
The 7th Workshop on the Innovative Use of NLP for Building Educational Applications, pages 251–256,
Montréal, Canada, June 3-8, 2012. c©2012 Association for Computational Linguistics

Korea University System in the HOO 2012 Shared Task

Jieun Lee† and Jung-Tae Lee‡ and Hae-Chang Rim†

†Dept. of Computer & Radio Communications Engineering, Korea University, Seoul, Korea
‡Research Institute of Computer Information & Communication, Korea University, Seoul, Korea

{jelee,jtlee,rim}@nlp.korea.ac.kr

Abstract

In this paper, we describe the Korea Univer-
sity system that participated in the HOO 2012
Shared Task on the correction of preposition
and determiner errors in non-native speaker
texts. We focus our work on training the sys-
tem on a large collection of error-tagged texts
provided by the HOO 2012 Shared Task or-
ganizers and incrementally applying several
methods to achieve better performance.

1 Introduction

In the literature, there have been efforts aimed at de-
veloping grammar correction systems designed es-
pecially for non-native English speakers. A typi-
cal approach is to train statistical models on well-
formed texts written by native English speakers and
apply the learned models to non-native speaker texts
to correct textual errors based on given context. This
approach, however, fails to model the types of errors
that non-native speakers usually make. Recent stud-
ies demonstrate that it is possible to improve the per-
formance of error correction systems by training the
models on error-annotated non-native speaker texts
(Han et al., 2010; Dahlmeier and Ng, 2011; Gamon,
2010). Most recently, a large collection of training
data consisting of preposition and determiner errors
made by non-native English speakers has been re-
leased in the HOO (Helping Our Own) 2012 Shared
Task, which aims at promoting the research and de-
velopment of automated tools for assisting authors
in writing (Dale et al., 2012).

In this paper, we introduce our error correction
system that participated in the HOO 2012 Shared

Task, where the goal is to correct errors in the use of
prepositions and determiners by non-native speakers
of English. We mainly focus our efforts on training
the system using the non-native speaker texts pro-
vided in the HOO 2012 Shared Task. We also share
our experience in handling some issues that emerged
while exclusively using the non-native speaker texts
for training our system. In the following sections,
we will describe the system in detail.

2 System Architecture

The goal of our system is to detect and correct prepo-
sition and determiner errors in a given text. Our sys-
tem consists of two types of classifiers, namely edit
and insertion classifiers. Inputs for the two types
of classifiers are noun phrases (NP), verb phrases
(VP), and prepositional phrases (PP); we initially
pre-process the text given for training/testing by us-
ing the Illinois Chunker1 and the Stanford Part-of-
Speech Tagger (Toutanova et al., 2003). For learn-
ing the classifiers, we use maximum entropy models,
which have been successfully applied to many tasks
in natural language processing. We particularly use
Le Zhang’s Maximum Entropy Modeling Toolkit2

for implementation.

2.1 Edit Classifiers
The role of an edit classifier is to check the source
preposition/determiner word originally chosen by
the author in a given text. If the source word
is incorrect, the classifier replaces it with a bet-
ter choice. For every preposition/determiner word,

1Available at http://cogcomp.cs.illinois.edu
2Available at http://homepages.inf.ed.ac.uk/lzhang10/

251



we train a classifier using examples that are ob-
served in training data. The choice for preposi-
tions is limited to eleven prepositions (about, at,
as, by, for, from, in, of, on , to, with) that most
frequently occur in the training data, and the can-
didates for determiner choice are the and a/an. In
summary, we train a total of thirteen edit classifiers,
one for each source preposition or determiner. For
each edit classifier, the set of candidate outputs con-
sists of the source preposition/determiner word it-
self, other confusable preposition/determiner words,
and no preposition/determiner in case the source
word should be deleted. Note that the number of
confusable words for each source preposition is de-
cided flexibly, depending on examples observed in
the training data; a similar approach has been pro-
posed earlier by Rozovskaya and Roth (2010a). For
a particular source preposition/determiner word in
the test data, the system decides whether to correct
it or not based on the output of the classifier for that
source word.

