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Abstract

For a given concrete noun concept, humans
are usually able to cite properties (e.g.,ele-
phant is animal, car has wheels) of that con-
cept; cognitive psychologists have theorised
that such properties are fundamental to un-
derstanding the abstract mental representation
of concepts in the brain. Consequently, the
ability to automatically extract such properties
would be of enormous benefit to the field of
experimental psychology. This paper investi-
gates the use of semi-supervised learning and
support vector machines to automatically ex-
tract concept-relation-feature triples from two
large corpora (Wikipedia and UKWAC) for
concrete noun concepts. Previous approaches
have relied on manually-generated rules and
hand-crafted resources such as WordNet; our
method requires neither yet achieves bet-
ter performance than these prior approaches,
measured both by comparison with a property
norm-derived gold standard as well as direct
human evaluation. Our technique performs
particularly well on extracting features rele-
vant to a given concept, and suggests a number
of promising areas for future focus.

1 Introduction
The representation of concrete concepts (e.g.,car,

banana, spanner) in the human brain has long been
an important area of investigation for cognitive psy-
chologists. Recent theories of this mental repre-
sentation have proposed a componential, property-
based and distributed model of conceptual knowl-
edge (e.g., Farah and McClelland (1991), Randall et
al. (2004), Tyler et al. (2000)).

In order to empirically test these cognitive the-
ories, researchers have moved towards employing
real-world knowledge in their experiments. This
knowledge has usually been procured from human-

derived lists of properties taken from property norm-
ing studies (Garrard et al., 2001; McRae et al.,
2005). In such studies, human participants are
asked to describe and note properties of a given
concept (e.g.,has shell for turtle). Synonymous
responses are grouped together as a single prop-
erty and those meeting a certain minimum response-
frequency threshold are taken as valid properties.
The most wide-ranging study to date was that con-
ducted by McRae et al. (2005): some sample prop-
erties from this set are in Table 1.

As others have noted (Murphy, 2002; McRae et
al., 2005), property norming studies are prone to a
number of deficiencies. One such weakness is the
incongruity of shared properties across even highly-
related concepts: human respondents exhibit a lack
of consistency when listing properties that are com-
mon to many similar concepts. For example, while
has legs is listed as a property ofcrocodile in the
McRae norms, it is absent as a property ofalliga-
tor. A related issue is the non-comprehensive nature
of the generated norms – although they may cover
the most salient properties for a given concept, they
are unlikely to comprise all of a concept’s properties
(e.g.,has heart does not appear as a property of any
of the 92 animal concepts).

Our research aims to use NLP techniques to cre-
ate a system able to emulate the output of such
studies, and overcome some of the aforementioned
weaknesses. Our proposed system begins by search-
ing dependency-parsed corpora for those sentences
containing concept and feature terms which are
also found in a McRae norm-derived training set
of properties. For these sentences, the system
generates grammatical relation/part-of-speech struc-
tural attributes and applies support vector machines
(SVMs) to learn sets of attributes likely to indicate
the instantiation of a property in a sentence. These

11



turtle bowl

has a shell 25 is round 19
lays eggs 16 used for eating 12
swims 15 used for soup 11
is green 14 used for food 11
lives in water 14 used for liquids 10
is slow 13 used for eating cereal 10
an animal 11 made of plastic 8
walks 10 used for holding things 7
walks slowly 10 is curved 7
has 4 legs 9 found in kitchens 7

Table 1: Top ten properties from McRae norms with pro-
duction frequencies forturtle andbowl.

learned patterns of salient attributes are finally ap-
plied to a corpus to derive new properties for unseen
concepts.

Our task is a challenging one: the properties we
seek are extremely diverse in their form. They range
from the simple (e.g.,banana is yellow) to the com-
plex (e.g.,bayonet found at the end of a gun). Al-
though the properties can broadly be divided into
a number of categories (encyclopedic, taxonomic,
functional, etc) there is not a great deal of regular-
ity in the nature of the properties a given noun will
likely possess: it is highly concept-dependent.

Furthermore, we hope to derive these properties
from corpora, with the assumption that these prop-
erties will manifest themselves therein. Indeed, An-
drews et al. (2005) discuss a theory of human knowl-
edge which relies on a combination of both dis-
tributional (i.e., derived from spoken and written
language) and experiential data (i.e., that derived
from our interactions with the real world), claiming
that the necessary contribution of each data-type for
a comprehensive human semantic representation is
non-trivial. Finally, there are difficulties associated
with evaluating our system’s output directly against
a set of human-generated property norms: we dis-
cuss these in further detail later.

