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Abstract

For many NLP tasks, EM-trained HMMs are
the common models. However, in order to es-
cape local maxima and find the best model, we
need to start with a good initial model. Re-
searchers suggested repeated random restarts
or constraints that guide the model evolu-
tion. Neither approach is ideal. Restarts are
time-intensive, and most constraint-based ap-
proaches require serious re-engineering or ex-
ternal solvers. In this paper we measure the ef-
fectiveness of very limited initial constraints:
specifically, annotations of a small number of
words in the training data. We vary the amount
and distribution of initial partial annotations,
and compare the results to unsupervised and
supervised approaches. We find that partial
annotations improve accuracy and can reduce
the need for random restarts, which speeds up
training time considerably.

1 Introduction

While supervised learning methods achieve good
performance in many NLP tasks, they are inca-
pable of dealing with missing annotations. For most
new problems, however, missing data is the norm,
which makes it impossible to train supervised mod-
els. Unsupervised learning techniques can make
use of unannotated data and are thus well-suited for
these problems.

For sequential labeling tasks (POS-tagging, NE-
recognition), EM-trained HMMs are the most com-
mon unsupervised model. However, running vanilla
forward-backward-EM leads to mediocre results,
due to various properties of the training method

(Johnson, 2007). Running repeated restarts with
random initialization can help escape local maxima,
but in order to find the global optimum, we need to
run a great number (100 or more) of them (Ravi and
Knight, 2009; Hovy et al., 2011). However, there
is another solution. Various papers have shown that
the inclusion of some knowledge greatly enhances
performance of unsupervised systems. They intro-
duce constraints on the initial model and the param-
eters. This directs the learning algorithm towards a
better parameter configuration. Types of constraints
include ILP-based methods (Chang et al., 2007;
Chang et al., 2008; Ravi and Knight, 2009), and pos-
terior regularization (Graça et al., 2007; Ganchev et
al., 2010). While those approaches are powerful and
yield good results, they require us to reformulate the
constraints in a certain language, and either use an
external solver, or re-design parts of the maximiza-
tion step. This is time-consuming and requires a cer-
tain expertise.

One of the most natural ways of providing con-
straints is to annotate a small amount of data. This
can either be done manually, or via simple heuris-
tics, for example, if some words’ parts of speech
are unambiguous. This can significantly speed up
learning and improve accuracy of the learned mod-
els. These partial annotations are a common tech-
nique for semi-supervised learning. It requires no
changes to the general framework, or the use of ex-
ternal solvers.

While this well-known, it is unclear exactly how
much annotation, and annotation of what, is most ef-
fective to improve accuracy. To our knowledge, no
paper has investigated this aspect empirically. We
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Inputs: I went to the show
walk on water

Partial Annotations: I went to the:DET show:NN
walk on:sense5 water

Figure 1: In partial annotation, words are replaced by
their label

explore the use of more unlabeled data vs. partial
annotation of a small percentage. For the second
case, we investigate how much annotation we need
to achieve a particular accuracy, and what the best
distribution of labels is. We test our approach on
a POS-tagging and word sense disambiguation task
for prepositions.

We find that using partial annotations improves
accuracy and reduces the effect of random restarts.
This indicates that the same accuracy can be reached
with fewer restarts, which speeds up training time
considerably.

Our contributions are:

• we show how to include partial annotations in
EM training via parameter tying

• we show how the amounts and distribution of
partial annotations influence accuracy

• we evaluate our method on an existing data set,
comparing to both supervised and unsupervised
methods on two tasks

2 Preliminaries

2.1 Partial Annotations

When training probabilistic models, more con-
straints generally lead to improved accuracy. The
more knowledge we can bring to bear, the more we
constrain the number of potential label sequences
the training algorithm has to consider. They also
help us to find a good initial model: it has to explain
those fixed cases.

