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Abstract

Dependency Parsing domain adaptation
involves adapting a dependency parser,
trained on an annotated corpus from a given
domain (e.g., newspaper articles), to work
on a different target domain (e.g., legal doc-
uments), given only an unannotated corpus
from the target domain.
We present a shift/reduce dependency
parser that can handle unlabeled sentences
in its training set using a transductive SVM
as its action selection classifier.
We illustrate the the experiments we per-
formed with this parser on a domain adap-
tation task for the Italian language.

1 Introduction

Dependency parsing is the task of identifying syn-
tactic relationships between words of a sentence
and labeling them according to their type. Typ-
ically, the dependency relationships are not de-
fined by an explicit grammar, rather implicitly
through a human-annotated corpus which is then
processed by a machine learning procedure, yield-
ing a parser trained on that corpus.
Shift-reduce parsers (Yamada and Matsumoto,
2003; Nivre and Scholz, 2004; Attardi, 2006) are
an accurate and efficient (linear complexity) ap-
proach to this task: They scan the words of a sen-
tence while updating an internal state by means of
shift-reduce actions selected by a classifier trained
on the annotated corpus.
Since the training corpora are made by human an-
notators, they are expensive to produce and are
typically only available for few domains that don’t
adequately cover the whole spectrum of the lan-
guage. Parsers typically lose significant accuracy

when applied on text from domains not covered
by their training corpus. Several techniques have
been proposed to adapt a parser to a new domain,
even when only unannotated samples from it are
available (Attardi et al., 2007a; Sagae and Tsujii,
2007).
In this work we present a domain adaptation based
on the semi-supervised training of the classifier of
a shift-reduce parser. We implement the classifier
as a multi-class SVM and train it with a transduc-
tive SVM algorithm that handles both labeled ex-
amples (generated from the source-domain anno-
tated corpus) and unlabeled examples (generated
from the the target-domain unannotated corpus).

2 Background

2.1 Shift-Reduce Parsing

A shift-reduce dependency parser is essentially a
pushdown automaton that scans the sentence one
token at a time in a fixed direction, while updat-
ing a stack of tokens and also updating a set of
directed, labeled edges that is eventually returned
as the dependency parse graph of the sentence.
Let T be the set of input token instances of
the sentence and D be the set of dependency
labels. The state of the parser is defined by
the tuple 〈s, q, p〉, where s ∈ T ∗ is the stack,
q ∈ T ∗ is the current token sequence and p ∈{
E|E ⊆ 2T×T×D, E is a forest

}
is the current

parse graph.
The parser starts in the state 〈[], q0, {}〉, where q0
is the input sentence, and terminates whenever it
reaches a state in the form 〈s, [], p〉. At each step,
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it performs one of the following actions:

shift :
〈s, [t|q], p〉
〈[t|s], q, p〉

rightreduced :
〈[u|s], [t|q], p〉

〈s, [t|q], p ∪ {(u, t, d)}〉

leftreduced :
〈[u|s], [t|q], p〉

〈s, [u|q], p ∪ {(t, u, d)}〉

note that there are rightreduced and
leftreduced actions for each label d ∈ D.
Action selection is done by the combination
of two functions f ◦ c : a feature extraction
function f : States → Rn that computes a
(typically sparse) vector of numeric features of
the current state and the multi-class classifier
c : R → Actions. Alternatively, the classifier
could score each available action, allowing a
search procedure such as best-first (Sagae and
Tsujii, 2007) or beam search to be used.
In our experiments we used an extension of
this approach that has an additional stack and
additional actions to handle non-projective de-
pendency relationships (Attardi, 2006). Training
is performed by computing, for each sentence
in the annotated training corpus, a sequence of
states and actions that generates its correct parse,
yielding, for each transition, a training example
(x, y) ∈ Rn ×Actions for the classifier.
Various classification algorithms have been
successfully used, including maximum entropy,
multi-layer perceptron, averaged perceptron,
SVM, etc. In our approach, the classifier is
always a multi-class SVM composed of multiple
(one-per-parsing-action) two-class SVMs in
one-versus-all configuration.

2.2 Parse Graph Revision

Attardi and Ciaramita (2007b) developed a
method for improving parsing accuracy using
parse graph revision: the output of the parser is
fed to a procedure that scans the parsed sentence
in a fixed direction and, at each step, possibly re-
vises the current node (rerouting or relabeling its
unique outgoing edge) based on the classifier’s
output.
Training is performed by parsing the training cor-
pus and comparing the outcome against the anno-
tation: for each sentence, a sequence of actions
necessary to transform the machine-generated
parse into the reference parse is computed and it

is used to train the classifier. (Usually, a lower-
quality parser is used during training, assuming
that it will generate more errors and hence more
revision opportunities).
This method tends to produce robust parsers: er-
rors in the first stage have the opportunity to be
corrected in the revision stage, thus, even if it
does not learn from unlabeled data, it neverthe-
less performs well in domain adaptation tasks (At-
tardi et al., 2007a). In our experiments we used
parse graph revision both as a baseline for accu-
racy comparison, and in conjunction with our ap-
proach (using a transductive SVM classifier in the
revision stage).