Given their provenance, the properties found in
property norms are free-form. To simplify our task
we apply a more rigid representation to the proper-
ties we already have and to those we aim to seek. We
delineate each property into aconcept relation fea-

ture triple (see Section 2.2) and our task becomes
one of finding validrelation feature pairs given a par-
ticularconcept. This recoding renders our task more
well-defined and makes evaluation of our method
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Figure 1: C&C-derived GR-POS graph for the sentence
Marine reptiles include five species of turtle.

more comparable to previous and related work.
Having framed our task in this way, there is an

obvious parallel with relation extraction: both ne-
cessitate the selection/classification of relationships
between individual entities (in our case, between
concept and feature). Hearst (1992) was the first
to propose a pattern-based approach to this task us-
ing lexico-syntactic patterns to automatically extract
hyponyms and this technique has frequently been
used for ontology learning. For example, Pantel and
Pennacchiotti (2008) linked instantiations of a set of
semantic relations into existing semantic ontologies
and Davidov et al. (2007) employed seed concepts
from a given semantic class to discover relations
shared by concepts in that class.

Our task is more complex than classic relation ex-
traction for two main reasons: 1) the relations which
we aim to extract are not limited to a small set of
just a few well-defined relations (e.g.,is-a andpart-
of) nor to the relations of a specific semantic class
(e.g.,capital-is for countries). Indeed the relations
can be as many and diverse as the concepts them-
selves (e.g., each concept could possess a unique
and distinguishing relation and feature). 2) We are
attempting to simultaneously extract two pieces of
information: features of the concept and those fea-
tures’ defining relationship with the concept, but
only those relations and features which would be
classified as ‘common-sense’, something which is
easy for humans to recognise but difficult (if not im-
possible) to describe rigorously or formally.

There has recently been work on the automatic ex-
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traction of binary relations that scale to a web cor-
pus, for example the ReVerb (Etzioni et al., 2011)
and WOE (Wu and Weld, 2010) systems. These
systems are designed to extract legitimate relations
from a given sentence. In contrast, our aim is to cap-
ture more general relationships which are ‘common-
sense’; just because an extracted relation is correct
in a given context does not automatically make it
true in general. Previous reasoned approaches to our
task have taken their lead from Hearst and her suc-
cessors, employing manually-created rulesets to ex-
tract such properties from corpora (e.g., Baroni et al.
(2009), Devereux et al. (2010), and our comparison
system (Kelly et al., 2010)). Baroni et al. extract re-
lational information in the form of ‘type-sketches’,
which give an approximate, implicit description of
the relationship whereas we are aiming to extract
explicit relations between the target concept and its
corresponding features. Devereux et al. and Kelly
et al. have attempted this, but both employ WordNet
(Fellbaum, 1998) to extract semantic relatedness in-
formation.

We use semi-supervised learning as it offers a
flexible technique of harnessing small amounts of
labelled data to derive information from unlabelled
datasets/corpora and allows us to guide the extrac-
tion towards our desired ‘common-sense’ output.
We chose SVMs as they have been used for a va-
riety of tasks in NLP (e.g., Joachims et al. (1998),
Giménez and Marquez (2004)). We will demon-
strate that our system’s performance exceeds that of
Kelly et al. (2010) and Etzioni et al. (2011). It is, as
far as we are aware, the first work to employ semi-
supervised learning for this task.

2 Method
We will use SVMs to learn lexico-syntactic pat-

terns in our corpora corresponding to known prop-
erties in order to find new ones. Training an SVM
requires a labelled training set. To generate this
set we harness our already-known concepts/features
(and their relationships) from the McRae norms to
find instantiations of said relationships within our
corpora. We use parsed sentence information from
our corpora to create a set of attributes describing
each relationship, our learning patterns. In doing
so, we are assuming that across sentences in our
corpora containing a concept/feature pair found in

the McRae norms, there will be a set of consistent
lexico-syntactic patterns which indicate the same re-
lationship as that linking the pair in the norms.

