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Abstract

The paper reports several studies about
quantifying language similarity via pho-
netic alignment of core vocabulary items
(taken from Wichman’s Automated Simi-
larity Judgement Program data base). It
turns out that weighted alignment accord-
ing to the Needleman-Wunsch algorithm
yields best results.

For visualization and data exploration pur-
poses, we used an implementation of the
Fruchterman-Reingold algorithm, a version
of force directed graph layout. This soft-
ware projects large amounts of data points
to a two- or three-dimensional structure in
such a way that groups of mutually similar
items form spatial clusters.

The exploratory studies conducted along
these ways lead to suggestive results that
provide evidence for historical relation-
ships beyond the traditionally recognized
language families.

1 Introduction

The Automated Similarity Judgment Program
(Wichmann et al., 2010) is a collection of 40-item
Swadesh lists from more than 5,000 languages.
The vocabulary items are all given in a uniform,
if coarse-grained, phonetic transcription.

In this project, we explore various ways to com-
pute the pairwise similarities of these languages
based on sequence alignment of translation pairs.
As the 40 concepts that are covered in the data
base are usually thought to be resistant against
borrowing, these similarities provide information
about genetic relationships between languages.

To visualize and explore the emerging pat-
terns, we make use of Force Directed Graph Lay-

out. More specifically, we use the CLANS1 im-
plementation of the Fruchterman-Reingold algo-
rithm (Frickey and Lupas, 2004). This algorithm
takes a similarity matrix as input. Each data point
is treated as a physical particle. There is a re-
pelling force between any two particles — you
may think of the particles as electrically charged
with the same polarity. Similarities are treated as
attracting forces, with a strength that is positively
related to the similarity between the correspond-
ing data points.

All data points are arranged in a two- or three-
dimensional space. The algorithm simulates the
movement of the particles along the resulting
force vector and will eventually converge towards
an energy minimum.

In the final state, groups of mutually similar
data items form spatial clusters, and the distance
between such clusters provides information about
their cumulative similarity.

This approach has proven useful in bioinfor-
matics, for instance to study the evolutionary his-
tory of protein sequences. Unlike more com-
monly used methods like SplitsTree (or other phy-
logenetic tree algorithms), CLANS does not as-
sume an underlying tree structure; neither does it
compute a hypothetical phylogenetic tree or net-
work. The authors of this software package, Tan-
cred Frickey and Andrei Lupas, argue that this
approach is advantageous especially in situations
were a large amount of low-quality data are avail-
able:

“An alternative approach [...] is the
visualization of all-against-all pairwise

1Cluster ANalysis of Sequences; freely available from
http://www.eb.tuebingen.mpg.de/departments/1-protein-
evolution/software/clans
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similarities. This method can han-
dle unrefined, unaligned data, includ-
ing non-homologous sequences. Un-
like phylogenetic reconstruction it be-
comes more accurate with an increas-
ing number of sequences, as the larger
number of pairwise relationships aver-
age out the spurious matches that are
the crux of simpler pairwise similarity-
based analyses.” (Frickey and Lupas
2004, 3702)

This paper investigates two issues, that are re-
lated to the two topics of the workshop respec-
tively:

• Which similarity measures over language
pairs based on the ASJP data are apt to sup-
ply information about genetic relationships
between languages?

• What are the advantages and disadvantages
of a visualization method such as CLANS, as
compared to the more commonly used phy-
logenetic tree algorithms, when applied to
large scale language comparison?

2 Comparing similarity measures

2.1 The LDND distance measure

In Bakker et al. (2009) a distance measure is de-
fined that is based on the Levenshtein distance (=
edit distance) between words from the two lan-
guages to be compared. Suppose two languages,
L1 and L2, are to be compared. In a first step,
the normalized Levenshtein distances between all
word pairs from L1 and L2 are computed. (Ide-
ally this should be 40 word pairs, but some data
are missing in the data base.) This measure is de-
fined as

nld(x, y)
.
=

dLev(x, y)

max(l(x), l(y))
. (1)

The normalization term ensures that word
length does not affect the distance measure.

If L1 and L2 have small sound inventories with
a large overlap (which is frequently the case for
tonal languages), the distances between words
from L1 and L2 will be low for non-cognates
because of the high probability of chance simi-
larities. If L1 and L2 have large sound inven-
tories with little overlap, the distance between

Figure 1: Simple alignment

non-cognates will be low in comparison. To cor-
rect for this effect, Bakker et al. (2009) normal-
ize the distance between two synonymous words
from L1 and L2 by defining the normalized Lev-
enshtein distance by the average distance between
all words from L1 and L2 that are non synony-
mous (39× 40 = 1, 560 pairs if no data are miss-
ing). The NDLD distance between L1 and L2 is
defined as the average doubly normalized Leven-
shtein distance between synonymous word pairs
from L1 and L2. (LDND is a distance measure
rather than a similarity measure, but it is straight-
forward to transform the one type of measure into
the other.)

