
Proceedings of the 9th International Workshop on Finite State Methods and Natural Language Processing, pages 88–92,
Blois (France), July 12-15, 2011. c©2011 Association for Computational Linguistics

FTrace: a Tool for Finite-State Morphology

James Kilbury
Heinrich-Heine-Universität

Düsseldorf
kilbury@phil.uni-
duesseldorf.de

Katina Bontcheva
Heinrich-Heine-Universität

Düsseldorf
bontcheva@phil.uni-

duesseldorf.de

Younes Samih
Heinrich-Heine-Universität

Düsseldorf
samih@phil.uni-
duesseldorf.de

Abstract

In this paper we describe our work in progress
on FTrace, a tool for finite-state morphology
that provides a tracing facility for developers
of applications for synchronic and diachronic
language descriptions. We discuss not only
the current tool for downward tracing, but also
the challenges that we face in the further de-
velopment of FTrace, especially in upward
tracing. Finally, we present an example, draw
some conclusions, and outline our future
work. Keywords: FTrace, tracing, finite-state
morphology, xfst, foma, SWI Prolog, Prolog
network-interpreter, diachronic language de-
scrip-tion.

1 Introduction

In this paper we describe FTrace, a tool for finite-
state morphology that provides a tracing facility
for developers of applications for synchronic and
diachronic language descriptions. It constitutes
work in progress, and we therefore will discuss not
only the current tool for downward tracing, but
also the challenges that we face in the further de-
velopment of FTrace, especially in upward tracing.

In Section 2 we explain our motivation for cre-
ating FTrace, in Section 3 we describe the overall
architecture of the system and outline briefly the
language-description module and the visualization
environment. In Section 4 we describe in detail the
module for compiling and exporting the individual
networks for replacement rules into Prolog nota-
tion before we describe the Prolog network-
interpreter and the specific problems we face in
downward and upward tracing in Section 5. Fi-

nally, in Section 6 we illustrate the tool with an
example, and in Section 7 we draw some conclu-
sions and outline our future work.

2 Motivation

In the past decade software systems like xfst and
foma (cf. Beesley and Karttunen, 2003; Hulden,
2009, respectively) based on finite-state technol-
ogy have greatly facilitated the use of replacement
rules (Karttunen, 1995) in computational descrip-
tions of natural languages. The vast majority of
such applications have been purely synchronic and
often employ replacement rules to capture mor-
phophonemic alternations within lexical para-
digms.

The replacement format, however, makes the
rules equally attractive as a framework in which
the phonology of a language can be modelled dia-
chronically. The formal process is essentially the
same, whether we synchronically derive surface
forms from underlying lexical representations with
morphophonemic rules, or diachronically derive
later representations from corresponding earlier
forms. In both cases we have a binary relation con-
sisting of pairs <w0, wn> of an upper-level string w0
and a lower-level string wn defined in the descrip-
tion by a sequence of replacement rules R1, … , Rn
and implicitly by the corresponding derivation w0,
w1, … , wn , where each string wj for j ≥ 1 is pro-
duced from string wj-1 by the application of Rj.

So much for the elementary formal language
theory. The whole point of systems like xfst is that
the entire sequence R1, … , Rn of replacement rules
is composed and compiled into a single network
encoding the binary relation. So we don’t see any
of the intermediate strings wj of the derivation, and

88

that is precisely what makes finite-state technology
so efficient.

Once an application has been correctly devel-
oped, we normally have no need or desire to see
derivations, but the situation is different if we have
difficulty formulating replacement rules in a way
that gives us the results we want. This is especially
the case for students learning to use xfst or foma to
encode linguistic descriptions. Then it is very help-
ful to be able to follow entire derivations in terms
of the individual rule applications. This is just what
a tracing facility would provide, but neither xfst
nor foma has one. Vi-xfst (cf. Oflazer and Yilmaz,
2004) has a very useful dependency-tracking tool
that we can use to visualize relationships between
rules, but it includes no tracing facility that meets
our requirements.

A first glance this appears to be a job that the
developers of xfst or foma should do in order to
produce the best tracing tool, but there is a short
cut that requires no changes in the source code or
involvement of the original developers. A feature
of both systems is that they allow individual net-
works to be exported in Prolog notation. If each
rule Rj is exported as a corresponding network Nj,
then it is easy for a user to write his own Prolog
program to interpret the individual networks as
governed by a “play list” of the names of rule net-
works in their order of application. Such Prolog
programming is described, e.g., in (Gazdar and
Mellish, 1989, p. 37 ff.) and serves as the basis for
our Prolog code which we specify below in 5.2 for
the benefit of readers unfamiliar with (Gazdar and
Mellish, 1989).

In our own work we have adopted the latter
strategy.

3 Architecture of the Tool

There are four modules in FTrace:

1. the language-description module,
2. the module for export of xfst/foma networks

in Prolog notation,
3. the Prolog interpreter,
4. the visualisation environment (SWI Prolog).

3.1 The Language-Description Module

The language-description module can consist of a
single xfst script that contains the (continuation)
lexicons and the replacement rules as well as vari-

able declarations that define natural classes of
segments and clusters of morphological tags.
However, it can be a full-fledged lexicon that con-
tains an xfst script with the variable declarations,
the replacement rules, etc., a lexc master lexicon,
and several (lexicographic) text files that contain
the stems belonging to different inflectional
classes.

It is very important to mention that the xfst
script must comply with a number of special con-
ventions.

Since we are not interested in the individual
networks of tag clusters or natural classes of seg-
ments but want to export only the individual net-
works of the replacement rules, we need to
introduce different naming conventions. Thus, the
names of tag clusters or natural classes of segments
begin with a capital letter (e.g., VowFrt, Vowfrt,
TAGS), while the names of the rules begin with a
lower-case letter (e.g., r2, jerFrtVoc).

