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Montréal, Canada, June 7, 2012. c©2012 Association for Computational Linguistics

Sequential vs. Hierarchical Syntactic Models of Human Incremental
Sentence Processing

Victoria Fossum and Roger Levy
Department of Linguistics

University of California, San Diego
9500 Gilman Dr.

La Jolla, CA 92093
{vfossum,rlevy}@ucsd.edu

Abstract

Experimental evidence demonstrates that syn-
tactic structure influences human online sen-
tence processing behavior. Despite this ev-
idence, open questions remain: which type
of syntactic structure best explains observed
behavior–hierarchical or sequential, and lexi-
calized or unlexicalized? Recently, Frank and
Bod (2011) find that unlexicalized sequen-
tial models predict reading times better than
unlexicalized hierarchical models, relative to
a baseline prediction model that takes word-
level factors into account. They conclude that
the human parser is insensitive to hierarchi-
cal syntactic structure. We investigate these
claims and find a picture more complicated
than the one they present. First, we show that
incorporating additional lexical n-gram prob-
abilities estimated from several different cor-
pora into the baseline model of Frank and Bod
(2011) eliminates all differences in accuracy
between those unlexicalized sequential and hi-
erarchical models. Second, we show that lexi-
calizing the hierarchical models used in Frank
and Bod (2011) significantly improves pre-
diction accuracy relative to the unlexicalized
versions. Third, we show that using state-
of-the-art lexicalized hierarchical models fur-
ther improves prediction accuracy. Our results
demonstrate that the claim of Frank and Bod
(2011) that sequential models predict reading
times better than hierarchical models is pre-
mature, and also that lexicalization matters for
prediction accuracy.

1 Introduction

Various factors influence human reading times dur-
ing online sentence processing, including word-level
factors such as word length, unigram and bigram
probabilities, and position in the sentence. Yet word-
level factors cannot explain many observed process-
ing phenomena; ample experimental evidence ex-
ists for the influence of syntax on human behav-
ior during online sentence processing, beyond what
can be predicted using word-level factors alone.
Examples include the English subject/object rela-
tive clause asymmetry (Gibson et al., 2005; King
and Just, 1991) and anti-locality effects in German
(Konieczny, 2000; Konieczny and Döring, 2003),
Hindi (Vasishth and Lewis, 2006), and Japanese
(Nakatani and Gibson, 2008). Levy (2008) shows
that these processing phenomena can be explained
by surprisal theory under a hierarchical probabilis-
tic context-free grammar (PCFG). Other evidence
of syntactic expectation in sentence processing in-
cludes the facilitation of processing at “or” follow-
ing “either” (Staub and Clifton, 2006); expectations
of heavy noun phrase shifts (Staub et al., 2006); el-
lipsis processing (Lau et al., 2006); and syntactic
priming (Sturt et al., 2010).

Experimental evidence for the influence of syn-
tax on human behavior is not limited to experiments
carefully designed to isolate a particular processing
phenomenon. Several broad-coverage experimental
studies have shown that surprisal under hierarchi-
cal syntactic models predicts human processing dif-
ficulty on large corpora of naturally occurring text,
even after word-level factors have been taken into
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account (Boston et al., 2008; Demberg and Keller,
2008; Roark et al., 2009).

Despite this evidence, in recent work Frank and
Bod (2011) challenge the notion that hierarchical
syntactic structure is strictly necessary to predict
reading times. They compare per-word surprisal
predictions from unlexicalized hierarchical and se-
quential models of syntactic structure along two
axes: linguistic accuracy (how well the model pre-
dicts the test corpus) andpsychological accuracy
(how well the model predicts observed reading times
on the test corpus). They find that, while hierar-
chical phrase-structure grammars (PSG’s) achieve
better linguistic accuracy, sequential echo state net-
works (ESN’s) achieve better psychological accu-
racy on the English Dundee corpus (Kennedy and
Pynte, 2005). Frank and Bod (2011) do not in-
clude lexicalized syntactic models in the compar-
ison on the grounds that, once word-level factors
have been included as control predictors in the read-
ing times model, lexicalized syntactic models do not
predict reading times better than unlexicalized syn-
tactic models (Demberg and Keller, 2008). Based on
the results of their comparisons between unlexical-
ized models, they conclude that the human parser is
insensitive to hierarchical syntactic structure.