In the remainder of this section, I will propose
an improvement of LDND in two aspects:

• using weighted sequence alignment based on
phonetic similarity, and

• correcting for the variance of alignments us-
ing an information theoretic distance mea-
sure.

2.2 Weighted alignment

The identity-based sequence alignment that un-
derlies the computation of the Levenshtein dis-
tance is rather coarse grained because it does not
consider different degrees of similarities between
sounds. Consider the comparison of the English
word hand (/hEnd/ in the ASJP transcription) to
its German translation hand (/hant/) on the one
hand and its Spanish translation mano (/mano/) on
the other hand. As the comparison involves two
identical and two non-identical sounds in each
case (see Figure 1), the normalized Levenshtein
distance is 0.5 in both cases. It seems obvious
though that /hEnd/ is much more similar to /hant/
than to /mano/, i.e. it is much more likely to find
an /a/ corresponding to an /E/ in words that are
cognate, and and /d/ corresponding to a /t/, than
an /h/ corresponding to an /m/ or a /t/ to an /o/.
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There is a parallel here to problems in bioin-
formatics. When aligning two protein sequences,
we want to align molecules that are evolu-
tionarily related. Since not every mutation is
equally likely, not all non-identity alignments are
equally unlikely. The Needleman-Wunsch algo-
rithm (Needleman and Wunsch, 1970) takes a
similarity matrix between symbols as an input.
Given two sequences, it computes the optimal
global alignment, i.e. the alignment that max-
imizes the sum of similarities between aligned
symbols.

Following Henikoff and Henikoff (1992), the
standard approach in bioinformatics to align pro-
tein sequences with the Needleman-Wunsch algo-
rithm is to use the BLOSUM (Block Substitution
Matrix), which contains the log odds of amino
acid pairs, i.e.

Sij ∝ log
pij

qi × qj
(2)

Here S is the substitution matrix, pij is the
probability that amino acid i is aligned with
amino acid j, and qi/qj are the relative frequen-
cies of the amino acids i/j.

This can straightforwardly be extrapolated to
sound alignments. The relative frequencies qi for
each sound i can be determined simply by count-
ing sounds in the ASJP data base.

The ASJP data base contains information about
the family and genus membership of the lan-
guages involved. This provides a key to estimate
pij . If two word x and y have the same meaning
and come from two languages belonging to the
same family, there is a substantial probability that
they are cognates (like /hEnd/ and /hant/ in Figure
1). In this case, some of the sounds are likely to
be unchanged. This in turn enforces alignment of
non-identical sounds that are historically related
(like /E/-/a/ and /d/-/T/ in the example).

Based on this intuition, I estimated p in the fol-
lowing way:2

• Pick a family F at random that contains at
least two languages.

• Pick two languages L1 and L2 that both be-
long to G.

2A similar way to estimate sound similarities is proposed
in Prokic (2010) under the name of pointwise mutual infor-
mation in the context of a dialectometric study.
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Figure 2: Sound similarities

• Pick one of the forty Swadesh concepts that
has a corresponding word in both languages.

• Align these two words using the Levenshtein
distance algorithm and store all alignment
pairs.

This procedure was repeated 100,000 times. Of
course most of the word pairs involved are not
cognates, but it can be assumed in these cases, the
alignments are largely random (except for univer-
sal phonotactic patterns), such that genuine cog-
nate alignments have a sufficiently large effect.

Note that language families vary considerably
in size. While the data base comprises more than
1,000 Austronesian and more than 800 Niger-
Congo languages, most families only consist of a
handful of languages. As the procedure described
above samples according to families rather than
languages, languages that belong to small families
are over-represented. This decision is intentional,
because it prevents the algorithm from overfitting
to the historically contingent properties of Aus-
tronesian, Niger-Congo, and the few other large
families.

The thus obtained log-odds matrix is visual-
ized in Figure 2 using hierarchical clustering. The
outcome is phonetically plausible. Articulatorily
similar sounds — such as the vowels, the alve-
olar sound, the labial sounds, the dental sounds
etc. — form clusters, i.e. they have high log-odds
amongst each other, while the log-odds between
sounds from different clusters are low.
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Using weighted alignment, the similarity score
for /hEnd/ ∼ /hant/ comes out as ≈ 4.1, while
/hEnd/ ∼ /mano/ has a score of ≈ 0.2.

