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Abstract

In statistical NLP, Semantic Vector Spaces
(SVS) are the standard technique for the
automatic modeling of lexical semantics.
However, it is largely unclear how these
black-box techniques exactly capture word
meaning. To explore the way an SVS struc-
tures the individual occurrences of words,
we use a non-parametric MDS solution of
a token-by-token similarity matrix. The
MDS solution is visualized in an interac-
tive plot with the Google Chart Tools. As
a case study, we look at the occurrences of
476 Dutch nouns grouped in 214 synsets.

1 Introduction

In the last twenty years, distributional models of
semantics have become the standard way of mod-
eling lexical semantics in statistical NLP. These
models, aka Semantic Vector Spaces (SVSs) or
Word Spaces, capture word meaning in terms
of frequency distributions of words over co-
occurring context words in a large corpus. The
basic assumption of the approach is that words
occurring in similar contexts will have a simi-
lar meaning. Speficic implementations of this
general idea have been developed for a wide va-
riety of computational linguistic tasks, includ-
ing Thesaurus extraction and Word Sense Dis-
ambiguation, Question answering and the model-
ing of human behavior in psycholinguistic experi-
ments (see Turney and Pantel (2010) for a general
overview of applications and speficic models). In
recent years, Semantic Vector Spaces have also
seen applications in more traditional domains of
linguistics, like diachronic lexical studies (Sagi et
al., 2009; Cook and Stevenson, 2010; Rohrdantz

et al., 2011) , or the study of lexical variation
(Peirsman et al., 2010). In this paper, we want to
show how Semantic Vector Spaces can further aid
the linguistic analysis of lexical semantics, pro-
vided that they are made accessible to lexicolo-
gists and lexicographers through a visualization
of their output.

Although all applications mentioned above as-
sume that distributional models can capture word
meaning to some extent, most of them use SVSs
only in an indirect, black-box way, without an-
alyzing which semantic properties and relations
actually manifest themselves in the models. This
is mainly a consequence of the task-based evalu-
ation paradigm prevalent in Computational Lin-
guistics: the researchers address a specific task
for which there is a pre-defined gold standard;
they implement a model with some new features,
that usually stem from a fairly intuitive, common-
sense reasoning of why some feature might bene-
fit the task at hand; the new model is then tested
against the gold standard data and there is an eval-
uation in terms of precision, recall and F-score.
In rare cases, there is also an error analysis that
leads to hypotheses about semantic characteristics
that are not yet properly modeled. Yet hardly ever,
there is in-depth analysis of which semantics the
tested model actually captures. Even though task-
based evaluation and shared test data sets are vital
to the objective comparison of computational ap-
proaches, they are, in our opinion, not sufficient
to assess whether the phenomenon of lexical se-
mantics is modeled adequately from a linguistic
perspective. This lack of linguistic insight into
the functioning of SVSs is also bemoaned in the
community itself. For example, Baroni and Lenci
(2011) say that “To gain a real insight into the
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abilities of DSMs (Distributional Semantic Mod-
els, A/N) to address lexical semantics, existing
benchmarks must be complemented with a more
intrinsically oriented approach, to perform direct
tests on the specific aspects of lexical knowledge
captured by the models”. They go on to present
their own lexical database that is similar to Word-
Net, but includes some additional semantic rela-
tions. They propose researchers test their model
against the database to find out which of the en-
coded relations it can detect. However, such an
analysis still boils down to checking whether a
model can replicate pre-defined structuralist se-
mantic relations, which themselves represent a
quite impoverished take on lexical semantics, at
least from a linguistic perspective. In this pa-
per, we want to argue that a more linguistically
adequate investigation of how SVSs capture lex-
ical semantics, should take a step back from the
evalution-against-gold-standard paradigm and do
a direct and unbiased analysis of the output of
SVS models. Such an analysis should compare
the SVS way of structuring semantics to the rich
descriptive and theoretic models of lexical se-
mantics that have been developed in Linguistics
proper (see Geeraerts (2010b) for an overview of
different research traditions). Such an in-depth,
manual analyis has to be done by skilled lexicolo-
gists and lexicographers. But would linguists, that
are traditionally seen as not very computation-
ally oriented, be interested in doing what many
Computational Linguists consider to be tedious
manual analysis? The answer, we think, is yes.
The last decade has seen a clear empirical turn
in Linguistics that has led linguists to embrace
advanced statistical analyses of large amounts of
corpus data to substantiate their theoretical hy-
potheses (see e.g. Geeraerts (2010a) and other
contributions in Glynn and Fischer (2010) on re-
search in semantics). SVSs would be an ideal
addition to those linguists’ methodological reper-
toire. This creates the potential for a win-win sit-
uation: Computational linguists get an in-depth
evaluation of their models, while theoretical lin-
guists get a new tool for doing large scale empir-
ical analyses of word meaning. Of course, one
cannot just hand over a large matrix of word sim-
ilaties (the raw output of an SVS) and ask a lexi-
cologist what kind of semantics is “in there”. In-
stead, a linguist needs an intuitive interface to ex-
plore the semantic structure captured by an SVS.