In light of the existing evidence that hierarchical
syntax influences human sentence processing, the
claim of Frank and Bod (2011) is surprising. In this
work, we investigate this claim, and find a picture
more complicated than the one they present. We
first replicate the results of Frank and Bod (2011)
using the dataset provided by the authors, verifying
that we obtain the same linguistic and psychologi-
cal accuracies reported by the authors. We then ex-
tend their work in several ways. First, we repeat
their comparisons using additional, more robustly
estimated lexical n-gram probabilities as control pre-
dictors in the baseline model.1 We show that when
these additional lexical n-gram probabilities are used
as control predictors, any differences in psycholog-
ical accuracy between the hierarchical and sequen-
tial models used in Frank and Bod (2011) vanish.
Second, while they restrict their comparisons to un-

1By robustly estimated, we mean that these probabilities
are estimated from larger corpora and use a better smoothing
method (Kneser-Ney) than the lexical n-grams of Frank and
Bod (2011).

lexicalized models over part-of-speech (POS) tags,
we investigate the lexicalized versions of each hi-
erarchical model, and show that lexicalization sig-
nificantly improves psychological accuracy. Third,
while they explore only a subset of the PSG’s im-
plemented under the incremental parser of Roark
(2001), we explore a state-of-the-art lexicalized hi-
erarchical model that conditions on richer contexts,
and show that this model performs still better. Our
findings demonstrate that Frank and Bod (2011)’s
strong claim that sequential models predict reading
times better than hierarchical models is premature,
and also that lexicalization improves the psycholog-
ical accuracy of hierarchical models.

2 Related Work

Several broad-coverage experimental studies
demonstrate that surprisal under a hierarchical syn-
tactic model predicts human processing difficulty
on a corpus of naturally occurring text, even after
word-level factors have been taken into account.
Under surprisal theory (Hale, 2001; Levy, 2008),
processing difficulty at wordwi is proportional to
reading time atwi, which in turn is proportional to
the surprisal ofwi in the context in which it is ob-
served: surprisal(wi) = −log(pr(wi|context)).
Typically, context ≈ w1...wi−1. Comput-
ing surprisal(wi) thus reduces to computing
−log(pr(wi|w1...wi− 1)). Henceforth, we refer
to this original formulation of surprisal astotal
surprisal.

Boston et al. (2008) show that surprisal estimates
from a lexicalized dependency parser (Nivre, 2006)
and an unlexicalized PCFG are significant predic-
tors of reading times on the German Potsdam Cor-
pus. Demberg and Keller (2008) propose to isolate
syntactic surprisal from total surprisal by replacing
each word with its POS tag, then calculating sur-
prisal as usual under the incremental probabilistic
phrase-structure parser of Roark (2001). (Following
Roark et al. (2009), we hereafter refer to this type of
surprisal asPOS surprisal.) They find that only POS
surprisal, not total surprisal, is a significant predictor
of reading time predictions on the English Dundee
corpus.

Demberg and Keller (2008)’s definition of POS
surprisal introduces two constraints. First, by omit-
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ting lexical information from the conditioning con-
text, they ignore differences among words within a
syntactic category that can influence syntactic ex-
pectations about upcoming material. Second, by re-
placing words with their most likely POS tags, they
treat POS tags as veridical, observed input rather
than marginalizing over all possible latent POS tag
sequences consistent with the observed words.