2.3 Language specific normalization

The second potential drawback of the LDND
measure pertains to the second normalization step
described above. The distances between trans-
lation pairs are divided by the average distance
between non-translation pairs. This serves to
neutralize the impact of the sound inventories of
the languages involved — the distances between
languages with small and similar sound invento-
ries are generally higher than those between lan-
guages with large and/or different sound invento-
ries.

Such a step is definitely necessary. However,
dividing by the average distance does not take the
effect of the variance of distances (or similarities)
into account. If the distances between words from
two languages have generally a low variance, the
effect of cognacy among translation pairs is less
visible than otherwise.

As an alternative, I propose the following simi-
larity measure between words. Suppose s is some
independently defined similarity measure (such
as the inverse normalized Levenshtein distance,
or the Needleman-Wunsch similarity score). For
simplicity’s sake, L1 and L2 are identified with
the set of words from the respective languages in
the data base:

si(x, y|L1, L2)

.
= −log |{(x

′,y′)∈L1×L2|s(x′,y′)≥s(x,y)}|
|L1|×|L2|

The fraction gives the relative frequency of
word pairs that are at least as similar to each other
than x to y. If x and y are highly similar, this
expression is close to 0. Conversely, if they are
entirely dissimilar, the expression is close to 0.

The usage of the negative logarithm is mo-
tivated by information theoretic considerations.
Suppose you know a word x from L1 and you
have to pick out its translation from the words in
L2. A natural search procedure is to start with
the word from L2 which is most similar to x, and
then to proceed according to decreasing similar-
ity. The number of steps that this will take (or,
up to a constant factor, the relative frequency of
word pairs that are more similar to each other than
x to its translation) is a measure of the distance

between x and its translation. Its logarithm corre-
sponds (up to a constant factor) to the number of
bits that you need to find x’s translation. Its nega-
tion measures the amount of information that you
gain about some word if you know its translation
in the other language.

The information theoretic similarity between
two languages is defined as the average similar-
ity between its translation pairs.

2.4 Comparison
These considerations lead to four different simi-
larity/distance measures:

• based on Levenshtein distance vs. based on
Needleman-Wunsch similarity score, and

• normalization via dividing by average score
vs. information theoretic similarity measure.

To evaluate these measures, I defined a gold
standard based on the know genetic affiliations of
languages:

gs(L1, L2)
.
= 2 if L1 and L2

belong to the same genus

gs(L1, L2)
.
= 1 if L1 and L2

belong to the same family

but not the same genus

gs(L1, L2)
.
= 0 else

Three tests were performed for each metric.
2,000 different languages were picked at random
and arranged into 1,000 pairs, and the four metrics
were computed for each pair. First, the correlation
of these metrics with the gold standard was com-
puted. Second, a logistic regression model was
fitted, where a language pair has the value 1 if the
languages belong to the same genus, and 0 oth-
erwise. Third, the same was repeated with fam-
ilies rather than genera. In both cases, the log-
likelihood of another sample of 1,000 language
pairs according to the thus fitted models was com-
puted.

Table 1 gives the outcomes of these tests. The
information theoretic similarity measure based
on the Needleman-Wunsch alignment score per-
forms best in all three test. It achieves the high-
est correlation with the gold standard (the corre-
lation coefficient for LDND is negative because it
is a distance metric while the other measures are
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metric correlation log-likelihood genus log-likelihood family
LDND −0.62 −116.0 −583.6
Levenshteini 0.61 −110.5 −530.5
NW normalized 0.62 −108.1 −518.5
NWi 0.64 −106.7 −514.5

Table 1: Tests of the different similarity measures

similarity metrics; only the absolute value mat-
ters for the comparison), and it assigns the high-
est log-likelihood on the test set both for family
equivalence and for genus equivalence. We can
thus conclude that this metric provides most in-
formation about the genetic relationship between
languages.

3 Visualization using CLANS

The pairwise similarity between all languages in
the ASJP database (excluding creoles and artifi-
cial languages) was computed according to this
metric, and the resulting matrix was fed into
CLANS. The outcome of two runs, using the same
parameter settings, are given in Figure 3. Each
circle represents one language. The circles are
colored according to the genus affiliation of the
corresponding language. Figure 4 gives the leg-
end.

