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Abstract

We develop a system for predicting the level of
language learners, using only a small amount
of targeted language data. In particular, we
focus on learners of Hebrew and predict level
based on restricted placement exam exercises.
As with many language teaching situations, a
major problem is data sparsity, which we ac-
count for in our feature selection, learning al-
gorithm, and in the setup. Specifically, we de-
fine a two-phase classification process, isolat-
ing individual errors and linguistic construc-
tions which are then aggregated into a second
phase; such a two-step process allows for easy
integration of other exercises and features in
the future. The aggregation of information
also allows us to smooth over sparse features.

1 Introduction and Motivation

Several strands of research in intelligent computer-
assisted language learning (ICALL) focus on deter-
mining learner ability (Attali and Burstein, 2006;
Yannakoudakis et al., 2011). One of the tasks, de-
tecting errors in a range of languages and for a range
of types of errors, is becoming an increasingly popu-
lar topic (Rozovskaya and Roth, 2011; Tetreault and
Chodorow, 2008); see, for example, the recent HOO
(Helping Our Own) Challenge for Automated Writ-
ing Assistance (Dale and Kilgarriff, 2011). Only
rarely has there been work on detecting errors in
more morphologically-complex languages (Dickin-
son et al., 2011).

In our work, we extend the task to predicting the
learner’s level based on the errors, focusing on He-

brew. Our system is targeted to be used in a uni-
versity setting where incoming students need to be
placed into the appropriate language level—i.e., the
appropriate course—based on their proficiency in
the language. Such a level prediction system for He-
brew faces a number of challenges: 1) unclear cor-
respondence between errors and levels, 2) missing
NLP resources, and, most critically, 3) data sparsity.

Placing learners into levels is generally done by
a human, based on a written exam (e.g. (Fulcher,
1997)). To model the decision process automati-
cally, we need to understand how the types of er-
rors, as well as their frequencies, correspond to
learner levels. There is only little work investigat-
ing this correspondence formally (see (Hawkins and
Filipović, 2010; Alexopoulou et al., 2010) for dis-
cussion) and only on error-annotated English learner
corpora. For this reason, we follow a data-driven
approach to learn the correspondence between er-
rors and levels, based on exercises from written
placement exams. Although the exact exercises will
vary across languages and language programs, the
methodology is widely applicable, as developing
a small set of exercises requires minimal effort—
effort already largely expended for paper exams.
Currently, we focus on an exercise in which the
learner has to order a set of words into a grammat-
ical sentence. Our goal is to move towards freer
language production and to analyze language pro-
ficiency through more variables, but, in the interest
of practicality, we start in a more restricted way.

For lesser-resourced languages, there is generally
little data and few NLP resources available. For He-
brew, for example, we must create our own pool of
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learner data, and while NLP tools and resources ex-
ist (Goldberg and Elhadad, 2011; Yona and Wintner,
2008; Itai and Wintner, 2008), they are not adapted
for dealing with potentially ill-formed learner pro-
ductions. For this reason, we are performing linguis-
tic analysis on the gold standard answers to obtain
optimal linguistic analyses. Then, the system aligns
the learner answer to the gold standard answer and
determines the types of deviations.

Since Hebrew is a less commonly taught language
(LCTL), we have few placement exams from which
to learn correspondences. Compounding the data
sparsity problem is that each piece of data is com-
plex: if a learner produces an erroneous answer,
there are potentially a number of ways to analyze it
(cf. e.g. (Dickinson, 2011)). An error could feature,
for instance, a letter inserted in an irregular verb
stem, or between two nouns; any of these proper-
ties may be relevant to describing the error (cf. how
errors are described in different taxonomies, e.g.
(Dı́az-Negrillo and Fernández-Domı́nguez, 2006;
Boyd, 2010)). Specific error types are unlikely to
recur, making sparsity even more of a concern. We
thus need to develop methods which generalize well,
finding the most useful aspects of the data.

Our system is an online system to be used at the
Hebrew Language Program at our university. The
system is intended to semi-automatically place in-
coming students into the appropriate Hebrew course,
i.e., level. As with many exams, the main purpose is
to “reduce the number of students who attend an oral
interview” (Fulcher, 1997).