Roark et al. (2009) propose a more principled way
of decomposing total surprisal into its syntactic and
lexical components, defining the syntactic surprisal
of wi as:

−log

∑
D:yield(D)=w1...wi

pr(D minus last step)
∑

D:yield(D)=w1...wi−1
pr(D)

and the lexical surprisal ofwi as:

−log

∑
D:yield(D)=w1...wi

pr(D)
∑

D:yield(D)=w1...wi
pr(D minus last step)

where D is the set of derivations in the parser’s
beam at any given point;D : yield(D) = w1...wi

is the set of all derivations inD consistent with
w1...wi; andD minus last step includes all steps
in the derivationexcept for the last step, in whichwi

is generated by conditioning upon all previous steps
of D (includingti).

Roark et al. (2009) show that syntactic surprisal
produces more accurate reading time predictions on
an English corpus than POS surprisal, and that de-
composing total surprisal into its syntactic and lex-
ical components produces more accurate reading
time predictions than total surprisal taken as a single
quantity. In this work, we compare not only differ-
ent types of syntactic models, but also different mea-
sures of surprisal under each of those models (total,
POS, syntactic-only, and lexical-only).

3 Models

Estimating surprisal(wi) amounts to calculating
−log(pr(wi|w1...wi−1)). Language models differ
in the way they estimate the conditional proba-
bility of the eventwi given the observed context
w1...wi−1. In the traditional formulation of surprisal
under a hierarchical model, the eventwi is condi-
tioned not only on theobserved contextw1...wi−1

but also on thelatent context consisting of the syn-
tactic treesT whose yield isw1...wi−1; computing

pr(wi|w1...wi−1) therefore requires marginalizing
over all possible latent contextsT . In this formu-
lation of surprisal, the context includes lexical infor-
mation (w1...wi−1) as well as syntactic information
(T : yield(T ) = w1...wi−1), and the predicted event
itself (wi) contains lexical information.

Other formulations of surprisal are also possible,
in which the event, observed context, and latent con-
text are otherwise defined. In this work, we classify
syntactic models as follows:lexicalized models in-
clude lexical information in the context, in the pre-
dicted event, or both;unlexicalized models include
lexical information neither in the context nor in the
predicted event;hierarchical models induce a latent
context of trees compatible with the input;sequen-
tial models either induce no latent context at all,
or induce a latent sequence of POS tags compati-
ble with the input. Table 1 summarizes the syntactic
models and various formulations of surprisal used in
this work.

Following Frank and Bod (2011), we consider one
type of hierarchical model (PSG’s) and two types of
sequential models (Markov models and ESN’s).

3.1 Phrase-Structure Grammars

PSG’s consists of rules expanding a parent node into
children nodes in the syntactic tree, with associ-
ated probabilities. Frank and Bod (2011) use PSG’s
that generate POS tag sequences, not words. Under
such grammars, the prefix probability of a tag se-
quencet is the sum of the probabilities of all trees
T : yield(T ) = t1...ti, where the probability of
each treeT is the product of the probabilities of the
rules used in the derivation ofT .

Vanilla PCFG’s, a special case of PSG’s in which
the probability of a rule depends only on the identity
of the parent node, achieve sub-optimal parsing ac-
curacy relative to grammars in which the probability
of each rule depends on a richer context (Charniak,
1996; Johnson, 1998; Klein and Manning, 2003).
To this end, Frank and Bod (2011) explore several
variants of PSG’s conditioned on successively richer
contexts, including ancestor models (which condi-
tion rule expansions on ancestor nodes from 1-4
levels up in the tree) and ancestor+sibling models
(which condition rule expansions on the ancestor’s
left sibling as well). Both sets of grammars also con-
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Authors Model Surprisal Observed Latent Predicted
Context Context Event

Boston et al. (2008) Hier. POS ti....ti−1 TreesT with yield t1...ti−1 ti
Demberg and Keller (2008)
Roark et al. (2009)
Frank and Bod (2011)
This Work
Demberg and Keller (2008) Hier. Total w1...wi−1 TreesT with yield t1...ti−1 wi

Roark et al. (2009)
This Work
Roark et al. (2009) Hier. Syntactic- w1...wi−1 TreesT with yield w1...wi−1 ti
This Work Only
Roark et al. (2009) Hier. Lexical- w1...wi−1 TreesT with yield w1...wi−1; ti wi

This Work Only

Frank and Bod (2011) Seq. POS ti....ti−1 – ti
This Work
– Seq. Total w1...wi−1 t1...ti−1 with yield w1...wi−1 wi

Table 1: Contexts and events used to produce surprisal measures under various probabilistic syntactic models.T refers
to trees;t refers to POS tags; andw refers to words.

dition rule expansions on the current head node2.

