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Abstract

Results in unsupervised dependency parsing
are typically compared to branching baselines
and the DMV-EM parser of Klein and Man-
ning (2004). State-of-the-art results are now
well beyond these baselines. This paper de-
scribes two simple, heuristic baselines that are
much harder to beat: a simple, heuristic al-
gorithm recently presented in Søgaard (2012)
and a heuristic application of the universal
rules presented in Naseem et al. (2010). Our
first baseline (RANK) outperforms existing
baselines, including PR-DVM (Gillenwater et
al., 2010), while relyingonly on raw text, but
all submitted systems in the Pascal Grammar
Induction Challenge score better. Our second
baseline (RULES), however, outperforms sev-
eral submitted systems.

1 RANK: a simple heuristic baseline

Our first baseline RANK is a simple heuristic base-
line that does not rely on part of speech. It only as-
sumes raw text. The intuition behind it is that a de-
pendency structure encodes something related to the
relatively salience of words in a sentence (Søgaard,
2012). It constructs a word graph of the words in
a sentence and applies a random walk algorithm to
rank the words by salience. The word ranking is
then converted into a dependency tree using a simple
heuristic algorithm.

The graph over the words in the input sentence
is constructed by adding directed edges between the
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word nodes. The edges are not weighted, but mul-
tiple edges between nodes will make transitions be-
tween them more likely.

The edge template was validated on development
data from the English Penn-III treebank (Marcus et
al., 1993) and first presented in Søgaard (2012):

• Short edges. To favor short dependencies, we add
links between all words and their neighbors. This
makes probability mass flow from central words to their
neighboring words.

• Function words. We use a keyword extraction algorithm
without stop word lists to extract function or non-content
words. The algorithm is a crude simplification of
TextRank (Mihalcea and Tarau, 2004) that does not rely
on linguistic resources, so that we can easily apply it
to low-resource languages. Since we do not use stop
word lists, highly ranked words will typically be function
words. For the 50-most highly ranked words, we add
additional links from their neighboring words. This will
add additional probability mass to the function words.
This is relevant to capture structures such as prepositional
phrases where the function words take content words as
complements.

• Morphological inequality. If two words wi, wj have
different prefixes or suffixes, i.e. the first two or last three
letters, we add an edge between them.

Given the constructed graph we rank the nodes
using the algorithm in Page and Brin (1998), also
known as PageRank. The input to the PageRank al-
gorithm is any directed graphG = 〈E,V 〉 and the
output is an assignmentPR : V → R of a score,
also referred to as PageRank, to each node in the
graph, reflecting the probability of ending up in that
node in a random walk.
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from/to The finger-pointing has already begun .
The 0 3 2 2 3 2
finger-pointing 3 0 5 2 3 2
has 2 4 0 3 3 2
already 2 2 5 0 3 2
begun 2 3 3 3 0 3
. 2 2 3 2 4 0
PR(%) 13.4 17.4 21.2 15.1 19.3 13.6

Figure 1: Graph, pagerank (PR) and predicted depen-
dency structure for sentence 7 in PTB-III Sect. 23.

The words are now ranked by their PageRank
(Figure 1), and from the word ranking we derive
a dependency tree. The derivation is very simple:
We introduce a store of potential heads, initialized
as a singleton containing the word with the high-
est PageRank (which is attached to the artificial root
note). Each word is now assigned a syntactic head
taken from all the words that were already assigned
heads. Of these words, we simply select the clos-
est possible head. In case of ties, we select the head
with the highest PageRank.