2.2 Insertion Classifier

Although the edit classifiers described above are
capable of deciding whether a source preposi-
tion/determiner word that appears in the test data
should be replaced or removed, a large proportion
of common mistakes for non-native English writers
consists of missing prepositions/determiners (i.e.,
leaving them out by mistake). To deal with those
types of errors, we train a special classifier for inser-
tions. A training or testing event for this particular
classifier is any whitespace before or after a word
in a noun or verb phrase that is a potential loca-
tion for a preposition or determiner. Table 1 shows
the five simple heuristic patterns based on part-of-
speech tags that the system uses in order to locate
potential sites for prepositions/determiners. Note
that s is a whitespace to be examined, an asterisk (*)
means wildcard, and NN includes the tags that start
with NN, such as NNS, NNP, and NNPS. VB is also
treated in the same manner as NN. The set of can-
didate outputs consists of the eleven prepositions,
the two determiners, and no preposition/determiner
class. Once a candidate position for insertion is de-
tected in the test data, the system decides whether to
make an insertion or not based on the output of the
insertion classifier.

Pattern Example
s+NN I’ll give you all information
s+*+NN I need few days
s+VB It may seem relaxing at beginning
s+*+VB Buy new colored clothes
VB+s I’m looking forward your reply

Table 1: Patterns of candidates for insertion

2.3 Features
Both edit and insertion classifiers can be trained us-
ing three types of features described below.

• LEX/POS/HEAD This feature set refers to the
contextual features from a window of n tokens
to the right and left that are practically used in
error correction studies (Rozovskaya and Roth,
2010b; Han et al., 2010; Gamon, 2010). Such
features include lexical features, part-of-speech
tags, and head words of the preceding and the
following chunks of the source word. In this
work, we set n to be 3.

• HAN This represents the set of features specifi-
cally used in the work of Han et al. (2010); they
demonstrate that a model trained on non-native
speaker texts can outperform one trained solely
on well-formed texts.

• L13 L1 refers to the first language of the au-
thor. There have been some efforts to leverage
L1 information for improving error correction
performance. For example, Rozovskaya and
Roth (2011) propose an algorithm for adapting
a learned model to the L1 of the author. There
have been many studies leveraging writers’ L1.
In this work, we propose to directly utilize L1
information of the authors as features. We also
leverage additional features by combining L1
and individual head words that govern or are
governed by VP or NP.

3 Additional Methods for Improvement

The training data provided in the HOO 2012 Shared
Task consists of exam scripts drawn from the pub-
licly available FCE dataset (Yannakoudakis et al.,

3L1 information was provided in the training data but not in
the test data. Therefore, the benefits of using L1 remain incon-
clusive in this paper.

252



a/an the NULL
6028 114 203

Table 2: Training data distribution for a/an classifier

about as at by for from
0 3 2510 1 2 3
in of on to with NULL
75 7 20 30 3 41

Table 3: Training data distribution for at classifier

2011) with textual errors annotated in HOO data
format. From this data, we extract examples for
training our classifiers. For example, let w be a
source word that we specifically want our classifier
to learn. Every use of w that appears in the train-
ing data may be an example that the classifier can
learn from. However, it is revealed that for all w,
there are always many more examples where w is
used correctly than examples where w is replaced or
removed. Table 2 and Table 3 respectively show the
class distributions of all examples for source words
a/an and at that are observable from the whole train-
ing data for training a/an- and at-specific classifiers.
We can see that various classes among the training
data are unevenly represented. When training data is
highly skewed as shown in the two tables, construct-
ing a useful classifier becomes a challenging task.
We observed from our preliminary experiments that
classifiers learned on highly unbalanced data hardly
tend to correct the incorrect choices made by non-
native speakers. Therefore, we investigate two sim-
ple ways to alleviate this problem.