The purest form of unsupervised learning as-
sumes the complete lack of annotation. However,
in many cases, we can use prior knowledge to label
words in context based on heuristics. It is usually
not the case that all labels apply to all observations.
If we know the alphabet of labels we use, we of-
ten also know which labels are applicable to which

observations. This is encoded in a dictionary. For
POS-tagging, it narrows the possible tags for each
word–irrespective of context–down to a manageable
set. Merialdo (1994) showed how the amount of
available dictionary information is correlated with
performance. However, dictionaries list all applica-
ble labels per word, regardless of context. We can
often restrict the applicable label for an observation
in a specific context even more. We extend this to
include constraints applied to some, but not all in-
stances. This allows us to restrict the choice for an
observation to one label. We substitute the word in
case by a special token with just one label. Based on
simple heuristics, we can annotate individual words
in the training data with their label. For example, we
can assume that “the” is always a determiner. This
is a unigram constraint. We can expand those con-
straints to include a wider context. In a sentence like
“I went to the show”, we know that NN is the only
applicable tag for “show”, even if a dictionary lists
the possible tags NN and VB. In fact, we can make
that assumption for all words with a possible POS
tag of NN that follow “the”. This is an n-gram con-
straint.

Partial annotations provide local constraints.
They arise from a number of different cases:

• simple heuristics that allow the disambiguation
of some words in context (such as words after
“the” being nouns)

• when we can leverage annotated data from a
different task

• manual labeling of a few instances

While the technique is mainly useful for problems
where only few labeled examples are available, we
make use of a corpus of annotated data. This allows
us to control the effect of the amount and type of
annotated data on accuracy.

We evaluate the impact of partial annotations on
two tasks: preposition sense disambiguation and
POS tagging.

2.2 Preposition Sense Disambiguation

Prepositions are ubiquitous and highly ambiguous.
Disambiguating prepositions is thus a challenging
and interesting task in itself (see SemEval 2007 task,
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(Litkowski and Hargraves, 2007)). There are three
elements in the syntactic structure of prepositional
phrases, namely the head word h (usually a noun,
verb, or adjective), the preposition p, and the object
of the preposition, o. The triple (h, p, o) forms a
syntactically and semantically constrained structure.
This structure is reflected in dependency parses as a
common construction.

Tratz and Hovy (2009) show how to use the de-
pendency structure to solve it. Their method out-
performed the previous state-of-the-art (which used
a window-based approach) by a significant margin.
Hovy et al. (2011) showed how the sequential na-
ture of the problem can be exploited in unsupervised
learning. They present various sequential models
and training options. They compare a standard bi-
gram HMM and a very complex model that is de-
signed to capture mutual constraints. In contrast to
them, we use a trigram HMM, but move the preposi-
tion at the end of the observed sequence, to condition
it on the previous words. As suggested there, we use
EM with smoothing and random restarts.

2.3 Unsupervised POS-tagging

Merialdo (1994) introduced the task of unsupervised
POS tagging using a dictionary. For each word,
we know the possible labels in general. The model
has to learn the labels in context. Subsequent work
(Johnson, 2007; Ravi and Knight, 2009; Vaswani et
al., 2010) has expanded on this in various ways, with
accuracy between 86% and 96%. In this paper, we
do not attempt to beat the state of the art, but rather
test whether our constraints can be applied to a dif-
ferent task and data set.

3 Methodology

3.1 Data

For PSD, we use the SemEval task data. It con-
sists of a training (16k) and a test set (8k) of sen-
tences with sense-annotated prepositions following
the sense inventory of The Preposition Project, TPP
(Litkowski, 2005). It defines senses for each of the
34 most frequent English prepositions. There are on
average 9.76 senses per preposition (between 2 and
25). We combine training and test and use the an-
notations from the training data to partially label our
corpus. The test data remains unlabeled. We use the

WordNet lexicographer senses as labels for the argu-
ments. It has 45 labels for nouns, verbs, and adjec-
tives and is thus roughly comparable to the prepo-
sitions sense granularity. It also allows us to con-
struct a dictionary for the arguments from WordNet.
Unknown words are assumed to have all possible
senses applicable to their respective word class (i.e.
all noun senses for words labeled as nouns, etc). We
assume that pronouns other than “it” refer to people.