In this paper, we aim to present exactly that: an in-
teractive visualization of a Semantic Vector Space
Model that allows a lexicologist or lexicographer
to inspect how the model structures the uses of
words.

2 Token versus Type level

SVSs can model lexical semantics on two levels:

1. the type level: aggregating over all occur-
rences of a word, giving a representation of
a word’s general semantics.

2. the token level: representing the semantics
of each individual occurrence of a word.

The type-level models are mostly used to retrieve
semantic relations between words, e.g. synonyms
in the task of thesaurus extraction. Token-level
models are typically used to distinguish between
the different meanings within the uses of one
word, notably in the task of Word Sense Disam-
biguation or Word Sense Induction. Lexicological
studies on the other hand, typically combine both
perspectives: their scope is often defined on the
type level as the different words of a lexical field
or the set of near-synonyms referring to the same
concept, but they then go on to do a fine-grained
analysis on the token level of the uses of these
words to find out how the semantic space is pre-
cisely structured. In our study, we will also take
a concept-centered perspective and use as a start-
ing point the 218 sets of Dutch near-synonymous
nouns that Ruette et al. (2012) generated with
their type-level SVS. For each synset, we then im-
plement our own token-level SVS to model the
individual occurrences of the nouns. The result-
ing token-by-token similarity matrix is then visu-
alized to show how the occurrences of the differ-
ent nouns are distributed over the semantic space
that is defined by the synset’s concept. Because
Dutch has two national varieties (Belgium and
the Netherlands) that show considerable lexical
variation, and because this is typically of inter-
est to lexicologists, we will also differentiate the
Netherlandic and Belgian tokens in our SVS mod-
els and their visualization.

The rest of this paper is structured as follows.
In the next section we present the corpus and
the near-synonym sets we used for our study.
Section 4 presents the token-level SVS imple-
mented for modeling the occurrences of the nouns
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in the synsets. In section 5 we discuss the vi-
sualization of the SVS’s token-by-token similar-
ity matrices with Multi Dimensional Scaling and
the Google Visualization API. Finally, section 6
wraps up with conclusions and prospects for fu-
ture research.

3 Dutch corpus and synsets

The corpus for our study consists of Dutch news-
paper materials from 1999 to 2005. For Nether-
landic Dutch, we used the 500M words Twente
Nieuws Corpus (Ordelman, 2002)1, and for Bel-
gian Dutch, the Leuven Nieuws Corpus (aka Me-
diargus corpus, 1.3 million words2). The corpora
were automatically lemmatized, part-of-speech
tagged and syntactically parsed with the Alpino
parser (van Noord, 2006).

Ruette et al. (2012) used the same corpora
for their semi-automatic generation of sets of
Dutch near-synonymous nouns. They used a so-
called dependency-based model (Padó and Lap-
ata, 2007), which is a type-level SVS that models
the semantics of a target word as the weighted co-
occurrence frequencies with context words that
apear in a set of pre-defined dependency relations
with the target (a.o. adjectives that modify the
target noun, and verbs that have the target noun
as their subject). Ruette et al. (2012) submitted
the output of their SVS to a clustering algorithm
known as Clustering by Committee (Pantel and
Lin, 2002). After some further manual cleaning,
this resulted in 218 synsets containing 476 nouns
in total. Table 1 gives some examples.