In addition to the grammars over POS tag se-
quences used by Frank and Bod (2011), we evalu-
ate PSG’s over word sequences. We also include
the state-of-the-art Berkeley grammar (Petrov and
Klein, 2007) in our comparison. Syntactic cate-
gories in the Berkeley grammar are automatically
split into fine-grained subcategories to improve the
likelihood of the training corpus under the model.
This increased expressivity allows the parser to
achieve state-of-the-art automatic parsing accuracy,
but increases grammar size considerably.3

3.2 Markov Models

Frank and Bod (2011) use Markov models over
POS tag sequences, where the prefix probability
of a sequencet is

∏
i pr(ti|ti−n+1, ti−n+2...ti−1).

They use three types of smoothing: additive, Good-
Turing, and Witten-Bell, and explore values ofn

from 1 to 3.

2or rightmost child node, if the head node is not yet avail-
able(Roark, 2001).

3To make parsing with the Berkeley grammar tractable un-
der the prefix probability parser, we prune away all rules with
probability less than10−4.

3.3 Echo State Networks

Unlike Markov models, ESN’s (J̈ager, 2001) can
capture long-distance dependencies. ESN’s are a
type of recurrent neural network (Elman, 1991) in
which only the weights from the hidden layer to the
output layer are trained; the weights from the input
layer to the hidden layer and from the hidden layer
to itself are set randomly and do not change. In re-
current networks, the activation of the hidden layer
at tagti depends not only on the activation of the in-
put layer at tagti, but also on the activation of the
hidden layer at tagti−1, which in turn depends on
the activation of the hidden layer at tagti−2, and so
forth. The activation of the output layer at tagti is
therefore a function of all previous input symbols
t1...ti−1 in the sequence. The prefix probability of
a sequencet under this model is

∏
i pr(ti|t1...ti−1),

wherepr(ti|t1...ti−1) is the normalized activation of
the output layer at tagti. Frank and Bod (2011) eval-
uate ESN’s with 100, 200...600 hidden nodes.

4 Methods

We use two incremental parsers to calculate sur-
prisals under the hierarchical models. For the PSG’s
available under the Roark et al. (2009) parser, we
use that parser to calculate approximate prefix prob-
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abilities using beam search. For the Berkeley gram-
mar, we use a probabilistic Earley parser modified
by Levy4 to calculate exact prefix probabilities us-
ing the algorithm of Stolcke (1995). We evaluate
each hierarchical model under each type of surprisal
(POS, total, lexical-only, and syntactic-only), where
possible.

4.1 Data Sets

Each syntactic model is trained on sections 2-21 of
the Wall Street Journal (WSJ) portion of the Penn
Treebank (Marcus et al., 1994), and tested on the
Dundee Corpus (Kennedy and Pynte, 2005), which
contains reading time measures for 10 subjects over
a corpus of 2,391 sentences of naturally occurring
text. Gold-standard POS tags for the Dundee cor-
pus are obtained automatically using the Brill tagger
(Brill, 1995).

Frank and Bod (2011) exclude subject/word pairs
from evaluation if any of the following conditions
hold true: “the word was not fixated, was presented
as the first or last on a line, was attached to punc-
tuation, contained more than one capital letter, or
contained a non-letter (this included clitics)”. This
leaves 191,380 subject/word pairs in the data set
published by Frank and Bod (2011). Because we
consider lexicalized hierarchical models in addition
to unlexicalized ones, we additionally exclude sub-
ject/word pairs where the word is “unknown” to the
model.5 This leaves us with a total of 148,829 sub-
ject/word pairs; all of our reported results refer to
this data set.