In both panels, the languages organize into
clusters. Such clusters represent groups with a
high mutual similarity. With few exceptions, all
languages within such a cluster belong to the same
genus. Obviously, some families (such as Aus-
tronesian — shown in dark blue — and Indo-
European — shown in brown — have a high co-
herence and neatly correspond to a single com-
pact cluster. Other families such as Australian —
shown in light blue — and Niger-Congo — shown
in red — are more scattered.

As can be seen from the two panels, the algo-
rithm (which is initialized with a random state)
may converge to different stable states with dif-
ferent global configurations. For instance, Indo-
European is located somewhere between Aus-
tronesian, Sino-Tibetan — shown in yellow —,
Trans-New-Guinea (gray) and Australian in the
left panel, but between Austronesian, Austro-
Asiatic (orange) and Niger-Congo (red) in the
right panel. Nonetheless, some larger patterns
are recurrent across simulations. For instance, the
Tai-Kadai languages (light green) always end up

Figure 4: Legend for Figure 3
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Figure 3: Languages of the world

in the proximity of the Austronesian languages.
Likewise, the Nilo-Saharan languages (pink) do
not always form a contiguous cluster, but they are
always near the Niger-Congo languages.

It is premature to draw conclusions about
deep genetic relationships from such observa-
tions. Nonetheless, they indicate the presence
of weak but non-negligible similarities between
these families that deserve investigation. Visual-
ization via CLANS is a useful tool to detect such
weak signals in an exploratory fashion.

4 The languages of Eurasia

Working with all 5,000+ languages at once intro-
duces a considerable amount of noise. In partic-
ular the languages of the Americas and of Papua
New Guinea do not show stable relationships to
other language families. Rather, they are spread
over the entire panel in a seemingly random fash-
ion. Restricting attention to the languages of
Eurasia (also including those Afro-Asiatic lan-
guages that are spoken in Africa) leads to more
pronounced global patterns.

In Figure 5 the outcome of two CLANS runs is
shown. Here the global pattern is virtually iden-
tical across runs (modulo rotation). The Dravid-
ian languages (dark blue) are located at the cen-
ter. Afro-Asiatic (brown), Uralic (pink), Indo-
European (red), Sino-Tibetan (yellow), Hmong-
Mien (light orange), Austro-Asiatic (orange), and
Tai-Kadai (yellowish light green) are arranged

Figure 6: Legend for Figure 5
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Figure 5: The languages of Eurasia

around the center. Japanese (light blue) is located
further to the periphery outside Sino-Tibetan.
Outside Indo-European the families Chukotko-
Kamchatkan (light purple), Mongolic-Tungusic
(lighter green), Turkic (darker green)3 Kartvelian
(dark purple) and Yukaghir (pinkish) are fur-
ther towards the periphery beyond the Turkic
languages. The Caucasian languages (both the
North Caucasian languages such as Lezgic and
the Northwest-Caucasian languages such as Abk-
haz) are located at the periphery somewhere be-
tween Indo-European and Sino-Tibetan. Bu-
rushaski (purple) is located near to the Afro-
Asiatic languages.

Some of these pattern coincide with proposals
about macro-families that have been made in the
literature. For instance the relative proximity of
Indo-European, Uralic, Chukotko-Kamchatkan,
Mongolic-Tungusic, the Turkic languages, and
Kartvelian is reminiscent of the hypothetical Nos-
tratic super-family. Other patterns, such as the
consistent proximity of Japanese to Sino-Tibetan,
is at odds with the findings of historical linguis-
tics and might be due to language contact. Other
patterns, such as the affinity of Burushaski to the
Afro-Asiatic languages, appear entirely puzzling.

3According to the categorization used in ASJP, the Mon-
golic, Tungusic, and Turkic languages form the genus Al-
taic. This classification is controversial in the literature.
In CLANS, Mongolic/Tungusic consistently forms a single
cluster, and likewise does Turkic, but there is no indication
that there is a closer relation between these two groups.

5 Conclusion

CLANS is a useful tool to aid automatic language
classification. An important advantage of this
software is its computational efficiency. Produc-
ing a cluster map for a 5,000 × 5,000 similarity
matrix hardly takes more than an hour on a reg-
ular laptop, while it is forbidding to run a phy-
logenetic tree algorithm with this hardware and
this amount of data. Next to this practical ad-
vantage, CLANS presents information in a format
that facilitates the discovery of macroscopic pat-
terns that are not easily discernible with alterna-
tive methods. Therefore it is apt to be a useful
addition to the computational toolbox of modern
data-oriented historical and typological language
research.
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