2 The Data

Exercise type We focus on a scrambled sentence
exercise, in which learners are given a set of well-
formed words and must put them into the correct or-
der. For example, given (1), they must produce one
of the correct choices in (2). This gives them the
opportunity to practice skills in syntactic ordering.1

(1) barC beph dibrw hybrit ieral la tmid

(2) a. la
not

tmid
always

dibrw
spoke

beph
in-the-language

hybrit
the-Hebrew

barC
in-land-of

ieral
Israel

.

.
1We follow the transliteration scheme of the Hebrew Tree-

bank (Sima’an et al., 2001).

‘They did not always speak in the He-
brew language in the land of Israel.’

b. barC ieral la dibrw tmid beph hybrit .

c. la tmid dibrw barC ieral beph hybrit .

(3) barC ieral la tmid dibrw beph hybriM .

Although the lexical choice is restricted—in that
learners are to select from a set of words—learners
must write the words. Thus, in addition to syntactic
errors, there is possible variation in word form, as in
(3), where hybrit is misspelled as hybriM.

This exercise was chosen because: a) it has been
used on Hebrew placement exams for many years;
and b) the amount of expected answers is con-
strained. Starting here also allows us to focus less
on the NLP preprocessing and more on designing
a machine learning set-up to analyze proficiency.
It is important to note that the proficiency level is
determined by experts looking at the whole exam,
whereas we are currently predicting the proficiency
level on the basis of a single exercise.

Placement exams The data for training and test-
ing is pooled from previous placement exams at our
university. Students who intend to take Hebrew have
in past years been given written placement exams,
covering a range of question types, including scram-
bled sentences. The learners are grouped into the
first to the sixth semester, or they test out. We are
using the following levels: the first four semesters
(100, 150, 200, 250), and anything above (300+).

We use a small set of data—38 learners covering
128 sentences across 11 exercises—all the data that
is available. While this is very small, it is indicative
of the type of situation we expect for resource-poor
languages, and it underscores the need to develop
methods appropriate for data-scarce situations.

(Manual) annotation For each of the 11 unique
exercises, we annotate an ordered list of correct an-
swers, ranked from best to worst. Since Hebrew pos-
sesses free word order, there are between 1 and 10
correct answers per exercise, with an average of 3.4
gold standard answers. The sentences have between
8 and 15 words, with an average of 9.7 words per ex-
ercise. This annotation concerns only the gold stan-
dard answers. It requires minimal effort and needs
to be performed only once per exercise.
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T09: SURFACE qnw
SEGMENTATION (VB-BR3V qnw)
PRE_PARTICLES -
MAIN_WORD:

INDICES 0,1,2,
TAG VB-BR3V
BINYAN PAAL
INFL_PREFIX -
STEM 0,1,
ROOT 0,1,h,
INFL_SUFFIX 2,

PRO_SUFFIX -

Figure 1: An example annotated word for qnw (‘bought’),
token T09 in one particular exercise

To annotate, we note that all the correct answers
share the same set of words, varying in word or-
der and not in morphological properties. Thus,
we store word orders separately from morphologi-
cal annotation, annotating morphology once for all
possible word orders. An example of morpholog-
ical annotation is given in fig. 1 for the verb qnw
(‘bought’). Segmentation information is provided
by referring to indices (e.g., STEM 0,1), while TAG
and BINYAN provide morphosyntactic properties.

Since the annotation is on controlled, correct data,
i.e., not potentially malformed learner data, we can
explore automatically annotating exercises in the fu-
ture, as we expect relatively high accuracy.

3 System overview

The overall system architecture is given in fig. 2; the
individual modules are described below. In brief,
we align a learner sentence with the gold standard;
use three specialized classifiers to classify individ-
ual phenomena; and then combine the information
from these classifiers into an overall classifier for the
learner level. This means the classification is per-
formed in two phases: the first phase looks at indi-
vidual phenomena (i.e., errors and other properties);
the second phase aggregates all phenomena of one
learner over all exercises and makes a final decision.