4.2 Evaluation

Following Frank and Bod (2011), we compare the
per-word surprisal predictions from hierarchical and
sequential models of syntactic structure along two
axes: linguistic accuracy (how well the model ex-
plains the test corpus) and psychological accuracy
(how well the model explains observed reading
times on the test corpus).

4The prefix parser is available at:
www.http://idiom.ucsd.edu/ rlevy/prefixprobabilityparser.html

5We consider words appearing fewer than 5 times in the
training data to be unknown.

4.2.1 Linguistic Accuracy

Each model provides surprisal estimates
surprisal(wi). The linguistic accuracy over
the test corpus is1

n

∑n
i=1 surprisal(wi), wheren

is the number of words in the test corpus.

4.2.2 Psychological Accuracy

We add each model’s per-word surprisal predic-
tions to a linear mixed-effects model of first-pass
reading times, then measure the improvement in
reading time predictions (according to the de-
viance information criterion) relative to a baseline
model; the resulting decrease in deviance is the
psychological accuracy of the language model.
Using thelmer package for linear mixed-effects
models in R (Baayen et al., 2008), we first fit a
baseline model to first-pass readings times over
the test corpus. Each baseline model contains
the following control predictors for each sub-
ject/word pair:sentpos (position of the word in
the sentence),nrchar (number of characters in
the word), prevnonfix (whether the previous
word was fixated by the subject),nextnonfix
(whether the next word was fixated by the subject),
logwordprob (log(pr(wi))), logforwprob
(log(pr(wi|wi−1))), and logbackprob
(log(pr(wi|wi+1))). When fitting each base-
line model, we include all control predictors; all
significant two-way interactions between them
(|t| ≥ 1.96); by-subject and by-word intercepts;
and a by-subject random slope for the predictor that
shows the most significant effect (nrchar).6

We evaluate the statistical significance of the dif-
ference in psychological accuracy between two pre-
dictors using a nested model comparison. If the
model containing both predictors performs signifi-
cantly better than the model containing only the first
predictor under aχ2 test (p ≤ 0.05), then the sec-
ond predictor accounts for variance in reading times
above and beyond the first predictor, and vice versa.

6In accordance with the methods of Frank and Bod (2011),
“Surprisal was not included as a by-subject random slope be-
cause of the possibility that participants’ sensitivity to surprisal
varies more strongly for some sets of surprisal estimates than
for others, making the comparisons between language models
unreliable. Since subject variability is not currently of interest,
it is safer to leave out random surprisal effects.”
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5 Results

We first replicate the results of Frank and Bod
(2011) by obtaining POS surprisal values directly
from the authors’ published dataset for each syntac-
tic model, then evaluating the psychological accu-
racy of each of those models relative to the baseline
model defined above.7

Baseline Model with Additional Lexical N-grams
Next, we explore the impact of the lexical n-gram
probabilities used as control predictors upon psy-
chological accuracy. Frank and Bod (2011) state
that they compute lexical unigram and bigram prob-
abilities via linear interpolation between estimates
from the British National Corpus and the Dundee
corpus itself (p.c.); upon inspection, we find that the
bigram probabilities released in their published data
set (which are consistent with their published exper-
imental results) more closely resemble probabilities
estimated from the Dundee corpus alone. Because of
the small size of the Dundee corpus, lexical bigrams
from this corpus alone are unlikely to be representa-
tive of a human’s language experience.

