
Proceedings of the 9th International Workshop on Finite State Methods and Natural Language Processing, pages 93–97,
Blois (France), July 12-15, 2011. c©2011 Association for Computational Linguistics

Incremental Construction of Millstream Configurations Using Graph
Transformation

Suna Bensch
Department of Computing Science

Ume̊a University (Sweden)
suna@cs.umu.se

Frank Drewes
Department of Computing Science

Ume̊a University (Sweden)
drewes@cs.umu.se

Helmut Jürgensen
Department of Computer Science

The University of Western Ontario (Canada)
hjj@csd.uwo.ca

Brink van der Merwe
Department of Computing Science

Stellenbosch University (South Africa)
abvdm@cs.sun.ac.za

Abstract

Millstream systems are a non-hierarchical
model of natural language. We describe an
incremental method for building Millstream
configurations while reading a sentence. This
method is based on a lexicon associating
words and graph transformation rules.

1 Introduction

Language processing is an incremental proce-
dure. This is supported by various psycholinguistic
and cognitive neuroscience-based studies (see e.g.
(Taraban and McClelland, 1988)). We do not post-
pone the analysis of an utterance or sentence until it
is complete, but rather start to process immediately
hearing the first words (or word parts). We present
ongoing work regarding the incremental syntactic
and semantic analysis of natural language sentences.
We base this work on Millstream systems (Bensch
and Drewes, 2010), (Bensch et al., 2010), a generic
mathematical framework for the description of nat-
ural language. These systems describe linguistic as-
pects such as syntax and semantics in parallel and
provide the possibility to formalise the relation be-
tween them by interfaces. Millstream systems are
motivated by contemporary linguistic theories (see
e.g. (Jackendoff, 2002)). A Millstream system con-
sists of a finite number ofmoduleseach of which de-
scribes a linguistic aspect and aninterfacewhich de-
scribes the dependencies among these aspects. The
interface establishes links between the trees given
by the modules, thus turning unrelated trees into a
meaningful whole called aconfiguration. For sim-

plicity, we just consider Millstream systems con-
taining only two modules, for syntax and seman-
tics. With this simplifying assumption, a configu-
ration of the Millstream system consists of two trees
with links between them and represents the analy-
sis of the sentence that is the yield of the syntax
tree. An obvious question is how such a config-
uration can be constructed from a given sentence.
Such a procedure would be a step towards auto-
matic language understanding based on Millstream
systems. We propose to use graph transformations
for that purpose. By expressing language process-
ing in terms of graph transformation we can employ
a wealth of theoretical results relating graph trans-
formations and monadic second-order logic. We
mimic the incremental way in which humans pro-
cess language, thus constructing a Millstream con-
figuration by a step-by-step procedure while reading
the words of a sentence from left to right. The idea
is that the overall structure of a sentence is built in-
crementally, word-by-word. With each word, one
or more lexicon entries are associated. These lexi-
con entries are graph transformation rules the pur-
pose of which is to construct an appropriate config-
uration. For a sentence likeMary likes Peter, for
example, we first apply a lexicon entry correspond-
ing to Mary, which results in a partial configuration
that represents the syntactic, semantic and interface
structure ofMary. We continue by applying the lex-
icon entry for loves, which yields a partial config-
uration representingMary loves. Finally, a lexicon
entry representingPeter is applied, resulting in the
overall Millstream configuration for the entire sen-
tence.

93

2 Millstream Configurations as Graphs

A configuration in a Millstream system is a tuple of
ranked and ordered trees (in our restricted case, a
pair consisting of the syntactic and the semantic rep-
resentation of a sentence) with links between them.
The (labelled) links indicate relations between the
nodes. A typical link establishes a relation between
two nodes belonging to different trees. In this paper,
we want to represent configurations in a way which
is suitable for graph transformation. For this, we first
define the general type of graphs considered. For
modelling convenience, we work with hypergraphs
in which the hyperedges (but not the nodes) are la-
belled. For simplicity, we call hypergraphs graphs
and their hyperedges edges. Edge labels are taken
from a doubly ranked alphabetΣ, meaning thatΣ is
a finite set of symbols in which every symbola has
sourceandtarget ranksranksrc(a), ranktar (a) ∈ N
determining the number of sources and targets, re-
spectively, that an edge label’sa is required to have.

Definition 1 Let Σ be a doubly ranked alphabet.
A Σ-graph is a quadruple(V, E, src, tar , lab) con-
sisting of finite setsV and E of nodesand edges,
sourceand target functionssrc, tar : E → V ∗, and
an edge labelling functionlab : E → Σ such that
ranksrc(lab(e)) = |src(e)| and ranktar (lab(e)) =
|tar(e)| for all e ∈ E. The components of a graphG
will also be referred to asVG, EG, srcG, tarG, labG.
ByGΣ we denote the class of allΣ-graphs.