For the POS-tagged data, we use the Brown cor-
pus. It contains 57k sentences and about 1, 16m
words. We assume a simplified tag set with 38 tags
and a dictionary that lists all possible tags for each
word. For the partial annotations, we label every oc-
currence of “the”, “a”, and “an” as DET, and the next
word with possible tag NN as NN. Additional con-
straints label all prepositions as “P” and all forms of
“be” as “V”. We train on the top two thirds and test
on the last third.

For both data sets, we converted all words to
lower case and replaced numbers by “@”.

3.2 Models

w1 w2

l1 l2

walk water on

w3

l3

Figure 2: PSD: Trigram HMM with preposition as last
element

For POS-tagging, we use a standard bigram
HMM without back-off.

For PSD, we use a trigram HMM, but move the
preposition at the end of the observed sequence, to
condition it on the previous words (see Figure 2).
Since not all prepositions have the same set of la-
bels, we train individual models for each preposi-
tion. We can thus learn different parameter settings
for the different prepositions.

We use EM with smoothing and random restarts
to train our models. For smoothing, ε is added to
each fractional count before normalization at each
iteration to prevent overfitting (Eisner, 2002a). We
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set ε to 0.01. We stop training after 40 iterations,
or if the perplexity change between iterations was
less than 0.0001. We experimented with different
numbers of random restarts (none, 10, 50, and 100).

3.3 Dealing with Partial Annotations
The most direct way to constrain a specific word to
only one label is to substitute it for a special to-
ken that has only that label. If we have a partially
annotated example “walk on-sense5 water” as in-
put (see Figure 1), we add an emission probability
P (word = label |tag = label) to our model.

However, this is problematic in two ways. Firstly,
we have effectively removed a great number of
instances where “on” should be labeled “sense5 ”
from our training data, and replaced them with an-
other token: there are now fewer instances from
which we collect C(on|sense5 ). The fractional
counts for our transition parameters are not af-
fected by this, but the counts for emission param-
eter are skewed. We thus essentially siphon prob-
ability mass from P (on|sense5 ) and move it to
P (on : sense5 |sense5 ). Since the test data never
contains labels such as sense5 , our partial annota-
tions have moved a large amount of probability mass
to a useless parameter: we are never going to use
P (on : sense5 |sense5 ) during inference!

Secondly, since EM tends to find uniform distri-
butions (Johnson, 2007), other, rarer labels will also
have to receive some probability. The counts for la-
bels with partial annotations are fixed, so in order to
use the rare labels (for which we have no partial an-
notations), their emission counts need to come from
unlabeled instances. Say sense1 is a label for which
we have no partial annotations. Every time EM col-
lects emission counts from a word “on” (and not a
labeled version “on:sensen”), it assigns some of it
to P (on|sense1 ). Effectively, we thus assign too
much probability mass to the emission of the word
from rare labels.

The result of these two effects is the inverse of
what we want: our model will use the label with
the least partial annotations (i.e., a rare label) dis-
proportionately often during inference, while the la-
bels for which we had partial annotations are rarely
used. The resulting annotation has a low accuracy.
We show an example of this in Section 5.

The solution to this problem is simple: param-

eter tying. We essentially have to link each par-
tial annotation to the original word that we replaced.
The observed word “on” and the partial annotation
“on : sense5 ” should behave the same way during
training. This way, our emission probabilities for
the word “on” given a label (say, “sense5 ”) take
the information from the partial annotations into ac-
count. This technique is also described in Eisner
(2002b) for a phonological problem with similar
properties. Technically, the fractional counts we col-
lect for C(on : sense5 |sense5 ) should also count
for C(on|sense5 ). By tying the two parameters to-
gether, we achieve exactly that. This way, we can
prevent probability mass from being siphoned away
from the emission probability of the word, and an
undue amount of probability mass from being as-
signed to rare labels.