We augment the lexical bigram probabilities used
in the baseline model of Frank and Bod (2011)
with additional lexical unigram and bigrams esti-
mated using the SRILM toolkit (Stolcke, 2002) with
Kneser-Ney smoothing from three corpora: sec-
tions 2-21 of the WSJ portion of the Penn Tree-
bank, the Brown corpus, and the British National
corpus. We include these additional predictors and
all two-way interactions between them in the base-
line model. Figure 1 shows that the relative differ-
ences in psychological accuracy between unlexical-
ized hierarchical and sequential models vanish under
this stronger baseline condition.8

Unlexicalized Hierarchical Models We then cal-
culate POS surprisal values under each of the ances-
tor (a1-a4) and the ancestor+sibling (s1-s4) hierar-
chical models ourselves, using the parser of Roark

7The only difference between our results and the original
results in Figure 2 of Frank and Bod (2011) is that we evaluate
accuracy over a subset of the subject/items pairs used in Frank
and Bod (2011) (see Section 4.1 for details).

8The psychological accuracies of the best sequential model
(e4) and the best hierarchical model (s3) used in Frank and Bod
(2011) relative to the stronger baseline with additional lexical
n-grams are not significantly different, according to aχ

2 test.

et al. (2009). We also calculate POS surprisal un-
der the Berkeley grammar (b) using the Levy prefix
probability parser. Figure 2 shows the accuracies of
these models.9

Lexicalized Hierarchical Models Next, we lex-
icalize the hierarchical models. Figure 3 shows
the results of computing total surprisal under
each lexicalized hierarchical model (a1-a4T, s1-s4T,
and bT). The lexicalized models improve signifi-
cantly upon their unlexicalized counterparts (χ2 =
7.52 to 12.47, p ≤ 0.01) in all cases; by con-
trast, the unlexicalized models improve signifi-
cantly upon their lexicalized counterparts (χ2 =
4.05 to 5.92, p ≤ 0.05) only in some cases (s1-
s4). Each lexicalized model improves significantly
upon e4, the best unlexicalized model of Frank
and Bod (2011) (χ2 = 6.96 to 23.45, p ≤ 0.01),
though e4 also achieves a smaller but still signifi-
cant improvement upon each of the lexicalized mod-
els (χ2 = 4.49 to 7.58, p ≤ 0.05). The lexical-
ized Berkeley grammar (bT) achieves the highest
linguistic and psychological accuracy; the improve-
ment of bT upon e4 is substantial and significant
(χ2(1) = 23.45, p ≤ 0.001), while the improve-
ment of e4 upon bT is small but still significant
(χ2(1) = 4.50, p ≤ 0.1). Estimated coefficients
for surprisal estimates under each lexicalized hierar-
chical model are shown in Table 2.10

Decomposing Total Surprisal Figure 3 shows the
results of decomposing total surprisal (a1-a4T, s1-
s4T) into its lexical and syntactic components, then
entering both components as predictors into the
mixed-effects model (a1-a4LS, s1-s4LS).11 For each
grammar, the psychological accuracy of the surprisal
estimates is slightly higher when both lexical and
syntactic surprisal are entered as predictors, though
the differences are not statistically significant.

9Our POS surprisal estimates have slightly worse linguistic
accuracy but slightly better psychological accuracy than Frank
and Bod (2011); these differences are likely due to differences
in beam settings and in the subset of the WSJ used as training
data.

10Each surprisal estimate predicts reading times in the ex-
pected (positive) direction.

11Decomposing surprisal into its lexical and syntactic com-
ponents is possible with the Levy prefix probability parser as
well, but requires modifications to the parser; the Roark et al.
(2009) parser computes these quantities explicitly by default.
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Figure 1: Psychological vs. linguistic accuracy of POS sur-
prisal estimates from unlexicalized sequential and hierar-
chical models of Frank and Bod (2011) relative to baseline
system of Frank and Bod (2011) (shown above dotted line),
and relative to a baseline system including additional lex-
ical unigrams and bigrams (shown below dotted line). In-
corporating additional lexical n-grams into baseline system
virtually eliminates all differences in psychological accu-
racy among models.

Figure 2: Psychological vs. linguistic accuracy of POS
surprisal estimates from unlexicalized hierarchical models
used in this work, relative to a baseline system with ad-
ditional lexical unigrams and bigrams. Horizontal line in-
dicates most psychologically accurate model of Frank and
Bod (2011) for ease of comparison.