CONCEPT nouns in synset
INFRINGEMENT inbreuk, overtreding

GENOCIDE volkerenmoord, genocide
POLL peiling, opiniepeiling, rondvraag

MARIHUANA cannabis, marihuana
COUP staatsgreep, coup

MENINGITIS hersenvliesontsteking, meningitis
DEMONSTRATOR demonstrant, betoger

AIRPORT vliegveld, luchthaven
VICTORY zege, overwinning

HOMOSEXUAL homo, homoseksueel, homofiel
RELIGION religie, godsdienst

COMPUTER SCREEN computerschem, beeldscherm, monitor

Table 1: Dutch synsets (sample)

1Publication years 1999 up to 2002 of Algemeen Dag-
blad, NRC, Parool, Trouw and Volkskrant

2Publication years 1999 up to 2005 of De Morgen, De
Tijd, De Standaard, Het Laatste Nieuws, Het Nieuwsblad
and Het Belang van Limburg

4 Token-level SVS

Next, we wanted the model the individual oc-
currences of the nouns. The token-level SVS
we used is an adaptation the approach proposed
by Schütze (1998). He models the semantics
of a token as the frequency distribution over its
so-called second order co-occurrences. These
second-order co-occurrences are the type-level
context features of the (first-order) context words
co-occuring with the token. This way, a token’s
meaning is still modeled by the “context” it oc-
curs in, but this context is now modeled itself by
combining the type vectors of the words in the
context. This higher order modeling is necessary
to avoid data-sparseness: any token only occurs
with a handful of other words and a first-order co-
occurrence vector would thus be too sparse to do
any meaningful vector comparison. Note that this
approach first needs to construct a type-level SVS
for the first-order context words that can then be
used to create a second-order token-vector.

In our study, we therefore first constructed a
type-level SVS for the 573,127 words in our cor-
pus with a frequency higher than 2. Since the fo-
cus of this study is visualization rather than find-
ing optimal SVS parameter settings, we chose set-
tings that proved optimal in our previous studies
(Peirsman et al., 2008; Heylen et al., 2008; Peirs-
man et al., 2010). For the context features of this
SVS, we used a bag-of-words approach with a
window of 4 to the left and right around the tar-
gets. The context feature set was restricted to the
5430 words, that were the among the 7000 most
frequent words in the corpus, (minus a stoplist of
34 high-frequent function words) AND that oc-
curred at least 50 times in both the Netherlandic
and Belgian part of the corpus. The latter was
done to make sure that Netherlandic and Belgian
type vectors were not dissimilar just because of
topical bias from proper names, place names or
words relating to local events. Raw co-occurrence
frequencies were weighted with Pointwise Mutual
Information and negative PMI’s were set to zero.

In a second step, we took a random sample of
100 Netherlandic and a 100 Belgian newspaper
issues from the corpus and extracted all occur-
rences of each of the 476 nouns in the synsets
described above. For each occurrence, we built
a token-vector by averaging over the type-vectors
of the words in a window of 5 words to the left
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and right of the token. We experimented with two
averaging functions. In a first version, we fol-
lowed Schütze (1998) and just summed the type
vectors of a token’s context words, normalizing
by the number of context words for that token:

~ow
i =

∑n
j∈Cw

i
~cj

n

where ~ow
i is the token vector for the ith occur-

rence of noun w and Cw
i is the set of n type

vectors ~cj for the context words in the window
around that ith occurrence of noun w. How-
ever, this summation means that each first order
context word has an equal weight in determining
the token vector. Yet, not all first-order context
words are equally informative for the meaning of
a token. In a sentence like “While walking to
work, the teacher saw a dog barking and chasing
a cat”, bark and cat are much more indicative of
the meaning of dog than say teacher or work.
In a second, weighted version, we therefore in-
creased the contribution of these informative con-
text words by using the first-order context words’
PMI values with the noun in the synset. PMI can
be regarded as a measure for informativeness and
target-noun/context-word PMI-values were avail-
able anyway from our large type-level SVS. The
PMI of a noun w and a context word cj can now
be seen as a weight pmiwcj