3.1 Filtering Examples Less Likely to be
Incorrect

As mentioned above, there are many more exam-
ples where the source preposition/determiner is used
without any error. One straightforward way to ad-
just the training data distribution is to reduce the
number of examples where the source word is less
likely to be replaced or removed by using language
model probabilities. If a language model learned on
a very large collection of well-formed texts returns
a very high language model probability for a source
word surrounded by its context, it may be reason-

Class Initial After After
Distribution Filtering Adding

about 0 0 528
as 3 3 275
at 2510 2367 2367
by 1 1 207
for 2 2 1159

from 3 3 550
in 75 75 1521
of 7 7 1454
on 20 20 541
to 30 30 2309

with 3 3 727
NULL 41 41 41

Table 4: Refined data distribution for at classifier

able to assume that the source word is used correctly.
Therefore we build a language model trained on the
English Gigaword corpus by utilizing trigrams. Be-
fore providing examples to the classifiers for train-
ing or testing, we filter out those that have very high
language model probabilities above a pre-defined
threshold value.

3.2 Adding Artificial Errors

Our second approach is to introduce more artificial
examples to the training data, so that the class dis-
tribution of all training examples becomes more bal-
anced. For example, if we aim at adding more train-
ing examples for a/an classifier, we would extract
correct phrases such as “the different actor” from the
training data and artificially convert it into “a differ-
ent actor” so that an example of a/an being corrected
to the is also provided to a/an classifier for training.
When adding aritificial examples into the training
data, we avoid the number of examples belonging
to each class exceeding the number of cases where
the source word is not replaced or removed. Table
4 demonstrates the results of both the filtering and
adding approaches for training the a/an classifier.

4 Experiments

4.1 Runs

This section describes individual runs that we sub-
mitted to the HOO 2012 Shared Task organizers. Ta-
ble 5 represents the setting of each run.

253



Runs Models Features Filtering Adding
Threshold

Run0 LM n/a n/a
Run1 ME LEX/POS/HEAD X X
Run2 ME HAN X X
Run3 ME LEX/POS/HEAD -2 X
Run4 ME LEX/POS/HEAD -2 O
Run5 ME LEX/POS/HEAD, L1 -2 O
Run6 ME LEX/POS/HEAD, L1, age -2 O
Run7 ME Insertion: POS/HEAD X X

Other: LEX/POS/HEAD
Run8 ME LEX/POS/HEAD -3 X

Table 5: The explanation of each runs

• Run0 This is a baseline run that represents the
language model approach proposed by Gamon
(2010). We train our language model on Giga-
word corpus, utilizing trigrams with interpola-
tion and Kneser-Ney discount smoothing.

• Run1, 2 Run1 and 2 represent our system us-
ing the LEX/POS/HEAD feature sets and HAN
feature sets respectively. Neither additional
method described in Section 3 is applied.

• Run3, 8 These runs represent our system us-
ing LEX/POS/HEAD features (Run1), where
examples that are less likely to be incorrect are
filtered out by consulting our language model.
The threshold value is set to −2 and −3 for
Runs 3 and 8 respectively.

• Run4 This particular run is one where we intro-
duce additional errors in order to make the class
distribution of the training data for the classi-
fiers more balanced. This step is incrementally
applied in the setting of Run3.

• Run5, 6 Run5 and 6 are when we consider L1
information and age respectively as additional
features for training the classifiers. The basic
setup is same as Run4.

• Run7 This run represents our system with
its insertion classifier trained using POS and
HEAD features only. No LEX features are
used.

Runs Precision Recall F-score
Run0 1.45 15.45 2.65
Run1 1.35 10.82 2.39
Run2 1.23 11.48 2.22
Run3 1.33 10.6 2.36
Run4 1.19 11.26 2.15
Run5 1.02 10.38 1.87
Run6 0.99 9.93 1.79
Run7 1.16 11.26 2.1
Run8 1.46 11.04 2.58

Table 6: Correction before test data revisions

5 Results

Table 6 shows the correction scores of the individual
runs that we originally submitted. Unfortunately, we
should confess that we made a vital mistake while
generating the runs from 1-8; the modules imple-
mented for learning the insertion classifier had some
bugs that we could not notice during the submission
time. Because of this, our system was unable to han-
dle MD and MT type errors properly. This is the
reason why the performance figures of our runs are
very low. For reference, we include Tables 7-10 that
illustrate the performance of our individual runs that
we calculated by ourselves using the test data and
the evaluation tool provided by the organizers.