A Millstream alphabetis a doubly ranked alpha-
bet Σ in which the target rank of each symbol is
either 1 or 0. Symbols of target rank1 are tree
symbols; edges labelled with these symbols aretree
edges. Symbols of target rank0 are link symbols;
edges labelled with link symbols arelinks. A tree
or link symbola may be denoted bya(k) to indicate
thatranksrc(a) = k. In the following, the termtree
refers to an acyclic graph in which all edges are tree
edges, each node is the target of exactly one edge,
and there is exactly one node (the root) that is not
a source of any edge. AΣ-configurationis a graph
G ∈ GΣ such that the deletion of all links fromG
results in a disjoint union of trees.

Figure 1 depicts a tree, built using the tree
symbolsS(2), VP(2), NP(1), V(1),Mary(0), loves(0),
Peter (0). To save space we use the drawing style
shown in Figure 2 instead. The links pointing to tree

Figure 1: A tree in its (hyper)graph representation

symbols point to the target nodes of the tree edge
representing that symbol.

Figure 2: A more condensed representation of the
tree in Figure 1

A k-ary link establishes a relation betweenk
nodes by arranging them in a tuple. In this paper
there is only one link symbol, this link symbol is
of source rank2, and connects nodes across the two
trees every configuration consists of. These links are
drawn as unlabelled dashed lines. With these con-
ventions, a complete configuration looks as shown
in Figure 3. This configuration consists of two trees,
representing the (extremely simplified) syntactic and
semantic structures of the sentenceMary loves Pe-
ter. The symbols in the semantic tree are interpreted
as functions from a many-sorted algebra. The sorts
of the algebra are the semantic domains of interest,
and the evaluation of a (sub-) tree yields an element
of one of these sorts. In the semantic tree shown in
the figure, we assume thatMary andPeter are (in-
terpreted as) functions without arguments (i.e., con-
stants) returning elements of the sortname. The

94

Figure 3: A sample configuration that relates a syn-
tactic and a semantic tree

function refers to takes a name as its argument and
returns, say, an element of the domainperson. Fi-
nally, loving is a function that takes two persons
as arguments and returns an element of the domain
state, namely the state that the first argument (com-
monly called theagent) loves the second (thepa-
tient). The links establish correspondences between
nodes in the two trees showing that, e.g., the verb
of the sentence corresponds to the functionloving,
whose two arguments correspond to the two noun
phrases of the sentence. In realistic settings, one
would of course use more elaborate trees. However,
since we primarily want to convey the idea behind
our proposed approach, we use this simple type of
configuration as our running example.

3 Incremental Construction of
Configurations

In a Millstream system, we are givenk modulesfor
each of thek trees in a configuration. These modules
are tree grammars or any other kind of device gen-
erating trees. Furthermore, we are given a logical
interfacethat describes which configurations (con-
sisting ofk trees generated by the modules and a set
of links between them) are considered to be correct.
In the current paper, we take a more pragmatic point
of view and investigate how configurations can be
built up “from scratch” along a sentence using an
approach based on implementing a lexicon by graph
transformation.

We use graph transformation in the sense of the
so-called double pushout (DPO) approach (Ehrig et
al., 2010) (with injective morphisms). A ruler is a
spanr = (L ⊇ K ⊆ R) of graphsL, K, R. The
rule applies to a graphG if

1. L is isomorphic to a subgraph ofG (for sim-
plicity, let us assume that the isomorphism is
the identity) and

2. no edge inG is attached to a node inVL \ VK .

In this case, applyingr means to remove all nodes
and edges fromG that are inL but not inK, and
to add all nodes and edges that are inR but not in
K. Thus, the so-called glueing graphK is not af-
fected by the rule, but rather used to “glue” the new
nodes and edges in the right-hand sideR to the ex-
isting graph. The second condition for applicability
ensures well-formedness, as it makes sure that the
deletion of nodes does not result in so-called dan-
gling edges, i.e., edges with an undefined attach-
ment. If the result of the application ofr to G is
G′, this may be denoted byG⇒

r
G′. Moreover, ifR

is a set of graph transformation rules, andG⇒
r

G′

for somer ∈ R, we denote this fact byG⇒
R

G′.
Compared to general DPO rules, our lexicon rules

are quite restricted as they never delete anything. In
other words, we always haveL = K, and hence the
rules only glue new subgraphs to the existing (par-
tial) configuration. We call rules of this kindincre-
mentaland denote the set of all incremental rules
over a Millstream alphabetΣ byRΣ. In addition to
the conditions 1 and 2 above, we restrict the appli-
cability of rules further, by introducing a third con-
dition:

3. tarG(e) 6= tarR(e′) for all tree edgese ∈ EG

ande′ ∈ ER \ EK .