4 Experiments

4.1 How Much Annotation Is Needed?

In order to test the effect of partial annotations on
accuracy, we built different training sets. We varied
the amount of partial annotations from 0 to 65% in
increments of 5%. The original corpus we use con-
tains 67% partial annotations, so we were unable to
go beyond this number. We created the different cor-
pora by randomly removing the existing annotations
from our corpus. Since this is done stochastically,
we ran 5 trials for each batch and averaged the re-
sults.

We also test the effect more unsupervised data has
on the task. Theoretically, unsupervised methods
should be able to exploit additional training data. We
use 27k examples extracted from the prepositional
attachment corpus from Ratnaparkhi et al. (1994).

4.2 What Kind of Annotation Is Needed?

We can assume that not only the quantity, but also
the distribution of the partial annotations makes a
difference. Given that we can only annotate a cer-
tain percentage of the data, how should we best dis-
tribute those annotations among instances to max-
imize accuracy? In order to test this, we hold the
amount of annotated data fixed, but vary the labels
we use. We choose one sense and annotate only the
instances that have that sense, while leaving the rest
unlabeled.
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Ideally, one would like to examine all subsets of
annotations, from just a single annotation to all but
one instances of the entire training data. This would
cover the spectrum from unsupervised to supervised.
It is unlikely that there is a uniform best number that
holds for all problems within this immense search
space. Rather, we explore two very natural cases,
and compare them to the unsupervised case, for var-
ious numbers of random restarts:

1. all partial annotations are of the same sense

2. one labeled example of each sense

5 Results

System Acc. (%)
semi-supervised w/o param tying 4.73
MFS baseline 40.00
unsupervised (Hovy et al., 2011) 55.00
semi-supervised, no RR 63.18
semi-supervised, 10 RR 63.12
semi-supervised, 50 RR 63.16
semi-supervised, 100 RR 63.22
semi-supervised, addtl. data, no RR 62.67
semi-supervised, addtl. data, 10 RR 62.47
semi-supervised, addtl. data, 50 RR 62.58
semi-supervised, addtl. data, 100 RR 62.58
supervised (Hovy et al., 2010) 84.50

Table 1: Accuracy of various PSD systems. Baseline is
most frequent sense.

Table 1 shows the results for the PSD systems we
tested. Since not all test sets are the same size, we re-
port the weighted average over all prepositions. For
significance tests, we use two-tailed t-tests over the
difference in accuracy at p < 0.001.

The difference between our models and the base-
line as well as the best unsupervised models in
Hovy et al. (2011) are significant. The low accu-
racy achieved without parameter tying underscores
the importance of this technique. We find that the
differences between none and 100 random restarts
are not significant if partial annotations are used.
Presumably, the partial annotations provide a strong
enough constraint to overcome the effect of the ran-
dom initializations. I.e., the fractional counts from

the partial annotations overwhelm any initial param-
eter settings and move the model to a more advanta-
geous position in the state space. The good accuracy
for the case with no restarts corroborates this.
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Figure 3: Accuracy for PSD systems improves linearly
with amount of partial annotations. Accuracies above
dotted line improve significantly (at p < 0.001) over un-
supervised approach (Hovy et al., 2011)

Figure 3 shows the effect of more partial anno-
tations on PSD accuracy. Using no annotations at
all, just the dictionary, we achieve roughly the same
results as reported in Hovy et al. (2011). Each incre-
ment of partial annotations increases accuracy. At
around 27% annotated training examples, the differ-
ence starts to be significant. This shows that unsu-
pervised training methods can benefit from partial
annotations. When adding more unsupervised data,
we do not see an increase in accuracy. In this case,
the algorithm failed to make use of the additional
training data. This might be because the two data
sets were not heterogenous enough, or because the
number of emission parameters grew faster than the
amount of available training examples. A possible,
yet somewhat unsatisfying explanation is that when
we increase the overall training data, we reduce the
percentage of labeled data (here to 47%; the result
was comparable to the one observed in our ablation
studies). It seems surprising, though, that the model
does not benefit from the additional data1. More ag-
gressive smoothing might help alleviate that prob-
lem.