We can observe that Run3 outperforms Run1 and
Run4 performs better than Run3, which demon-
strates that our attempts to improve the system per-
formance by adjusting training data for classifiers

254



Runs Precision Recall F-score
Run1 42.67 7.06 12.12
Run2 49.28 7.51 13.03
Run3 47.62 6.62 11.63
Run4 45.45 7.73 13.21
Run5 33.82 10.15 15.62
Run6 8.68 18.54 11.82
Run7 33.33 10.82 16.33
Run8 50.0 7.28 12.72

Table 7: Recognition before test data revisions (system
revised)

Runs Precision Recall F-score
Run1 32.0 5.3 9.09
Run2 42.03 6.4 11.11
Run3 34.92 4.86 8.53
Run4 37.66 6.4 10.94
Run5 26.47 7.94 12.22
Run6 5.68 12.14 7.74
Run7 24.49 7.95 12.0
Run8 42.42 7.28 10.79

Table 8: Correction before test data revisions (system re-
vised)

help. Moreover, we can also see that L1 informa-
tion helps when directly used for training features.

6 Conclusion

This was our first attempt to participate in a shared
task that involves the automatic correction of gram-
matical errors made by non-native speakers of En-
glish. In this work, we tried to focus on investigating
simple ways to improve the error correction system
learned on non-native speaker texts. While we had
made some critical mistakes on the submitted runs,
we were able to observe that our method can poten-
tially improve error correction systems.

Acknowledgments

We would like to thank Hyoung-Gyu Lee for his
technical assistance.

References
Daniel Dahlmeier and Hwee Tou Ng. 2011. Gram-

matical error correction with alternating structure op-

Runs Precision Recall F-score
Run1 49.33 7.82 13.50
Run2 52.17 7.61 13.28
Run3 52.38 6.98 12.31
Run4 51.95 8.46 14.55
Run5 37.5 10.78 16.75
Run6 9.29 19.03 12.5
Run7 36.73 11.42 17.42
Run8 51.52 7.18 12.62

Table 9: Recognition after test data revisions (system re-
vised)

Runs Precision Recall F-score
Run1 34.67 5.5 9.49
Run2 42.02 6.13 10.7
Run3 36.51 4.86 8.58
Run4 38.96 6.34 10.91
Run5 29.42 8.45 13.13
Run6 6.40 13.11 8.61
Run7 25.85 8.03 12.26
Run8 42.42 5.92 10.39

Table 10: Correction after test data revisions (system re-
vised)

timization. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies - Volume 1, ACL-HLT
’11, pages 915–923, Portland, Oregon.

Robert Dale, Ilya Anisimoff, and George Narroway.
2012. Hoo 2012: A report on the preposition and
determiner error correction shared task. In Proceed-
ings of the 7th Workshop on Innovative Use of NLP for
Building Educational Applications, HOO ’12, Mon-
treal, Canada.

Michael Gamon. 2010. Using mostly native data to
correct errors in learners’ writing: a meta-classifier
approach. In Human Language Technologies: Pro-
ceedings of the 2010 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, NAACL-HLT ’10, pages 163–171,
Los Angeles, California.

Na-Rae Han, Joel Tetreault, Soo-Hwa Lee, and Jin-
Young Ha. 2010. Using an error-annotated learner
corpus to develop an esl/efl error correction system.
In Proceedings of the 7th International Conference
on Language Resources and Evaluation, LREC ’10,
pages 763–770, Malta.

Alla Rozovskaya and Dan Roth. 2010a. Generating
confusion sets for context-sensitive error correction.

255



In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, EMNLP
’10, pages 961–970, Cambridge, Massachusetts.

Alla Rozovskaya and Dan Roth. 2010b. Training
paradigms for correcting errors in grammar and usage.
In Human Language Technologies: Proceedings of the
2010 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
NAACL-HLT ’10, pages 154–162, Los Angeles, Cali-
fornia.

Alla Rozovskaya and Dan Roth. 2011. Algorithm se-
lection and model adaptation for esl correction tasks.
In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies - Volume 1, ACL-HLT ’11, pages
924–933, Portland, Oregon.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Pro-
ceedings of the 2003 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics on Human Language Technology - Volume 1,
NAACL ’03, pages 173–180, Edmonton, Canada.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies - Volume 1, ACL-
HLT ’11, pages 180–189, Portland, Oregon.

256