This condition merely avoids useless non-
determinism leading into dead ends.

Derivations start with a common start graph.
Since our example is extremely simple, it suffices to
choose the graph that consists of the edge labelled
with the root symbolS(2) of the syntactic tree (to-
gether with the three attached nodes). The fact that
all our rules satisfyL = K means that we can depict
a rule as just one graph, namelyR, where the nodes
and edges inL are drawn in blue. Graph transforma-
tion rules of this type are called lexicon entries. Fig-
ures 4, 5 and 6 show sample lexicon entries for the
wordsMary, loves, andPeter, respectively. Starting
with the start graph (the blue subgraph in Figure 4)
and applying the three rules in the order in which the

95

words appear in the sentence takes us to the config-
uration in Figure 3. Note that the complete lexicon
should contain another entry similar to the one in
Figure 4, but withMary andMary being replaced
by Peter andPeter, respectively. Similarly, there
should be a variant of Figure 6 for the name Mary.
This would make it possible to read the sentencePe-
ter loves Mary. The reader should also note that,
when reading the third word of the sentence,Peter,
the corresponding variant of Figure 4 cannot be ap-
plied, because the first child ofS is already present.

Figure 4: Lexicon entry forMary

Figure 5: Lexicon entry forloves

Figure 6: Lexicon entry forPeter

Definition 2 A reader is a quadruple R =
(Σ, W, Λ, S) consisting of a finite setW of words
(the input words), a Millstream alphabetΣ, a map-
pingΛ called thelexicon, and a start graphS ∈ GΣ.

The lexicon assigns to everyw ∈ W a finite set
Λ(w) ⊆ RΣ of rules, thelexicon entries.

A readingof an input sentencew1 · · ·wn by R is
a derivation

S ⇒
Λ(w1)

G1 ⇒
Λ(w1)

· · · ⇒
Λ(wn)

Gn

such thatGn is a Σ-configuration. The set of all
Σ-configurations that result from readings ofw =
w1 · · ·wn is denoted byR(w), and the language
(of Σ-configurations) generated byR is L(R) =⋃

w∈W ∗ R(w).

Future work will have to develop methods for
proving the correctness of readers with respect to a
given Millstream system. This notion of correctness
is given in the next definition.

Definition 3 LetMS be a Millstream system having
a distinguished syntactic moduleM (i.e., every con-
figuration ofMS contains a syntactic tree.) The set
of all configurations ofMS is denotedL(MS). A
readerR = (Σ, W, Λ, S) is correct with respect to
MS if L(R) = L(MS) and, for everyw ∈ W ∗ and
everyG ∈ R(w), the yield of the syntactic tree ofG
is equal tow.

4 Future Work

More research will be necessary to find out whether
the type of lexicon entries proposed is most appro-
priate. Bigger lexica to treat a greater variety and
complexity of sentences need to be considered, and
an implementation is required. An extension to ren-
der the readers of Section 3 more powerful might
introduce nonterminal (hyper-)edges to act as indi-
cators of “construction sites”. These nonterminals
would be consumed when a lexicon entry is applied.
An important question for future research is how
to build lexica in a systematic way, possibly distin-
guishing lexica with different strategies, to accom-
modate different behaviours of readers. Future re-
search will also have to study efficient algorithms
for constructing lexica and readings. In particular, it
should be possible to “learn”. For large lexica, ef-
ficient pattern matching algorithms are needed and
optimisation algorithms would need to be examined.

96

References

Suna Bensch and Frank Drewes. 2010. Millstream sys-
tems – a formal model for linking language modules
by interfaces. In F. Drewes and M. Kuhlmann, editors,
Proc. ACL 2010 Workshop on Appl. of Tree Automata
in Natural Lang. Proc. (ATANLP 2010), 28–36. The
Association for Computer Linguistics.

Suna Bensch, Frank Drewes, and Henrik Björklund.
2010. Algorithmic properties of Millstream systems.
In Y. Gao, H. Lu, S. Seki, and S. Yu, editors,Proc. 14th
Intl. Conf. on Developments in Language Theory (DLT
2010), volume 6224 ofLNCS, pages 54–65. Springer.

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and
Gabriele Taentzer. 2006.Fundamentals of Algebraic
Graph Transformation. Monogr. in Theor. Comp. Sci.
An EATCS Series. Springer.

Ray Jackendoff. 2002. Foundations of Language: Brain,
Meaning, Grammar, Evolution. Oxford University
Press.

Roman Taraban and James McClelland. 1988. Con-
stituent attachment and thematic role assignment in
sentence processing: Influences of content-based ex-
pectations. Journal of Memory and Language,
27:597–632.

97