4 Feature extraction

To categorize learners into levels, we first need to ex-
tract relevant information from each sentence. That
is, we need to perform a linguistic and/or error anal-
ysis on each sentence, which can be used for classi-

Learner
sentence

(L)

Alignment

Gold
standard
answers

(G1 . . . G2)

Feature
extraction

Intertoken
errors

Intratoken
errors

Global
features

Intra-
Classifier

Inter-
Classifier

Global-
Classifier

Classified
intra

vectors

Classified
inter

vectors

Classified
global
vectors

Learner
classifier

L↔ Gi

Figure 2: Overall system architecture (boxes = system
components, circles = data)

fication (sec. 5). Although we extract features for
classification, this analysis could also be used for
other purposes, such as providing feedback.

4.1 Phenomena of interest

We extract features capturing individual phenom-
ena. These can be at the level of individual words,
bigrams of words, or anything up to a whole sen-
tence; and they may represent errors or correctly-
produced language. Importantly, at this stage, each
phenomenon is treated uniquely and is not combined
or aggregated until the second phase (see sec. 5).

While features can be based on individual phe-
nomena of any type, we base our extracted features
largely upon learner errors. Errors have been shown
to have a significant impact on predicting learner
level (Yannakoudakis et al., 2011). To detect errors,
we align the learner sentence with a gold standard
and extract the features. Although we focus on er-
rors, we model some correct language (sec. 4.3.3).

4.2 Token alignment

With a listing of correct answers, we align the
learner sentence to the answer which matches best:
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We iterate over the correct answers and align learner
tokens with correct tokens, based on the cost of map-
ping one to the other. The aligned sentence is the
one with the lowest overall cost. The cost between a
source token ws and target token wt accounts for:

1. Levenshtein distance between ws & wt (Lev)

2. similiarity between ws & wt (longest common
subsequence (LCSq) & substring (LCSt))

3. displacement between ws & wt (Displ)

This method is reminiscent of alignment ap-
proaches in paraphrasing (e.g. (Grigonytè et al.,
2010)), but note that our problem is more restricted
in that we have the same number of words, and in
most cases identical words. We use different dis-
tance and similarity metrics, to ensure robustness
across different kinds of errors. The third metric is
the least important, as learners can shift tokens far
from their original slot, and thus it is given a low
weight. The only reason to use it at all is to distin-
guish cases where more than one target word is a
strong possibility, favoring the closer one.

The formula for the cost between source and tar-
get words ws and wt is given in (4), where the dis-
tance metrics are averaged and normalized by the
length of the target word wt. This length is also used
to convert the similarity measures into distances, as
in (5). We non-exhaustively tested different weight
distributions on about half the data, and our final set
is given in (6), where slightly less weight is given
for the longest common substring and only a minor
amount for the displacement score.

(4) cost(ws, wt) = θ1Displ(ws, wt) +
θ2Lev(ws,wt)+θ3dLCSq(ws,wt)+θ4dLCSt(ws,wt)

3×len(wt)

(5) dLCS(ws, wt) = len(wt)− LCS(ws, wt)

(6) θ1 = 0.05; θ2 = 1.0; θ3 = 1.0; θ4 = 0.7

In calculating Levenshtein distance, we hand-
created a small table of weights for insertions, dele-
tions, and substitutions, to reflect likely modifica-
tions in Hebrew. All weights can be tweaked in the
future, but we have observed good results thus far.

The total alignment is the one which minimizes
the total cost (7). A is an alignment between the
learner sentence s and a given correct sentence t.
Alignments to NULL have a cost of 0.6, so that
words with high costs can instead align to nothing.

(7) align = arg minA
∑

(ws,wt)∈A cost(ws, wt)

4.3 Extracted features
We extract three different types of features; as these
have different feature sets, we correspondingly have
three different classifiers, as detailed in sec. 5.1.
They are followed by a fourth classifier that tallies
up the results of these three classifiers.

4.3.1 Intra-token features
Based on the token alignments, it is straightfor-

ward to calculate differences within the tokens and
thus to determine values for many features (e.g., a
deleted letter in a prefix). We calculate such intra-
token feature vectors for each word-internal error.