. In constructing the to-
ken vector ~ow

i for the ith occurrence of noun w ,
we now multiply the type vector ~cj of each con-
text word with the PMI weight pmiwcj

, and then
normalize by the sum of the pmi-weights:

~ow
i =

∑n
j∈Cw

i
pmiwcj

∗ ~cj∑n
j pmiwcj

The token vectors of all nouns from the same
synset were then combined in a token by second-
order-context-feature matrix. Note that this ma-
trix has the same dimensionality as the underlying
type-level SVS (5430). By calculating the cosine
between all pairs of token-vectors in the matrix,
we get the final token-by-token similarity matrix
for each of the 218 synsets 3.

3string operations on corpus text files were done with
Python 2.7. All matrix calculations were done in Matlab
R2009a for Linux

5 Visualization

The token-by-token similarity matrices reflect
how the different synonyms carve up the “seman-
tic space” of the synset’s concept among them-
selves. However, this information is hard to grasp
from a large matrix of decimal figures. One pop-
ular way of visualizing a similarity matrix for
interpretative purposes is Multidimensional Scal-
ing (Cox and Cox, 2001). MDS tries to give an
optimal 2 or 3 dimensional representation of the
similarities (or distances) between objects in the
matrix. We applied Kruskal’s non-metric Multi-
dimensional Scaling to the all the token-by-token
similarity matrices using the isoMDS function in
the MASS package of R. Our visualisation soft-
ware package (see below) forced us to restrict our-
selves to a 2 dimensional MDS solution for now,
even tough stress levels were generally quite high
(0.25 to 0.45). Future implementation may use 3D
MDS solutions. Of course, other dimension re-
duction techniques than MDS exist: PCA is used
in Latent Semantic Analysis (Landauer and Du-
mais, 1997) and has been applied by Sagi et al.
(2009) for modeling token semantics. Alterna-
tively, Latent Dirichlect Allocation (LDA) is at
the heart of Topic Models (Griffiths et al., 2007)
and was adapted by Brody and Lapata (2009) for
modeling token semantics. However, these tech-
niques all aim at bringing out a latent structure
that abstracts away from the “raw” underlying
SVS similarities. Our aim, on the other hand,
is precisely to investigate how SVSs structure se-
mantics based on contextual distribution proper-
ties BEFORE additional latent structuring is ap-
plied. We therefore want a 2D representation of
the token similarity matrix that is as faithful as
possible and that is what MDS delivers 4.

In a next step we wanted to intergrate the 2
dimensional MDS plots with different types of
meta-data that might be of interest to the lexi-
cologist. Furthermore, we wanted the plots to
be interactive, so that a lexicologist can choose
which information to visualize in the plot. We
opted for the Motion Charts5 provided by Google

4Stress is a measure for that faithfulness. No such indi-
cation is directly available for LSA or LDA. However, we do
think LSA and LDA can be used to provide extra structure to
our visualizations, see section 6.

5To avoid dependence on commercial software, we also
made an implementation based on the plotting options of
R and the Python Image Library( https://perswww.
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Chart Tools6, which allows to plot objects with
2D co-ordinates as color-codable and re-sizeable
bubbles in an interactive chart. If a time-
variable is present, the charts can be made dy-
namic to show the changing position of the ob-
jects in the plot over time7. We used the R-
package googleVis (Gesmann and Castillo,
2011), an interface between R and the Google
Visualisation API, to convert our R datamatri-
ces into Google Motion Charts. The interac-
tive charts, both those based on the weighted
and unweighted token-level SVSs, can be ex-
plored on our website ( https://perswww.
kuleuven.be/˜u0038536/googleVis).