Thus we iterate over our chosen corpora, parsing
each concept-containing sentence to yield grammat-
ical relation (GR) and part-of-speech (POS) infor-
mation from which we can create a GR-POS graph
relating the two. Then for each triple, we find any/all
paths through the graph which link theconcept to its
feature and use the correspondingrelation to label
this path. We collect descriptive information about
the path in the form of attributes describing it (e.g.,
path nodes, labels, length) to create a training pattern
specific to thatconcept relation feature triple and
sentence. It is these lists of attributes (and theirrela-
tion labels) which we employ as the labelled training
set and as input for our SVM.

2.1 Corpora
We employ two corpora for our experiments:

Wikipedia and the UKWAC corpus (Ferraresi et al.,
2008). These are both publicly available and web-
based: the former a source of encyclopedic infor-
mation and the latter a source of general text. Our
Wikipedia corpus is based on a Sep 2009 version
of English-language Wikipedia and contains around
1.84 million articles (>1bn words). Our UKWAC
corpus is an English-language corpus (>2bn words)
obtained by crawling the.uk internet domain.

2.2 Training data
Our experiments use a British-English version of

the McRae norms (see Taylor et al. (2011) for de-
tails). We needed to recode the free-form McRae
properties into relation-classes and features which
would be usable for our learning algorithm. As
we will be matching the features from these prop-
erties with individual words in the training corpus
it was essential that the features we generated con-
tained only one lemmatised word. In contrast, the
relations were merely labels for the relationship de-
scribed (they did not need to occur in the sentences
we were training from) and therefore needed only
to be single-string relations. This allowed preposi-
tional verbs as distinct relations, something which
has not been attempted in previous work yet can be
semantically significant (e.g., the relationsused-in,
used-for andused-by have dissimilar meanings).

We applied the following sequential multi-step
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process to our set of free-form properties to distill
them to triples of the formconcept relation feature,
whererelation can be a multi-word string andfeature
is a single word:

1. Translation of implicit properties to their correct re-
lations (e.g.,pig an animal→ pig is an animal).

2. Removal of indefinite and definite articles.

3. Behavioural properties become “does” properties
(e.g.,turtle beh eats→ turtle does eats).

4. Negative properties given their own relation classes
(e.g.,turkey does cannot fly→ turkey doesnt fly).

5. All numbers are translated to named cardinals (e.g.,
spider has 8 legs→ spider has eight legs).

6. Some of the norms already contained synonymous
terms: these were split into separate triples for each
synonym (e.g.,pepper tastes hot/spicy→ pepper
tastes hotandpepper tastes spicy).

7. Prepositional verbs were translated to one-word,
hyphenated strings (e.g.,made of→ made-of).

8. Properties with present participles as the penulti-
mate word were split into one including the verb as
the feature and one including it in the relation (e.g.,
envelope used for sending letters→ envelope used-
for-sending lettersandenvelope used-for sending).

9. Any remaining multi-word properties were split
with the first term after the concept acting as the
relation (e.g.,bull has ring in its nose→ bull has
ring, bull has in, bull has itsandbull has nose).

10. All remaining stop-words were removed; properties
ending in stop-words (e.g.,bull has inandbull has
its) were removed completely.

This yielded 7,518 property-triples with 254 distinct
relations and an average of 14.7 triples per concept.

2.3 Parsing
We parsed both corpora using the C&C parser

(Clark and Curran, 2007) as we employ both GR
and POS information in our learning method. To ac-
celerate this stage, we process only sentences con-
taining a form (e.g., singular/plural) of one of our
training/testing concepts. We lemmatise each word
using the WordNet NLTK lemmatiser (Bird, 2006).
Parsing our corpora yields around 10Gb and 12Gb
of data for UKWAC and Wikipedia respectively.

The C&C dependency parse output contains, for
a given sentence, a set of GRs forming an acyclic
graph whose nodes correspond to words from the
sentence, with each node also labelled with the POS
of that word. Thus the GR-POS graph interrelates all

lexical, POS and GR information for the entire sen-
tence. It is therefore possible to construct a GR-POS
graph rooted at our target term (the concept in ques-
tion), with POS-labelled words as nodes, and edges
labelled with GRs linking the nodes to one another.
An example graph can be seen in Figure 1.

2.4 Support vector machines
We use SVMs (Cortes and Vapnik, 1995) for our

experiments as they have been widely used in NLP
and their properties are well-understood, showing
good performance on classification tasks (Meyer et
al., 2003). In their canonical form, SVMs are non-
probabilistic binary linear classifiers which take a set
of input data and predict, for each given input, which
of two possible classes it corresponds to.