For instance, consider the learner attempt (8b) for
the target in (8a). We find in the learner answer two
intra-token errors: one in hmtnwt (cf. hmtnh), where
the fem.pl. suffix -wt has been substituted for the
fem.sg. ending -h, and another in hnw (cf. qnw),
where h has been substituted for q. These two errors
yield the feature vectors presented as example cases
in table 1.

(8) a. haM
Q

hN
they.FEM

eilmw
paid

hrbh
much

ksP
money

bebil
for

hmtnh1

the-gift
ehN
which-they.FEM

qnw2

bought
?
?

‘Did they pay much money for the gift
that they bought?’

b. haM hN eilmw hrbh ksP bebil hmtnwt1
ehN hnw2 ?

Features 1 and 11 in table 1 are the POS tags of the
morphemes preceding and following the erroneous
morpheme, respectively. The POS tag of the mor-
pheme containing the error is given by feature 2, and
its person, gender, and number by feature 3. The re-
maining features describe the error itself (f. 6–8), as
well as its word-internal context, i.e., both its left (f.
4–5) and right (f. 9–10) contexts.

The context features refer to individual character
slots, which may or may not be occupied by actual
characters. For example, since the error in hmtnwt
is word-final, its two right-context slots are empty,
hence the ‘#’ symbol for both features 9 and 10.

The feature values for these character slots are
generally not literal characters, but rather abstract la-
bels representing various categories, most of which

98



Features hnw hmtnwt
1. Preceding POS PRP H
2. Current POS VB NN
3. Per.Gen.Num. 3cp -fs
4. Left Context (2) # R2
5. Left Context (1) # R3
6. Source String h wt
7. Target String q h
8. Anomaly h→q wt→h
9. Right Context (1) R2 #

10. Right Context (2) INFL-SFX #
11. Following POS yyQM REL

Table 1: Intra-token feature categories

are morphological in nature. In hmtnwt, for exam-
ple, the two left-context characters t and n are the
second and third radicals of the root, hence the fea-
ture values R2 and R3, respectively.

4.3.2 Inter-token features
The inter-token features encode anomalies whose

scope is not confined to a particular token. Such
anomalies include token displacements and missing
tokens. We again use the Levenshtein algorithm to
detect inter-token anomalies, but we disable the sub-
stitution operation here so that we can link up corre-
sponding deletions and insertions to yield “shifts.”

For example, suppose the target is A B C D, and
the learner has D A B C. Without substitutions, the
minimal cost edit sequence is to delete D from the
beginning of the learner’s input and insert D at the
end. Merging the two operations results in a D shift.

The learner sentence in (9b) shows two inter-
token anomalies with respect to the target in (9a).
First, the learner has transposed the two tokens in
sequence 1, namely the verb dibrw (‘speak-PAST’)
and the adverb tmid (‘always’). Second, sequence 2
(the PP beph hybrit, ‘in the Hebrew language’) has
been shifted from its position in the target sentence.

(9) a. barC
in-land-of

ieral
Israel

la
not

dibrw1

speak-PAST

tmid1

always
beph2

in-the-language
hybrit2
the-Hebrew

.

.
b. barC ieral beph2 hybrit2 la tmid1

dibrw1 .

Table 2 presents the inter-token feature vectors
for the two anomalies in (9b). After Anomaly,

Features Seq. 1 Seq. 2
1. Anomaly TRNS SHFT
2. Sequence Label RB↔VP PP
3. Head Per.Gen.Num. 3cp ---
4. Head POS.(Binyan) VB.PIEL IN
5. Sequence-Initial POS VB IN
6. Sequence-Final POS RB JJ
7. Left POS (Learner) RB NNP
8. Right POS (Learner) IN RB
9. Left POS (Target) RB RB

10. Right POS (Target) IN yyDOT
11. Sequence Length 2 2
12. Normalized Error Cost 0.625 0.250
13. Sent-Level@Rank 200@2 200@2