2.3 Transductive SVM

Transductive SVM (Vapnik, 1998) is a framework
for the semi-supervised training of SVM classi-
fiers.
Consider the inductive (completely supervised)
two-class SVM training problem: given a training
set {(xi, yi) |xi ∈ Rn, yi ∈ {−1, 1}}Li=1, find
the maximum margin separation hypersurface w ·
φ (x) + b = 0 by solving the following optimiza-
tion problem:

arg min
w, b, ξ

1

2
‖w‖22 + C

L∑
i=1

ξi (1)

∀i : yiw · φ (x) + b ≥ 1− ξi
∀i : ξi ≥ 0

w ∈ Rm, b ∈ R

where C ≥ 0 is a regularization parameter and
φ(·) is defined such that k (x, x̂) ≡ φ(x) · φ (x̂)
is the SVM kernel function. This is a convex
quadratic programming problem that can be
solved efficiently by specialized algorithms.
Including an unlabeled example set{
x∗j |x∗j ∈ Rn

}L∗
j=1

we obtain the transduc-

tive SVM training problem:

arg min
w, b, ξ, y∗, xi∗

1

2
‖w‖22 + C

L∑
i=1

ξi + C∗
L∗∑
j=1

ξ∗j

(2)
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∀i : yiw · φ (xi) + b ≥ 1− ξi
∀j : y∗j w · φ

(
x∗j
)

+ b ≥ 1− ξ∗j
∀i : ξi ≥ 0

∀j : ξ∗j ≥ 0

∀j : y∗j ∈ {−1, 1}
w ∈ Rm, b ∈ R

This formulation essentially models the unlabeled
examples the same way the labeled examples
are modeled, with the key difference that the
y∗j (the unknown labels of the unlabeled exam-
ples) are optimization variables rather than pa-
rameters. Optimizing over these discrete variables
makes the problem non-convex and in fact NP-
hard. Nevertheless, algorithms that feasibly find
a local minimum that is typically good enough
for practical purposes do exist. In our exper-
iments we used the iterative transductive SVM
algorithm implemented in the SvmLight library
(Joachims, 1999). This algorithm tends to be-
come impractical when the number of unlabeled
examples is greater than a few thousands, hence
we were forced to use only a small portion on the
available target domain corpus. We also tried the
concave-convex procedure (CCCP) TSVM algo-
rithm (Collobert et al., 2006) as implemented by
the the Universvm package, and the multi-switch
and deterministic annealing algorithms for linear
TSVM (Sindhwani and Keerthi, 2007) as imple-
mented by the Svmlin package. These methods
are considerably faster but appear to be substan-
tially less accurate than SvmLight on our training
data.

3 Proposed approach

We present a semi-supervised training procedure
for shift/reduce SVM parsers that allows to in-
clude unannotated sentences in the training cor-
pus.
We randomly sample a small number (approx.
100) of sentences from the unannotated corpus
(the target domain corpus in a domain adaptation
task). For each of these sentences, we generate a
sequence of states that the parser may encounter
while scanning the sentence. For each state we
extract the features to generate an unlabeled train-
ing example for the SVM classifier which is in-
cluded in the training set along with the labeled

examples generated from the annotated corpus.
There is a caveat here: the parser state at any given
point during the parsing of a sentence generally
depends on the actions taken before, but when we
are training on an unannotated sentence, we have
no way of knowing what actions the parser should
have taken, and thus the state we generate can be
generally incorrect. For this reason we evaluated
pre-parsing the unannotated sentences with a non-
transductively trained parser in order to generate
plausible state transitions while still adding unla-
beled examples. However, it turned out that this
pre-parsing does not seem to improve accuracy.
We conjecture that, because the classifier does not
see actual states but only features derived from
them, and many of these features are independent
of previous states and actions (features such as the
lemma and POS tag of the current token and its
neighbors have this property), these features con-
tain enough information to perform parsing.
The classifier is trained using the SvmLight trans-
ductive algorithm. Since SvmLight supports only
two-class SVMs while our classifier is multi-class
(one class for each possible parsing action), we
implement it in terms of two-class classifiers. We
chose the one-versus-all strategy:
We train a number of sub-classifiers equal to the
number of original classes. Each labeled training
example (x, y) is converted to the example (x, 1)
for the sub-classifier number y and to the example
(x, −1) for the rest of sub-classifiers. Unlabeled
examples are just replicated to all sub-classifiers.
During classification the input example is eval-
uated by all the sub-classifiers and the one re-
turning the maximum SVM score determines the
class.
Our approach has been also applied to the second
stage of the revision parser, by presenting the fea-
tures of the unannotated sentences to the revision
classifier as unlabeled training examples.