The results on the distribution of partial annota-
tion are shown in Figure 4. Using only the most

1Note that similar effects were observed by (Smith and Eis-
ner, 2005; Goldwater and Griffiths, 2007).
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Figure 4: Labeling one example of each sense yields bet-
ter results than all examples of any one sense. Senses
ordered by frequency

frequent sense, accuracy drops to 49.69%. While
this is better than the baseline which simply assigns
this sense to every instance, it is a steep drop. We
get better results using just one annotated example
of each sense (53.55%).

System Acc. (%)
(Merialdo, 1994) 86.60
random baseline 62.46
unsupervised, no RR 82.77
semi-supervised, DET+NN 88.51
semi-supervised, DET+NN+P 88.97
semi-supervised, DET+NN+P+V 87.07

Table 2: Accuracy of various POS systems. Random
baseline averaged over 10 runs.

The results for POS tagging confirm our previ-
ous findings. The random baseline chooses for each
word one of the possible tags. We averaged the re-
sults over 10 runs. The difference in accuracy be-
tween both the baseline and the unsupervised ap-
proach as well as the unsupervised approach and any
of the partial annotations are significant. However,
the drop in accuracy when adding the last heuris-
tic points to a risk: partial annotation with heuris-
tics can introduce errors and offset the benefits of
the constraints. Careful selection of the right heuris-
tics and the tradeoff between false positives they in-

troduce and true positives they capture can alleviate
this problem.

6 Related Research

Unsupervised methods have great appeal for
resource-poor languages and new tasks. They have
been applied to a wide variety of sequential label-
ing tasks, such as POS tagging, NE recognition, etc.
The most common training technique is forward-
backward EM. While EM is guaranteed to improve
the data likelihood, it can get stuck in local max-
ima. Merialdo (1994) showed how the the initialized
model influences the outcome after a fixed number
of iterations. The importance is underscored suc-
cinctly by Goldberg et al. (2008). They experiment
with various constraints.

The idea of using partial annotations has been
explored in various settings. Druck et al. (2008)
present an approach to label features instead of
instances for discriminative probabilistic models,
yielding substantial improvements. They also study
the effectiveness of labeling features vs. labeling in-
stances. Rehbein et al. (2009) study the utility of
partial annotations as precursor to further, human
annotation. Their experiments do not extend to un-
supervised training. Tsuboi et al. (2008) used data
that was not full annotated. However, their setting
is in principle supervised, only few words are miss-
ing. Instead of no labels, those words have a limited
number of possible alternatives. This works well for
tasks with a small label alphabet or data where anno-
tators left multiple options for some words. In con-
trast, we start out with unannotated data and assume
that some words can be labeled. Gao et al. (2010)
present a successful word alignment approach that
uses partial annotations. These are derived from
human annotation or heuristics. Their method im-
proves BLEU, but requires some modification of the
EM framework.

7 Conclusion and Future Work

It is obvious, and common knowledge, that provid-
ing some annotation to an unsupervised algorithm
will improve accuracy and learning speed. Surpris-
ingly, however, our literature search did not turn up
any papers stating exactly how and to what degree
the improvements appear. We therefore selected a
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very general training method, EM, and a simple ap-
proach to include partial annotations in it using pa-
rameter tying. This allows us to find more stable
starting points for sequential labeling tasks than ran-
dom or uniform initialization. We find that we would
need a substantial amount of additional unlabeled
data in order to boost accuracy. In contrast, we can
get significant improvements by partially annotating
some instances (around 27%). Given that we can
only annotate a certain percentage of the data, it is
best to distribute those annotations among all appli-
cable senses, rather than focus on one. This obviates
the need for random restarts and speeds up training.

This work suggests several interesting new av-
enues to explore. Can one integrate this procedure
into a large-scale human annotation effort to ob-
tain a kind of active learning, suggesting which in-
stances to annotate next, until appropriate stopping
criteria are satisfied (Zhu et al., 2008)? Can one
determine upper bounds for the number of random
restarts given the amount of annotations?
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