To illustrate the information that is avail-
able through this visualization, we discuss the
weighted chart for the concept COMPUTER

SCREEN (Figure 1 shows a screen cap, but we
strongly advise to look at the interactive version
on the website). In Dutch, this concept can be ref-
ered to with (at least) three near-synonyms, which
are color coded in the chart: beeldscherm (blue),
computerscherm (green) and monitor (yellow).
Each bubble in the chart is an occurrence (token)
of one these nouns. As Figure 2 shows, roling
over the bubbles makes the stretch of text visible
in which the noun occurs (These contexts are also
available in the lower right side bar). This usage-
in-context allows the lexicologist to interpret the
precise meaning of the occurrence of the noun.
The plot itself is a 2D representation of the seman-
tic distances between all tokens (as measured with
a token-level SVS) and reflects how the synonyms
are distributed over the “semantic space”. As can
be expected with synonyms, they partially popu-
late the same area of the space (the right hand side
of the plot). Hovering over the bubbles and look-
ing at the contexts, we can see that they indeed
all refer to the concept COMPUTER SCREEN (See
example contexts 1 to 3 in Table 2). However, we
also see that a considerable part on the left hand
side of the plot shows no overlap and is only popu-
lated by tokens of monitor. Looking more closely

kuleuven.be/˜u0038536/committees)
6(http://code.google.com/apis/chart/

interactive/docs/gallery/motionchart.
html)

7Since we worked with synchronic data, we did not
use this feature. However, Motion Charts have been used
by Hilpert (http://omnibus.uni-freiburg.de/
˜mh608/motion.html) to visualize language change in
MDS plots of hand coded diachronic linguistic data.

at these occurrences, we see that they are instan-
tiations of another meaning of monitor, viz. “su-
pervisor of youth leisure activities” (See example
context 4 in Table 2). Remember that our corpus
is stratified for Belgian and Netherlandic Dutch.
We can make this stratification visible by chang-
ing the color coding of the bubbles to COUNTRY

in the top right-hand drop-down menu. Figure 3
shows that the left-hand side, i.e. monitor-only
area of the plot, is also an all-Belgian area (hov-
ering over the BE value in the legend makes the
Belgian tokens in the plot flash). Changing the
color coding to WORDBYCOUNTRY makes this
even more clear. Indeed the youth leader mean-
ing of monitor is only familiar to speakers of Bel-
gian Dutch. Changing the color coding to the
variable NEWSPAPER shows that the youth leader
meaning is also typical for the popular, working
class newspapers Het Laatste Nieuws (LN) and
Het Nieuwsblad (NB) and is not prevelant in the
Belgian high-brow newspapers. In order to pro-
vide more structure to the plot, we also experi-
mented with including different K-means cluster-
ing solutions (from 2 up to 6 clusters) as color-
codable features, but these seem not very infor-
mative yet (but see section 6).

nr example context
1 De analisten houden met één oog de computerschermen

in de gaten
The analists keep one eye on the computer screen

2 Met een digitale camera... kan je je eigen foto op het
beeldscherm krijgen
With a digital camera, you can get your own photo on the
computer screen

3 Met een paar aanpassingen wordt het beeld op de moni-
toren nog completer
With a few adjustments, the image on the screen becomes
even more complete

4 Voor augustus zijn de speelpleinen nog op zoek naar mon-
itoren
For August, the playgrounds are still looking for supervi-
sors

Table 2: Contexts (shown in chart by mouse roll-over)

On the whole, the token-level SVS succeeds
fairly well in giving an interpretable semantic
structure to the tokens and the chart visualizes
this. However, SVSs are fully automatic ways of
modeling semantics and, not unexpectedly, some
tokens are out of place. For example, in the lower
left corner of the yellow cluster with monitor to-
kens referring to youth leader, there is also one
blue Netherlandic token of beeldscherm. Thanks
to the visualisation, such outliers can easily be
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detected by the lexicologist who can then report
them to the computational linguist. The latter can
then try to come up with a model that gives a bet-
ter fit.

