0.01)
and non-significant (t(9) = 0.49; p = 0.32), but the
difference in accuracy was larger (3.8%) and close to
significance (t(9) = 1.50; p = 0.08). Then, in an ef-
fort to pin down the source of the SVM gain that did
not come out in the comparison above, we defined a
SVM baseline model (b) that included only two typ-
ical features of the classic set: the average number
of letter per word (NLM) and the average number of
word per sentence (NMP). Then, for each of the i
remaining variables (44), we trained a model mi in-
cluding three predictors: NLM, NMP, and i. The
difference between the correlation of the baseline
model and that of the model mi was interpreted as
the information gain carried by the feature i. There-

fore, for both sets, of cardinality Ns, we computed:∑Ns
i=1R(mi)−R(b)

Ns
(3)

where R(mi) is the multiple correlation of model
mi.

Our assumption was that, if the non-classic set
brings in more varied information, every predictor
should, on average, improve more theR of the base-
line model, while the classic variables, more redun-
dant with NLM and NP, would be less efficient. In
this test, the mean gain for R was 0.017 for the clas-
sic set and 0.022 for the non-classic set. Although
the difference was once more small, this test yielded
a similar trend than the previous test.

As a final test, we compared the performance of
the SVM model trained only on the “classic” set
with the SVM trained on both sets. In this case,
the improvement was significant (t(9) = 3.82; p =
0.002) with accuracy rising from 37.5% to 49%. Al-
though this test does not help us decide on the nature
of the gain as it could be coming just from the in-
creased number of features, it shows that combining
”classic” and ”non-classic” variables is valuable.

5 Experiment 3: Comparison of statistical
models

In this section, we explore the hypothesis that AI
models outperform classic formulas because they
use better statistical algorithms. We compare the
performance of a“classic” algorithm, multiple linear
regression, with the performance of a machine learn-
ing algorithm, in this case SVM. Note that an SVMs
have an advantage over linear regression for features
non-linearly related with difficulty. Bormuth (1966,
98-102) showed that several classic features, espe-
cially those focusing on the word level, were indeed
non-linear. To control for linearity, we split the 46
features into a linear and a non-linear subset, using
the Guilford’s F test for linearity (Guilford, 1965)
and an α = 0.05. This classification yielded two
equal sets of 23 variables (see Table 2). In Table
3, we report the performance of the four models in
terms of R, accuracy, and adjacent accuracy. Fol-
lowing, Heilman et al. (2008), we define ”adjacent
accuracy” as the proportion of predictions that were
within one level of the assigned label in the corpus.
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Model R Acc. Adj. acc.

Linear
LR 0.58 27% 72%

SVM 0.64 38% 73%

Non-Linear
LR 0.75 36% 81%

SVM 0.70 44% 76%

Table 3: Multiple correlation coefficient (R), accuracy
and adjacent accuracy for linear regression and SVM
models, using the set of features either linearly or non
linearly related to difficulty.

Adjacent accuracy is closer toR as it is less sensitive
to minor classification errors.

Our results showed a contradictory pattern, yield-
ing a different result depending on type of evalu-
tion: accuracy or R and adjacent accuracy. With
respect to accuracy scores, the SVM performed bet-
ter in the classification task, with a significant per-
formance gain for both linear (gain = 9%; t(9) =
2.42; p = 0.02) and non-linear features (gain = 8%;
t(9) = 3.01; p = 0.007). On the other hand, the dif-
ference in R was non-significant for linear (gain =
0.06; t(9) = 0.80; p = 0.22) and even negative and
close to significance for non-linear (gain = −0.05;
t(9) = 1.61; p = 0.07). In the light of these re-
sults, linear regression (LR) appears to be as effi-
cient as SVM accounting for variation in the depen-
dant variable (their R2 are pretty similar), but pro-
duces poorer predictions.