Table 2: Inter-token feature categories

the next three features provide approximations of
phrasal properties, e.g., the phrasal category and
head, based on a few syntactically-motivated heuris-
tics. Sequence Label identifies the lexical or phrasal
category of the shifted token/token-sequence (e.g.,
PP). Note that sequence labels for transpositions are
special cases consisting of two category labels sep-
arated by an arrow. Head Per.Gen.Num and Head
POS.(Binyan) represent the morphosyntactic prop-
erties of the sequence’s (approximate) head word,
namely its person, gender, and number, and its POS
tag. If the head is a verb, the POS tag is followed by
the verb’s binyan (i.e., verb class), as in VB.PIEL.

The cost feature, Normalized Error Cost, is com-
puted as follows: for missing, extra, and transposed
sequences, the cost is simply the sequence length
divided by the sentence length. For shifts, the se-
quence length and the shift distance are summed
and then divided by the sentence length. Sent-
Level@Rank indicates both the difficulty level of the
exercise and the word-order rank of target sentence
to which the learner sentence has been matched.

4.3.3 Global features
In addition to errors, we also look at global fea-

tures capturing global trends in a sentence, in order
to integrate information about the learner’s overall
performance on a sentence. For example, we note
the percentage of target POS bigrams present in the
learner sentence (POS recall). Table 3 presents the
global features. The two example feature vectors are
those for the sentences (8b) and (9b) above.
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Features Ex. (8b) Ex. (9b)
1. POS Bigram Recall 2.000 1.273
2. LCSeq Ratio 2.000 1.250
3. LCStr Ratio 1.200 0.500
4. Relaxed LCStr Ratio 2.000 0.500
5. Intra-token Error Count 1.500 0.000
6. Inter-token Error Count 0.000 1.500
7. Intra-token Net Cost 1.875 0.000
8. Norm. Aggregate Displ. 0.000 0.422
9. Sentence Level 200 200

Table 3: Global feature categories

Except for feature 9 (Sentence Level), every fea-
ture in table 3 is multiplied by a weight derived from
the sentence level. These weights serve either to pe-
nalize or compensate for a sentence’s difficulty, de-
pending on the feature type. Because features 1–
4 are “positive” measures, they are multiplied by
a factor proportional to the sentence level, namely
l = 1. . . 4, whose values correspond directly to the
levels 150–300+, respectively. Features 5–8, in con-
trast, are “negative” measures, so they are multiplied
by a factor inversely proportional to l, namely 5−l

4 .
Among the positive features, LCSeq looks for the

longest common subsequence between the learner
sentence and the target, while LCStr Ratio and Re-
laxed LCStr Ratio both look for longest common
substrings. However, Relaxed LCStr Ratio allows
for token-internal anomalies (as long as the token it-
self is present) while LCStr Ratio does not.

As for the negative features, the two Error Count
features simply tally up the errors of each type
present in the sentence. The Intra-token Net Cost
sums over the token-internal Levenshtein distances
between corresponding learner and target tokens.
Normalized Aggregate Displacement is the sum of
insertions and deletions carried out during inter-
token alignment, normalized by sentence length.

5 Two-phase classification

To combine the features for individual phenomena,
we run a two-phase classifier. In the first phase, we
classify each feature vector for each phenomenon
into a level. In the second phase, we aggregate over
this output to classify the overall learner level.

We use two-phase classification in order to: 1)
modularize each individual phenomenon, mean-

ing that new phenomena are more easily incorpo-
rated into future models; 2) better capture sparsely-
represented phenomena, by aggregating over them;
and 3) easily integrate other exercise types simply
by having more specialized phase 1 classifiers and
by then integrating the results into phase 2.

One potential drawback of two-phase classifica-
tion is that of not having gold standard annotation of
phase 1 levels or even knowing for sure whether in-
dividual phenomena can be classified into consistent
and useful categories. That is, even if a 200-level
learner makes an error, that error is not necessarily a
200-level error. We discuss this next.