2 RULES: a simple rule-based baseline

Our second baseline is even simpler than our first
one, but makes use of input part of speech. In par-
ticular it builds on the idea that unsupervised pars-
ing can be informed by universal dependency rules
(Naseem et al., 2010). We reformulate the univer-
sal dependency rules used in Naseem et al. (2010)
in terms of the universal tags provided in the shared
task (Figure 2), but unlike them, we do not engage
in grammar induction. Instead we simply present a
straight-forward heuristic application of the univer-
sal dependency rules:

RULES finds the head of each wordw by finding
the nearest wordw′ such that POS(w′)→POS(w) is
a universal dependency rule. In case of ties, we se-
lect the left-most head in the candidate set. The head
of the sentence is said to be the left-most verb. Note
that we are not guaranteed to find a head satisfying
a universal dependency rule. In fact when the de-
pendent has part of speechAUX or ’.’ we will never
find such a head. If no head is found, we attach the
dependent to the artificial root node.

Note that like RANK, RULES would give us

VERB−→VERB NOUN−→ADJ

VERB−→NOUN NOUN−→DET

VERB−→ADV NOUN−→NOUN

VERB−→ADP NOUN−→NUM

VERB−→CONJ

VERB−→DET

VERB−→NUM

VERB−→ADJ

VERB−→X

ADP−→NOUN ADJ−→ADV

ADP−→ADV

Figure 2: Universal dependency rules (Naseem et al.,
2010) wrt. universal tags.

RANK RULES DMV win best
Arabic 0.340 0.465 0.274 0.541 0.573
Basque 0.255 0.137 0.321 0.440 0.459
Czech 0.329 0.409 0.276 0.488 0.491
Danish 0.424 0.451 0.395 0.502 0.502
Dutch 0.313 0.405 0.284 0.437 0.492
En-Childes 0.481 0.519 0.498 0.538 0.594
En-WSJ 0.328 0.425 0.335 0.555 0.560
Portuguese 0.371 0.546 0.240 0.418 0.652
Slovene 0.284 0.377 0.242 0.580 0.580
Swedish 0.375 0.551 0.290 0.573 0.573

the correct analysis of the sentence in Figure 1
(excl. punctuation). Surprisingly, RULES turns out
to be avery competitive baseline.

3 Results

Shared task results were evaluated by the organiz-
ers in terms of directed accuracy (DA), also known
as unlabeled attachment score, undirected accuracy
(UA) and NED (Schwartz et al., 2011), both for
short and full length sentences. We will focus on
DA for full length sentences here, arguable the most
widely accepted metric. Table 1 presents results for
all 10 datasets, with DMV based on fine-grained na-
tive POS (which performs best on average compared
to DMV-CPOS and DMV-UPOS),1 and Tu, stan-
dard as the winning system (’win’). The ’best’ result
cherry-picks the best system for each dataset.

The first thing we note is that our two baselines

1In a way it would be fairer toexclude native POS and CPOS
information, since native tag sets reflect language-specific syn-
tax. Moreover, the validity of relying on manually labeled input
is questionable.
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are much better than the usual structural baselines.
The macro-averages for the branching baselines are
0.252 (left) and 0.295 (right), but if we allow our-
selves to cherry-pick the best branching baseline for
each language the macro-average of that baseline
is 0.352. This corresponds to the macro-average
of RANK which is 0.350. The macro-average of
RULES is 0.429.

Interestingly, RANK achieves better full length
sentence DA than at least one of the submitted sys-
tems for each language, except English. The same
holds for full length sentence NED. RULES is an
even stronger baseline.

Most interestingly the two baselines are signifi-
cantly better on average thanall the baselines pro-
posed by the organizers, including DMV-EM and
DMV-PR. This is surprising in itself, since our two
baselines are completely heuristic and require no
training. It seems none of the baseline systems nec-
essarily learn anything apart from simple, univer-
sal properties of linguistic trees that we could easily
have spelled out in the first place.

More than half of the submitted systems are worse
than RULES in terms of DA, but three systems also
outperform our baselines by some margin (Bisk,
Blunsom and Tu). Since our baselines are better than
harmonic initialization, the obvious next step would
be to try to initialize EM-based unsupervised parsers
by the structures predicted by our baselines.
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