Finally, let us briefly look at the chart of another
concept, viz. COLLISION with its near-synonyms
aanrijding and botsing. Here, we expect the lit-
eral collissions (between cars), for which both
nouns can be used, to stand out form the figura-
tive ones (differences in opinion between people),
for which only botsing is apropriate in both vari-
eties of Dutch. Figure 4 indeed shows that the
right side of the chart is almost exclusively popu-
lated by botsing tokens. Looking at their contexts
reveals that they indeed overwhelmingly instan-
tiate the metaphorical meaning og collision. Yet
also here, there are some “lost” aanrijding tokens
with a literal meaning and the visualization shows
that the current SVS implementation is not yet a
fully adequate model for capturing the words’ se-
mantics.

6 General discussion

Although Vector Spaces have become the main-
stay of modeling lexical semantics in current sta-
tistical NLP, they are mostly used in a black box
way, and how exactly they capture word meaning
is not very clear. By visualizing their output, we
hope to have at least partially cracked open this
black box. Our aim is not just to make SVS out-
put easier to analyze for computer linguists. We
also want to make SVSs accessible for lexicolo-
gists and lexicographers with an interest in quanti-
tative, empirical data analysis. Such co-operation
brings mutual benefits: Computer linguists get ac-
cess to expert evaluation of their models. Lexicol-
ogists and lexicographers can use SVSs to iden-
tify preliminary semantic structure based on large
quantities of corpus data, instead of heaving to
sort through long lists of unstructured examples
of a word’s usage (the classical concordances). To
our knowledge, this paper is one of the first at-
tempts to visualize Semantic Vector Spaces and
make them accessible to a non-technical audi-
ence.

Of course, this is still largely work in progress
and a number of improvements and extensions are
still possible. First of all, the call-outs for the
bubbles in the Google Motion Charts were not
designed to contain large stretches of text. Cur-
rent corpus contexts are therefore to short to ana-

lyze the precise meaning of the tokens. One op-
tion would be to have pop-up windows with larger
contexts appear by clicking on the call-outs.

Secondly, we didn’t use the motion feature that
gave the charts its name. However, if we have
diachronic data, we could e.g. track the centroid
of a word’s tokens in the semantic space through
time and at the same time show the dispersion of
tokens around that centroid8.

Thirdly, in the current implementation, one im-
portant aspect of the black-box quality of SVSs
is not dealt with: it’s not clear which context
features cause tokens to be similar in the SVS
output, and, consequently, the interpreation of
the distances in the MDS plot remains quite ob-
scure. One option would be to use the cluster
solutions, that are already available as color cod-
able variables, and indicate the highest scoring
context features that the tokens in each cluster
have in common. Another option for bringing out
sense-distinguishing context words was proposed
by Rohrdantz et al. (2011) who use Latent Dirich-
let Allocation to structure tokens. The loadings
on these latent topics could also be color-coded in
the chart.

Fourthly, we already indicated that two dimen-
sional MDS solutions have quite high stress val-
ues and a three dimensional solution would be
better to represent the token-by-token similari-
ties. This would require the 3D Charts, which are
not currently offered by the Google Chart Tools.
However both R and Matlab do have interactive
3D plotting functionality.

Finally, and most importantly, the plots cur-
rently do not allow any input from the user. If
we want the plots to be the starting point of an in-
depth semantic analysis, the lexicologist should
be able to annotate the occurrences with variables
of their own. For example, they might want to
code whether the occurrence refers to a laptop
screen, a desktop screen or cell phone screen, to
find out whether their is a finer-grained division of
labor among the synonyms. Additionally, an eval-
uation of the SVS’s performance might include
moving wrongly positioned tokens in the plot and
thus re-group tokens, based on the lexicologist’s
insights. Tracking these corrective movements
might then be valuable input for the computer lin-
guists to improve their models. Of course, this

8This is basically the approach of Sagi et al. (2009) but
after LSA and without interactive visualization
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goes well beyond our rather opportunistic use of
the Google Charts Tool.
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Figure 1: Screencap of Motion Chart for COMPUTER SCREEN

Figure 2: token of beeldscherm with context
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Figure 3: COMPUTER SCREEN tokens stratified by country

Figure 4: Screencap of Motion Chart for COLLISION
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