5.1 Classifying individual phenomena
With our three sets of features (sec. 4), we set up
three classifiers. Depending upon the type, the ap-
propriate classifier is used to categorize each phase
1 vector. For classification, every phase 1 vector is
assigned a single learner level. However, this as-
sumes that each error indicates a unique level, which
is not always true. A substitution of i for w, for ex-
ample, may largely be made by 250-level (interme-
diate) learners, but also by learners of other levels.

One approach is to thus view each phenomenon as
mapping to a set of levels, and for a new vector, clas-
sification predicts the set of appropriate levels, and
their likelihood. Another approach to overcome the
fact that each uniquely-classified phenomenon can
be indicative of many levels is to rely on phase 2
to aggregate over different phenomena. The advan-
tage of the first approach is that it makes no assump-
tions about individual phenomena being indicative
of a single level, but the disadvantage is that one
may start to add confusion for phase 2 by includ-
ing less relevant levels, especially when using little
training data. The second approach counteracts this
confusion by selecting the most prototypical level
for an individual phenomenon (cf. criterial features
in (Hawkins and Buttery, 2010)), giving less noise
to phase 2. We may lose important non-best level
information, but as we show in sec. 6, with a range
of classifications from phase 1, the second phase can
learn the proper learner level.

In either case, from the perspective of training,
an individual phenomenon can be seen, in terms of
level, as the set of learners who produced such a phe-
nomenon. We thus approximate the level of each
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Feature type Feature type
1. 100-level classes 7. Intra-token error sum
2. 150-level classes 8. Inter-token error sum
3. 200-level classes 9. Sentences attempted
4. 250-level classes 10. 250-level attempts
5. 300-level classes 11. 300-level attempts
6. Composite error

Table 4: Feature categories for learner level prediction

phenomenon by using the level of the learner from
the gold standard training data. This allows us not to
make a theoretical classification of phenomena (as
opposed to taxonomically labeling phenomena).

5.2 Predicting learner level
We aggregate the information from phase 1 classifi-
cation to classify overall learner levels. We assume
that the set of all individual phenomena and their
quantities (e.g., proportion of phenomena classified
as 200-level in phase 1) characterize a learner’s level
(Hawkins and Buttery, 2010). The feature types
are given in table 4. Features 1–6 are discussed in
sec. 6.1; features 7–8 are (normalized) sums; and the
rest record the number of sentences attempted, bro-
ken down by intended level of the sentence. Lower-
level attempts are not included, as they are the same
values for nearly all students. When we incorporate
other exercise types in the future, additional features
can be added—and the current features modified—
to fold in information from those exercise types.

An example To take an example, one of our
(300+) learners attempts four sentences, giving four
sets of global features, and makes four errors, for
a total of eight phase 1 individual phenomena. One
phenomenon is automatically classified as 100-level,
one as 150, four as 200, one as 250, and one as 300+.
Taking the 1-best phase 1 output (see section 6.3),
the phase 2 vector in this case is as in (10a), corre-
sponding directly to the features in table 4.

(10) a. 0.25, 0.25, 1.00, 0.25, 0.25, 2.00, 0.50,
0.50, 4, 1, 0

b. 0.25, 0.00, 1.00, 0.25, 0.00, 1.625, 0.00,
0.50, 4, 1, 0

In training, we find a 300+-level learner with a
very similar vector, namely that of (10b). Depending

upon the exact experimental set-up (e.g., k2 = 1,
see section 6.3), then, this vector helps the system to
correctly classify our learner as 300+.

6 Evaluation

6.1 Details of the experiments
We use TiMBL (Daelemans et al., 2010; Daelemans
et al., 1999), a memory-based learner (MBL), for
both phases. We use TiMBL because MBL has been
shown to work well with small data sets (Banko and
Brill, 2001); allows for the use of both text-based
and numeric features; and does not suffer from a
fragmented class space. We mostly use the default
settings of TiMBL—the IB1 learning algorithm and
overlap comparison metric between instances—and
experiment with different values of k.