This is an interesting finding, which suggests that
the contradictory results in prior literature with re-
gard to performance of different readability mod-
els (see Section 2) might be related to the evalua-
tion measure used. Heilman et al. (2008, 7), who
compared linear and logistic regressions, found that
the R of the linear model was significantly higher
than the R of the logistic model (p < 0.01). In con-
trast, the logistic model behaved significantly better
(p < 0.01) in terms of adjacent accuracy. Similarly,
Kate and al. (2010, 548), which used R as evalua-
tion measure, reported that their preliminary results
“verified that regression performed better than clas-
sification”. Once they compared linear regression
and SVM regression, they noticed similar correla-
tions for both techniques (respectively 0.7984 and
0.7915).

To conclude this section, our findings suggest that
(1) linear regression and SVM are comparable in ac-

counting for the variance of text difficulty and (2)
SVM has significantly better accuracy scores than
linear regression.

6 Experiment 4: Combined evaluation

In Experiment 2, we saw that ”non-classic” features
are slightly, but non-significantly, better than the
”classic” features. In Experiment 3, we saw that
SVM performs better than linear regression when
the evaluation is done by accuracy but both demon-
strate similar explanatory power in accounting for
the variation. In this section, we report evaluation
results for four models, derived by combining two
sets of features, classic and non-classic, with two al-
gorithms, linear regression and SVM. The results are
shown in Table (4).

The results are consistent with the findings in
the previous sections. When evaluated with accu-
racy scores SVM performs better with both classic
(t(9) = 3.15; p = 0.006) and non-classic features
(t(9) = 3.32; p = 0.004). The larger effect obtained
for the non-classic features might be due to an in-
teraction, i.e., an SVM trained with non-classic fea-
tures might be better at discriminating reading lev-
els. However, with respect to R, both algorithms are
similar, with linear regression outperforming SVM
in adjacent accuracy (non-significant). Linear re-
gression and SVM, then, appear to have equal ex-
planatory power.

As regards the type of features, the explanatory
power of both models seems to increase with non-
classic features as shown in the increased R, al-
though significance is not reached (t(9) = 0.49; p =
0.32 for the regression and t(9) = 1.5; p = 0.08 for
the SVM).

7 General discussion and conclusions

Recent readability studies have provided prelimi-
nary evidence that the evaluation of readability us-
ing NLP-enabled features and sophisticated machine
learning algorithms outperform the classic readabil-
ity formulas, such as Flesch, which rely on surface
textual features. In this paper, we reported a number
of experiments the purpose of which was to identify
the source of this performance gain.

Specifically, we compared the performance of
classic and non-classic features and the performance
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Model R Acc. Adj. acc.

Classic
LR 0.66 30.6% 78%

SVM 0.67 37.5% 76%

Non-classic
LR 0.68 32% 76%

SVM 0.68 41.8% 73%

Table 4: Multiple correlation coefficient (R), accuracy and adjacent accuracy for linear regression and SVM models
with either the classic or the non-classic set of predictors.

of two statistical algorithms: linear regression (used
in classic formulas) and SVM (in the context of FFL
readability). Our results indicate that classic features
are strong single predictors of readability. While
we were not able to show that the non-classic fea-
tures are better predictors by themselves, our find-
ings show that leaving out non-classic features has a
significant negative impact on the performance. The
best performance was obtained when both classic
and non-classic features were used.

Our experiments on the comparison of the two
statistical algorithms showed that the SVM outper-
forms linear regression by a measure of accuracy,
but the two algorithms are comparable in explana-
tory power accounting for the same amount of vari-
ability. This observation accounts for contradictory
conclusions reported in previous work. Our study
shows that different evaluation measures can lead to
quite different conclusions.

Finally, our comparison of four models derived
by combining linear regression and SVM with “clas-
sic” and “non-classic” features confirms the signif-
icant contribution of “non-classic” features and the
SVM algorithm to classification accuracy. However,
by a measure of adjacent accuracy and explanatory
power, the two algorithms are comparable.

From a practical application point of view, it
would be interesting to try these algorithms in web
applications that process large amounts of text in
real time (e.g., READ-X (Miltsakaki, 2009)) to eval-
uate the trade-offs between accuracy and efficiency.
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