POS vs. Syntactic-only Surprisal Figures 2 and
4 show the results of computing POS surprisal (a1-
a4, s1-s4) and syntactic-only surprisal (a1-a4S, s1-
s4S), respectively, under each of the Roark gram-
mars. While syntactic surprisal achieves slightly
higher psychological accuracy than POS surprisal
for each model, the difference is statistically signifi-
cant in only one case (s1).

6 Discussion

In the presence of additional lexical n-gram control
predictors, all gaps in performance between the un-
lexicalized sequential and hierarchical models used
in Frank and Bod (2011) vanish (Figure 1). Frank
and Bod (2011) do not include lexicalized hierarchi-
cal models in their study; our results indicate that
lexicalizing hierarchical models improves their psy-
chological accuracy significantly compared to the
unlexicalized versions. Overall, the lexicalized hier-
archical model with the highest linguistic accuracy

(Berkeley) also achieves the highest psychological
accuracy.

Decomposing total surprisal into its lexical- and
syntactic-only components improves psychological
accuracy, but this improvement is not statistically
significant. Computing syntactic-only surprisal in-
stead of POS surprisal improves psychological accu-
racy, but this improvement is statistically significant
in only one case (s1).

7 Conclusion and Future Work

Frank and Bod (2011) claim that sequential unlexi-
calized syntactic models predict reading times bet-
ter than hierarchical unlexicalized syntactic models,
and conclude that the human parser is insensitive
to hierarchical syntactic structure. We find that the
picture is more complicated than this. We show,
first, that the gap in psychological accuracy between
the unlexicalized hierarchical and sequential models
of Frank and Bod (2011) vanishes when additional,
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Figure 3: Psychological vs. linguistic accuracy of lexi-
cal+syntactic (LS) and total (T) surprisal estimates from
lexicalized hierarchical models used in this work, relative
to baseline system with additional lexical unigrams and bi-
grams as control predictors. Decomposing total surprisal
into lexical-only and syntactic-components improves psy-
chological accuracy. Horizontal line indicates most psy-
chologically accurate model of (Frank and Bod, 2011).

Figure 4: Psychological vs. linguistic accuracy of lexical-
only (L) and syntactic-only (S) surprisal estimates from
lexicalized hierarchical models used in this work, relative
to baseline system with additional lexical unigrams and bi-
grams as control predictors. On its own, syntactic-only sur-
prisal predicts reading times better than lexical-only sur-
prisal. Horizontal line indicates most psychologically ac-
curate model of (Frank and Bod, 2011).

Surprisal Coef. |t| Surprisal Coef. |t|

a1LS 0.82 2.61 a1T 1.30 2.98
a2LS 1.01 3.24 a2T 1.38 3.19
a3LS 1.14 3.65 a3T 1.56 3.60
a4LS 1.17 3.76 a4T 1.56 3.64
s1LS 1.38 4.43 s1T 1.71 4.00
s2LS 1.37 4.44 s2T 1.75 4.16
s3LS 1.20 3.90 s3T 1.64 3.91
s4LS 1.21 3.97 s4T 1.62 3.89
bT 3.15 5.34

Table 2: Estimated coefficients and|t|-values for sur-
prisal estimates shown in Figure 3. Coefficients are es-
timated by adding each surprisal estimate, one at a time,
to the baseline model of reading times used in Figure 3.

robustly estimated lexical n-gram probabilities are
incorporated as control predictors into the baseline
model of reading times. Next, we show that lexical-
izing hierarchical grammars improves psychological
accuracy significantly. Finally, we show that using
better lexicalized hierarchical models improves psy-

chological accuracy still further. Our results demon-
strate that the claim of Frank and Bod (2011) that
sequential models predict reading times better than
hierarchical models is premature, and that further in-
vestigation is required.

In future work, we plan to incorporate lexical in-
formation into the sequential syntactic models used
in Frank and Bod (2011) so that we can compare
the hierarchical lexicalized models described here
against sequential lexicalized models.
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