There are more than two possible relation-labels
to learn for our input patterns, so ours is a multi-class
classification task. For our experiments we use the
SVM Light Multiclass (v. 2.20) software (Joachims,
1999) which applies the fixed-point SVM algorithm
described by Crammer and Singer (2002) to solve
multi-class problem instances. Joachims’ software
has been widely used to implement SVMs (Vinok-
ourov et al., 2003; Godbole et al., 2002).

2.5 Attribute selection
Previous techniques for our task have made use of

lexical, syntactic and semantic information. We are
deliberately avoiding the use of manually-created
semantic resources, so we rely only on lexical and
syntactic attributes for our learning stage (i.e., the
GR-POS paths described earlier).

A table of all the categories of attributes we ex-
tract for each GR-POS path are in Table 2.4, together
with attributes from the path linkingturtle andreptile

in our example sentence (see Figure 1).
We ran our experiments with two vector-types

which we call our ‘verb-augmented’ and our ‘non-
augmented’ vector-types. The sets are identical ex-
cept the verb-augmented vector-type will also con-
tain an additional attribute category containing an
attribute for every instance of a relation verb (i.e.,
a verb which is found in our training set of relations,
e.g.,become, cause, taste, use, haveand so on) in
the lexical path. We do this to ascertain whether this
additional verb-information might be more informa-
tive to our system when learning relations (which
tend to be composed of verbs).
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Attribute category Example attribute(s)

GR path-length LEN
lemmatised anchor node LEM=turtle
POS of anchor node POS=NN
GR path labels GR1=dobjR
from anchor GR2=ncmodR
(indexed) GR3=dobjR

GR4=ncsubjN
GR path labels GR1=ncsubjR
from target GR2=dobjN
(indexed) GR3=ncmodN

GR4=dobjN
POS of path nodes POS1=IN
from anchor POS2=NNS
(indexed) POS3=VBP

POS4=NNS
POS of path nodes POS1=NNS
from target POS2=VBP
(indexed) POS3=NNS

POS4=IN
lemmatised path nodes LEM=include
(bag of words) LEM=species

LEM=of
POS of all path nodes POS=IN
(set) POS=NNS

POS=VBP
Relation verbs N/A
GR path labels GR=dobjR
(set) GR=ncmodN

GR=ncsubjN
lemmatised target node LEM=reptile
POS of target node POS=NNS

Table 2: An example vector for an instance of the
relation-labelis. The attributes are distinguished from
one another by their attribute category. Relation verbs
only appear in the verb-augmented vector-type and no
such verbs appear in our example sentence, so this cat-
egory of attribute is empty. All attributes in the table will
receive the value1.0 except theLEN attribute which will
have the value0.2 (the reciprocal of the path length, 5).

We considered allocating a ‘no-rel’ relation la-
bel to those sets of attributes corresponding to paths
through the GR-POS graph which didnot link the
concept to a feature found in our training data;
however our initial experiments indicated the SVM
model would assign every pattern we tested to the
‘no-rel’ relation. Therefore we used only positive
instances in our training pattern data.

We cycle through all training concepts/features,
finding sentences containing both. For each such
sentence, our system generates the attributes from
the GR-POS path linking the concept to the fea-
ture (the linking-path) to create a pattern for that
pair, in the form of a relation-labelled vector con-

taining real-valued attributes. The system assigns
1.0 to all attributes occurring in a given path
and theLEN value receives the reciprocal of the
path-length.1 Each linking-path is collected into a
relation-labelled, sparse vector in this manner. In
the larger UKWAC corpus this corresponds to over
29 million unique attributes across all found linking-
paths (this figure corresponds to the dimensionality
of our vectors). We then pass all vectors to the learn-
ing module2 of SVM Light to generate a learned
model across all training concepts.

2.6 Extracting candidate patterns
Having trained our model, we must now find po-

tential features and relations for our test concepts
in our corpora. We again only examine sentences
which contain at least one of our test concepts. Fur-
thermore, to avoid a combinatorial explosion of pos-
sible paths rooted at those concepts we only permit
as candidates those paths whose anchor node is a
singular or plural noun and whose target node is ei-
ther a singular/plural noun or adjective. This filter-
ing corresponds to choosing patterns containing one
of the three most frequent anchor node POS tags
(NN, NNS andNNP) and target node POS tags (NN,
JJ andNNS) found during our training stage. These
candidate patterns constitute 92.6% and 87.7% of
all the vectors, respectively, from our training set
of patterns (on the UKWAC corpus). This pattern
pre-selection allows us to immediately ignore paths
which, despite being rooted at a test concept, are un-
likely to contain property norm-like information.