4 Experiments

4.1 Experimental setup

We performed our experiments using the DeSR
parser (Attardi, 2006) on the data sets for the
Evalita 2011 dependency parsing domain adapta-
tion task for the Italian language (Evalita, 2011).
The data set consists in an annotated source-
domain corpus (newspaper articles) and an unan-
notated target-domain corpus (legal documents),
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plus a small annotated development corpus also
from the target domain, which we used to evalu-
ate the performance.
We performed a number of runs of the DeSR
parser in various configurations, which differed
in the number and type of features extracted, the
sentence scanning direction, and whether or not
parse tree revision was enabled. The SVM clas-
sifiers always used a quadratic kernel. In order to
keep the running time of transductive SVM train-
ing acceptable, we limited the number of unanno-
tated sentences to one hundred, which resulted in
about 3200 unlabeled training examples fed to the
classifiers. The annotated sentences were 3275.
We performed one run with 500 unannotated sen-
tences and, at the cost of a greatly increased run-
ning time, the accuracy improvement was about
1%. We conjecture that a faster semi-supervised
training algorithm could allow greater perfor-
mance improvements by increasing the size of the
unannotated corpus that can be processed. All
the experiments were performed on a machine
equipped with an quad-core Intel Xeon X3440
processor (8M Cache, 2.53 GHz) and 12 Giga-
bytes of RAM.

4.2 Discussion

As it is evidenced from the table in figure
1, our approach typically outperforms the non-
transductive parser by about 1% of all the three
score measures we considered. While the im-
provement is small, it is consistent with differ-
ent configurations of the parser that don’t use
parse tree revision. Accuracy remained essen-
tially equal or became slightly worse in the two
configurations that use parse tree revision. This is
possibly due to the fact that the first stage parser of
the revision configurations uses a maximum en-
tropy classifier during training that does not learn
from the unlabeled examples.
These results suggest that unlabeled examples
contain information that can exploited to improve
the parser accuracy on a domain different than the
labeled set domain. However, the computational
cost of transductive learning algorithm we used
limits the amount of unlabeled data we can ex-
ploit.
This is consistent with the results obtained by
the self-training approaches, where a first parser
is trained on a the labeled set, which is used to
parse the unlabeled set which is then included into

the training set of a second parser. (In fact, self-
training is performed in the first step of the Svm-
Light TSVM algorithm).
Despite earlier negative results, (Sagae, 2010)
showed that even naive self-training can provide
accuracy benefits (about 2%) in domain adapta-
tion, although these results are not directly com-
parable to ours because they refer to constituency
parsing rather than dependency parsing. (Mc-
Closky et al., 2006) obtain even better results (5%
f-score gain) using a more sophisticated form of
self-training, involving n-best generative parsing
and discriminative reranking. (Sagae and Tsujii,
2007) obtain similar gains (about 3 %) for de-
pendency parsing domain adaptation, using self-
training on a subset of the target-domain instances
selected on the basis of agreement between two
different parsers. (the results are not directly com-
parable to ours because they were obtained on a
different corpus in a different language).

5 Conclusions and future work

We presented a semi-supervised training ap-
proach for shift/reduce SVM parsers and we illus-
trated an application to domain adaptation, with
small but mostly consistent accuracy gains. While
these gains may not be worthy enough to justify
the extra computational cost of the transductive
SVM algorithm (at least in the SvmLight imple-
mentation), they do point out that there exist a
significant amount of information in an unanno-
tated corpus that can be exploited for increasing
parser accuracy and performing domain adapta-
tion. We plan to further investigate this method by
exploring classifier algorithms other than trans-
ductive SVM and combinations with other semi-
supervised parsing approaches. We also plan to
test our method on standardized English-language
corpora to obtain results that are directly compa-
rable to those in the literature.
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Figure 1: Experimental results
Accuracy (-R: right-to-left, -rev: left-to-right with revision, -rev2: right-to-left with revision):

Transductive Normal
Parser configuration LAS UAS Label only LAS UAS Label only
6 74.3 77.0 87.5 73.1 75.5 86.7
6-R 75.7 78.6 88.7 74.6 77.6 87.8
6-rev 75.2 78.2 88.6 75.1 78.0 88.3
6-rev2 75.0 77.8 88.7 75.8 78.6 88.7
8 74.3 77.0 87.3 73.4 76.0 85.9
8-R 75.7 78.6 88.7 75.3 78.3 88.1
2 74.7 77.4 87.4 73.1 75.8 86.5

Figure 2: Typical features (configuration 6).
Numbers denote offsets.
’FEATS’ denotes rich morphological features (grammatical number, gender, etc).

LEMMA -2 -1 0 1 2 3 prev(0) leftChild(-1) leftChild(0) rightChild(-1) rightChild(0)
POSTAG -2 -1 0 1 2 3 next(-1) leftChild(-1) leftChild(0) rightChild(-1) rightChild(0)
CPOSTAG -1 0 1
FEATS -1 0 1
DEPREL leftChild(-1) leftChild(0) rightChild(-1)
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