For prediction of phenomenon level (phase 1) and
learner level (phase 2), the system is trained on data
from placement exams previously collected in a He-
brew language program, as described in sec. 2. With
only 38 learners, we use leave-one-out testing, train-
ing on the data from the 37 other learners in order
to run a model on each learner’s sentences. All of
phase 1 is completed (i.e., automatically analyzed)
before training the phase 2 models. As a baseline,
we use the majority class (level 150); choosing this
for all learners gives an accuracy of 34.2% (13/38).2

Phase 1 probability distributions Because
TiMBL retrieves all neighbor with the k nearest
distances rather than the k nearest neighbors, we
can use the number of neighbors in phase 1 to adjust
the values of, e.g., 150-level classes. For example,
the output from phase 1 for two different vectors
might be as in (11). Both have a distribution of 2

3
150-level and 1

3 200-level; however, in one case,
this is based on 6 neighbors, whereas for the other,
there are 12 neighbors within the nearest distance.

(11) a) 150:4, 200:2 b) 150:8, 200:4

With more data, we may have more confidence
in the prediction of the second case. The classes
features (fx) of table 4 are thus calculated as in
(12), multiplying counts of each class (c(x)) by their
probabilities (p(x)).

2We are aware that the baseline is not very strong, but the
only alternative would be to use a classifier since we observed
no direct correlation between level and number of errors.
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k Intra Inter Global Overall
1 28.1% 38.6% 34.4% 34.7%
3 34.2% 44.6% 44.6% 41.9%
5 34.2% 37.1% 36.7% 36.3%

Table 5: Phase 1 accuracies

(12) fx =
∑

phase1

c(x)p(x)

The Composite error feature combines all classes
features into one score, inversely weighing them by
level, so that more low-level errors give a high value.

6.2 Predicting phenomena levels
We first evaluate phase 1 accuracy, as in table 5. Us-
ing k = 3 gives the best phase 1 result, 41.9%. We
evaluate with respect to the single-best class, i.e.,
the level of the learner of interest. Accuracy is the
percentage of correctly-classified instances out of all
instances. We assume an instance is classified cor-
rectly if its class corresponds to the learner level.

Accuracy is rather low, at 41.9%. However, we
must bear in mind that we cannot expect 100% accu-
racy, given that individual phenomena do not clearly
belong to a single level. Intra-token classification is
lowest, likely due to greater issues of sparsity: ran-
dom typos are unlikely to occur more than once.

6.3 Predicting learner level
For the second phase, we use different settings for
phase 1 instances. The results are shown in table 6.
The overall best results are reached using single-best
classification for phase 1 and k = 1 for phase 2, giv-
ing an accuracy of 60.5%. Note that the best result
does not use the best performing setting for phase 1
but rather the one with the lowest performance for
phase 1. This shows clearly that optimizing the two
phases individually is not feasible. We obtain the
same accuracy using k = 5 for both phases.

Since we are interested in how these two settings
differ, we extract confusion matrices for them; they
are shown in table 7. The matrices show that the in-
herent smoothing via the k nearest neighbors leads
to a good performance for lower levels, to the ex-
clusion of levels higher than 200. The higher lev-
els are also the least frequent: the k1 = 5/k2 = 5
case shows a bias towards the overall distribution of
levels, whereas the 1-best/k2 = 1 setting is more

Phase 1
1-best k1 = 1 k1 = 3 k1 = 5

Ph
as

e
2 Max 42.1 47.4 57.9 42.1

k2 = 1 60.5 57.9 36.8 39.5
k2 = 3 42.1 44.7 44.7 42.1
k2 = 5 39.5 42.1 44.7 60.5

Table 6: Phase 2 accuracies for different phase 1 settings

System
1-best 100 150 200 250 300+ Acc.

G
ol

d

100 6 1 6/7
150 2 7 3 1 7/13
200 2 7 1 1 7/11
250 1 1 0/2

300+ 1 1 3 3/5

k=5 100 150 200 250 300+ Acc.

G
ol

d

100 5 2 5/7
150 2 9 2 9/13
200 2 9 9/11
250 2 0/2

300+ 1 4 0/5

Table 7: Classification confusion matrices

likely to guess neighboring classes. In order to better
account for incorrect classifications which are close
to the correct answer (e.g., 250 for 200), we also
calculated weighted kappa for all the results in ta-
ble 6. Based on kappa, the best result is based on
the setting k1 = 1/k2 = 1 (0.647), followed by
1-best/k2 = 1 (0.639). The weighted kappa for
k1 = 5/k2 = 5 is significantly lower (0.503).