2.7 Generating and ranking triples
We next classified our test concepts’ candidate

patterns using the learned model. SVM Light as-
signs each pattern a relation-class from the training
set and outputs the values of the decision functions
from the learned model when applied to that par-
ticular pattern. The sign of these values indicates
the binary decision function choice, and their mag-
nitude acts as a measure of confidence. We wanted
those vectors which the model was most confident
in across all decision functions, so we took the sum
of the absolute values of the decision values to gen-
erate a pattern score for each vector/relation-label.

1All other possible attributes are assigned the value0.0.
2Using a regularisation parameter (C) value of 1.0 and de-

fault parameters otherwise.
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Vector-type Corpus βLL βPMI βSVM Prec. Recall F

Ignoring relation.

Non-augmented
Wikipedia 0.3 0.00 1.00 0.2214 0.3197 0.2564
UKWAC 0.10 0.05 0.60 0.2279 0.3330 0.2664
UKWAC-Wikipedia 0.35 0.00 0.75 0.2422 0.3533 0.2829

Verb-augmented
Wikipedia 0.20 0.00 0.65 0.2217 0.3202 0.2568
UKWAC 0.30 0.00 0.95 0.2326 0.3400 0.2720
UKWAC-Wikipedia 0.40 0.05 1.00 0.2444 0.3577 0.2859

With relation.

Non-augmented
Wikipedia 0.05 0.00 1.00 0.1199 0.1732 0.1394
UKWAC 0.05 0.00 1.00 0.1126 0.1633 0.1312
UKWAC-Wikipedia 0.05 0.00 0.65 0.1241 0.1808 0.1449

Verb-augmented
Wikipedia 0.05 0.00 1.00 0.1215 0.1747 0.1410
UKWAC 0.05 0.00 1.00 0.1190 0.1724 0.1387
UKWAC-Wikipedia 0.05 0.00 0.70 0.1281 0.1860 0.1494

Table 3: Parameter estimation both with and without relation, using our augmented and non-augmented vector-types
and across our two corpora and the combined corpora set.

From these patterns we derived an output set of
triples where the concept and feature of a triple cor-
responded to the anchor and target nodes of its pat-
tern and the relation corresponded to the pattern’s
relation-label. Identical triples from differing pat-
terns had their pattern scores summed to give a final
‘SVM score’ for that triple.

2.8 Calculating triple scores

A brief qualitative evaluation of our system’s out-
put indicates that although the higher-ranked (by
SVM score) features and relations were, for the most
part, quite sensible, there were some obvious output
errors (e.g., non-dictionary strings or verbs appear-
ing as features). Therefore we restricted our fea-
tures to those which appear as nouns or adjectives in
WordNet and excluded features containing an NLTK
(Bird, 2006) corpus stop-word. Despite these exclu-
sions, some general (and therefore less informative)
relation/feature combinations (e.g.,is good, is new)
were still ranking highly. To mitigate this, we ex-
tract both log-likelihood (LL) and pointwise mutual
information (PMI) scores for each concept/feature
pair to assess the relative saliency of each extracted
feature, with a view to downweighting common but
less interesting features. To speed up this and later
stages, we calculate both statistics for the top 1,000
triples extracted for each concept only.

PMI was proposed by Church and Hanks (1990)
to estimate word association. We will use it to mea-
sure the strength of association between a concept
and its feature. We hope that emphasising concept-
feature pairs with high mutual information will ren-
der our triples more relevant/informative.

We also employ the LL measure across our set of
concept-feature pairs. Proposed by Dunning (1993),
LL is a measure of the distribution of linguistic phe-
nomena in texts and has been used to contrast the
relative corpus frequencies of words. Our aim is to
highlight features which are particularly distinctive
for a given concept, and hence likely to be features
of that concept alone.

We calculate an overall score for a triple,t, by a
weighted combination of the triple’s SVM, PMI and
LL scores using the following formula:

score(t) = βPMI·PMI(t)+βLL ·LL(t)+βSVM·SVM(t)

where the PMI, SVM and LL scores are normalised
so they are in the range [0, 1]. The relativeβ weights
thus give an estimate of the three measures’ impor-
tance relative to one another and allows us to gauge
which combination of these scores is optimal.

2.9 Datasets
We also wanted to ascertain the extent to which

the output from both our corpora could be combined
to improve results, balancing the encyclopedic but
somewhat specific nature of Wikipedia with the gen-
erality and breadth of the UKWAC corpus. We com-
bined the output by summing individual SVM scores
of each triple from both corpora to yield a combined
SVM score. PMI and LL scores were then calcu-
lated as usual from this combined set of triples.

3 Experimental Evaluation
3.1 Evaluation methodology

We employ ten-fold cross-validation to ascertain
optimal SVM, LL and PMIβ parameters for our fi-
nal system. We exclude 44 concepts from our set of
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Relation Prec. Recall F

Kelly et al.
Without 0.1943 0.3896 0.2592
With 0.1102 0.2210 0.1471

ReVerb
Without 0.1142 0.2258 0.1514
With 0.0431 0.0864 0.0576

Our method
Without 0.2417 0.4847 0.3225
With 0.1238 0.2493 0.1654

Table 4: Our best scores on the ESSLLI set compared to
Kelly et al. (2010) and the ReVerb system (Etzioni et al.,
2011). Our results are from the verb-augmented vector-
type, using the combined UKWAC-Wikipedia corpus and
using theβ parameters highlighted in Table 3.

510 to use in our final system testing and split the
remaining 466 concepts randomly and evenly into
10 folds. We apply the training steps above to nine
of the folds, generating predictions for the single
held-out fold. We repeat this for all ten folds, yield-
ing relations and features with SVM, LL and PMI
scores for our full set of 466 training concepts on
the UKWAC, Wikipedia and combined corpora.

We varied theβ values from our scoring equa-
tion in the range [0,1] (interval 0.05) and com-
pared the top twenty triples for each concept directly
against the held-out training set. The best F-scores
and their correspondingβ values (evaluating on full
triples and concept-feature pairs alone) are in Ta-
ble 3. We can see that our best results employ the
verb-augmented vector-type and the combined cor-
pus, with a best F-score of 0.2859 when ignoring
the relation term and 0.1494 when including it in the
evaluation. The main difference between these two
results is the relative contribution of the reweighting
factors: the SVM score is the most important over-
all, but the LL and PMI scores come into play when
evaluating without the relation. This could be ex-
plained by the fact that the PMI and LL scores do
not use any relation terms in their calculations.

3.2 Quantitative evaluation
The unseen subset of the McRae norms is a set

of human-generated common-sense properties with
which our extracted properties can be compared.
However, an issue with the McRae norms is that
semantically identical properties can be represented
by lexically different triples. This problem was ac-
knowledged by Baroni et al. (2008) who created
a synonym-expanded set of properties for 44 con-
cepts (selected evenly across six semantic classes;
the 44 concepts we excluded for testing) to par-

Judge Judge
turtle A B bowl A B

is green c c is large p p
is small c c used for food c c
is species c c used for mixing c c
is marine c c used for storing food c c
used for sea r r used for storing soup r r
is animal c c is ceramic c c
is many p c is small p p
has shell c c used for storing cereal r r
is large c p used for storing spoon r r
is reptile c c used for storing sugar p c

Table 5: Our judges’ assessments of the correctness of the
top ten relation/feature pairs for two concepts extracted
from our best system.

tially solve it. This expansion set comprises the con-
cepts’ top ten properties from the McRae norms with
semi-automatically generated synonyms for each of
the ten distinct features. For example, the triple
turtle has shell was expanded to also includetur-
tle has shield andturtle has carapace.

We use the two best systems (i.e., including and
excluding the relation; highlighted in Table 3) to
generate two sets of top twenty output triples for
our 44 concepts. We then calculate precision, re-
call and F-scores for each against our synonym-
expanded set.3 Using this expanded set allows us
to compare our work with that of Kelly et al. (2010).
We also compare with the top twenty output of the
Reverb system Etzioni et al. (2011) using their pub-
licly available relations derived from the ClueWeb09
corpus, employing their normalized triples ranked
by frequency. All sets of results are in Table 4. We
note that even though Kelly et al. optimised their
algorithm on the ESSLLI set to yield a theoretical
best-possible score—we are evaluating ‘blind’—our
performance still shows an advance on theirs: the
improvement on both sets when comparing the pop-
ulation of F-scores across all 44 concepts is statisti-
cally significant at the 0.5% level.4

3.3 Human evaluation
The above does not quite offer the full picture:

unlike the features, the relations are not synonym-
expanded. Furthermore, it is possible that there

3We note that we are incorporating an upper bound for pre-
cision of 0.500 by comparing with only the top ten properties.