We are also interested in whether we need such
a complex system: phase 1 can outputs a distribu-
tion of senses (k1 = n), or we can use the single
best class as input to phase 2 (1-best). In a different
vein, phase 2 is a machine learner (k2 = n) trained
on phase 1 classified data, but could be simplified
to take the maximum phase 1 class (Max). The re-
sults in table 6 show that using the single-best result
from phase 1 in combination with k2 = 1 provides
the best results, indicating that phase 2 can properly
aggregate over individual phenomena (see sec. 5.1).
However, for all other phase 2 settings, adding the
distribution over phase 1 results increases accuracy.
Using the maximum class rather than the machine
learner in phase 2 generally works best in combina-
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tion with more nearest neighbors in phase 1, provid-
ing a type of smoothing. However, using the maxi-
mum has an overall detrimental effect.

While the results may not be robust enough to de-
ploy, they are high, given that this is only one type of
exercise, and we have used a very small set of train-
ing data. When performing the error analysis, we
found one student who had attempted only half of
the sentences—generally a sign of a low level—who
was put into level 300. We assume this student per-
formed better on other exercises in the exam. Given
this picture, it is not surprising that our system con-
sistently groups this student into a lower level.

6.4 Ablation studies

We are particularly interested in how the different
phases interact, 1) because one major way to expand
the system is to add different exercises and incor-
porate them into the second phase, and 2) because
the results in table 6 show a strong interdependence
between phases. We thus performed a set of exper-
iments to gauge the effect of different types of fea-
tures. By running ablation studies—i.e., removing
one or more sets of features (cf. e.g. (Yannakoudakis
et al., 2011))–we can determine their relative impor-
tance and usefulness. We run phase 2 (k = 1) using
different combinations of phase 1 classifiers (1-best)
as input. The results are presented in table 8.

Intra Inter Global Acc.
Y Y Y 60.5%
Y Y N 47.4%
Y N N 42.1%
N Y Y 42.1%
N Y N 42.1%
Y N Y 36.8%
N N Y 34.2%

Table 8: Ablation studies, evaluating on phase 2 accuracy

Perhaps unsurprisingly, the combination of all
feature types results in the highest results of 60.5%.
Also, using only one type of features results in the
lowest performance, with the global features being
the least informative set, on par with the baseline of
34.2%. If we use only two feature sets, removing
the global features results in the least deterioration.
Since these features do not directly model errors but

rather global sentence trends, this is to be expected.
However, leaving out inter-token features results in
the second-lowest results (36.8%), thus showing that
this set is extremely important—again not surprising
given that we are working with an exercise designed
to test word order skills.

7 Summary and Outlook

We have developed a system for predicting the level
of Hebrew language learners, using only a small
amount of targeted language data. We have pre-
dicted level based on a single placement exam exer-
cise, finding a surprising degree of accuracy despite
missing much of the information normally used on
such exams. We accounted for the problem of data
sparsity by breaking the problem into a two-phase
classification and through our choice of learning al-
gorithm. The classification process isolates individ-
ual errors and linguistic constructions which are then
aggregated into a second phase; such a two-step pro-
cess allows for easy integration of other exercises
and features in the future. The aggregation of infor-
mation allows us to smooth over sparse features.

In the immediate future, we are integrating other
exercises, to improve the overall accuracy of level
prediction (i.e., the second phase) and make auto-
matic testing more valid (cf. e.g. (Fulcher, 1997)),
while at the same time incorporating more linguistic
processing for more complex input. For example,
with question formation exercises, no closed set of
correct answers exists, and one must use parse tree
distance to delineate features. With multiple exer-
cises, we have plans to test the system with incoming
students to the Hebrew program at our university.
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Gintarè Grigonytè, João Paulo Cordeiro, Gaël Dias, Ru-
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