4Pairedt-tests. ‘With relation’:t = 3.524, d.f.= 43, p =

0.0010. ‘Without relation’: t = 3.503, d.f.= 43, p = 0.0011.
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Relation A B κ Agreements

With
c / p 146 161

0.7421 261 (87%)
r / w 153 138

Without
c / p 226 235

0.5792 255 (85%)
r / w 74 65

Table 6: Inter-annotator agreement for our best system,
both including and excluding the relation.

are correct properties being generated which simply
don’t appear in the ESSLLI evaluation set.

In order to address these concerns, we also per-
formed a human evaluation on 15 of our concepts.5

We asked two native English-speaking judges to de-
cide whether a given triple wascorrect,6 plausible,7

wrong but related,8 or wrong.9 We executed the
human evaluation on our two best systems (as de-
scribed above). As there were shared triples and
concept-feature pairs across the two output sets,
each triple and pair was evaluated only once. The
judges were aware of the purposes of the study but
were blind to the source sets. Some example judge-
ments are in Table 5.

The agreement results across all 15 concepts to-
gether with theirκ coefficients (Cohen, 1960) are
in Table 6. In our evaluation we conflated thecor-
rect/plausible and wrong but related/wrong cate-
gories (see also Kelly et al. (2010) and Devereux et
al. (2010)). We did this because of the subjective na-
ture of the judgements, and because we are seeking
properties which are indeed correct or at least plausi-
ble. These results indicate that our system is extract-
ing correct or plausible triples 51.1% of the time (ris-
ing to 76.8% when considering features only). They
also demonstrate a marked discrepancy between the
results for our two evaluations, reflecting the neces-
sity of human evaluation when assessing our partic-
ular task.

4 Discussion
In this paper we have shown that semi-supervised

learning techniques can automatically learn lexico-

5The 44 evaluation concepts had been separated into super-
ordinate categories for unrelated psycholinguistic research and
we selected our 15 proportionally and at random from these su-
perordinate categories.

6A correct, valid, feature.
7A triple which is plausible but only in a specific set of cir-

cumstances or a feature which was correct but very general.
8The triple is incorrect but there existed some sort of rela-

tionship between the concept and relation and/or feature.
9When the triple is simply wrong.

syntactic patterns indicative of property norm-like
relations and features. Using these patterns, our
system can extract relevant and accurate properties
from any parsed corpus and allows for multi-word
relation labels, allowing greater semantic precision.

As already mentioned, the work of Baroni et
al. (2009) is relevant to our own. Their approach
achieves a precision score of 0.239 on the top ten
returned features evaluated against the ESSLLI set:
our best system offers precision of 0.370 on the same
evaluation. Moreover, Baroni et al. do not explicitly
derive relation terms. We better the performance of
a comparable system (Kelly et al., 2010), even when
evaluating against an unseen set of concepts, and our
system does not use manually-generated rules or se-
mantic information. Furthermore, human evaluation
shows over half of our extracted properties are cor-
rect/plausible.

For future work, we have already mentioned that
we are ignoring a large amount of potentially in-
structive training data, specifically those GR-POS
paths in our corpus which don’t terminate on one of
our training features, as well as those paths through
sentences containing one of our concepts but none
of our training features. It might therefore be worth-
while investigating the use of this “negative” infor-
mation. Another potential avenue for exploration
would be the expansion of the learning vector-types.
Although we already use a significant number of
learning attributes (an average of 37.9 per training
pattern), we could include more: there may be addi-
tional information not directly on the GR-POS path
linking a concept and feature (e.g., nodes adjacent
to said path) which might be indicative of their re-
lationship. We would also consider using active-
learning, introducing a feedback loop and human-
annotation to better distinguish between relations
which our algorithm tends to classify incorrectly.
For example, we could supplement input pattern
data with disambiguating POS-GR graphs, drawing
a distinction between valid and non-valid relations.

Finally, our system could also be evaluated in the
context of a psycholinguistic experiment. For exam-
ple, we could use our system output to predict con-
cept similarity by using our extracted triples to cre-
ate vector representations of each concept, calculat-
ing the distance between those vectors and compar-
ing these similarity ratings with human judgements.
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