The second convention refers to the play list
that is needed by the Prolog network-interpreter
(cf. above, Section 2, Motivation). The play list
can be a part of the language-description module
and have the form of a regular expression that de-
notes a cascade of replacement rules and has xfst
syntax. It is possible, however, for the play list to
be omitted from the language-description module.
In this case the developer writes the play list as an
xfst comment. In both cases the name of the regu-
lar expression must begin with a lower-case letter
and the line must contain an xfst comment ‘# …
QQ’, which marks the play list for Perl (cf. Section
4). We have chosen this particular string because it
is highly unlikely to be a substring of any reserved
or natural-language word.

3.2 The XFST/Foma-Specific Module(s)

Of the four modules only the export module is spe-
cific to either xfst or foma. This is necessary since
there are some important differences between xfst
and foma:

− an xfst script cannot be started from outside

the application environment but can make
calls to the system;

− a foma script can be started from outside the
application environment but cannot make
calls to the system (last tested version:
0.9.14alpha).

89

In Section 4 we explain in detail an export mod-
ule for xfst.

3.3 The Visualisation Environment

Since the Prolog network-interpreter will be de-
scribed in detail in Section 5, we still need to say a
few words about the visualisation environment.
Our interpreter is compatible with most distribu-
tions of Prolog. However, we have chosen SWI
Prolog for the following reasons:

− SWI Prolog is widely used for research and in

instruction, it offers a comprehensive envi-
ronment and is free;

− It is very easy to type UTF8 characters in the
console and to display them. This makes SWI
Prolog an ideal environment for tracing with
language descriptions that use various writing
systems such as, e.g., Cyrillic and Arabic.

4 The Module for Compiling and Export-
ing the Prolog Networks

The module consists of several xfst and Perl files.
The task is to print the Prolog networks for each
replacement rule and to export the rules to a sepa-
rate Prolog UTF8 file that will be used by the net-
work interpreter. In addition, the play list that is
specified in the language description has to be ex-
tracted and added to that file. All tasks in this
module run automatically; the user just needs to
provide the name of the language-description file.

The main element of this module is an xfst
script ftrace.xfst. First it starts an interactive Perl
script GetName.perl.pl1 that asks the user to type
in the name of the language description file and
saves it to a text file2 LDSrc.txt. In the next steps
the language description file is compiled, and the
names of the defined variables are printed and
saved to a file defined.txt.

The second Perl script PrintNwks.perl.pl selec-
tively extracts from defined.txt only the names of
variables that (according to the convention) begin
with a lower-case letter, and dynamically creates

1 Since both Perl and Prolog files have extension ‘pl’, the Perl
scripts additionally have ‘perl’ in the filename before the ‘pl’
extension.
2 All files that are created by the export module are saved to a
temp directory and are deleted with the next execution of
ftrace.xfst

an xfst script print-prolog-source.xfst that prints
the corresponding Prolog networks. However, the
names that are assigned to the networks by xfst
have nothing to do with the names given to the
rules by the linguist. The original names of the
rules are restored automatically before the net-
works are saved to a Prolog file <filenameoflang-
descr>-Nwks.pl.

The third Perl script PrintPlList.perl.pl extracts
the play list and rewrites it in Prolog syntax. Then
the play list is appended to the file (<file-
nameoflangdescr>-Nwks.pl) that contains the
Prolog networks.

Finally, the Perl script reminds the user that his
files are saved to a temporary directory and will be
deleted with the next execution of FTrace. The
name and the location of the file that contains the
Prolog networks and the play list are also dis-
played.

5 The Prolog Network-Interpreter

The complexity of the tracing interpreter depends
chiefly on the sublanguage of xfst or foma we wish
to cover for tracing. For the time being we have
excluded special features such as flag diacritics
and merge in xfst (cf. Beesley and Karttunen,
2003: 339 ff., 401 ff.) and assume simply (1) vari-
able definitions to specify natural segment classes,
(2) elementary regular expressions to define the
distribution of segments in the upper-level lan-
guage (i.e. “(mor)-phonotactics” of the proto-
language), and (3) replacement rules. Crucially, we
want our tracing facility to provide not only apply-
down traces of derivations from upper to lower
forms, but also of apply-up derivations from lower
to upper.

5.1 Special Problems

Special problems of programming the trace inter-
preter are posed by some reserved symbols. In par-
ticular, ‘?’ for “any symbol” and ‘0’ or ‘[]’ and
‘[..]’ for deletion and epenthesis rules, respectively,
require attention. ‘?’ is familiar enough and need
not be discussed here.

The null-symbols ‘0’ or ‘[]’ and ‘[..]’, however,
can lead to difficulties with termination. For
downward tracing there is no problem with dele-
tion rules using ‘0’ or ‘[]’, whether they are condi-
tioned by an environment or not, and tracing
apply-down application of epenthesis rules with an

90

environment is likewise unproblematic. An uncon-
ditioned epenthesis rule would be disastrous for a
description and for tracing, but we assume one
normally would not want to write such a rule in the
first place for a natural language. This is all fairly
obvious.

The situation is less transparent, however, when
it comes to apply-up tracing. Again, there is no
problem with deletion or epenthesis rules with en-
vironments, and – symmetrically to the apply-
down application of deletion rules – even apply-up
application of unconditioned epenthesis rules could
in principle be handled, but we don’t want such
rules, anyway.

The real problem arises with unconditioned de-
letion rules. We have just seen that apply-down
application is unproblematic, but their apply-up
application is equivalent to apply-down application
of unconditioned epenthesis, which we have ex-
cluded. So we appear to be faced with a dilemma:
For many descriptions it appears attractive to have
unconditioned rules to delete, e.g., symbols for
morpheme boundaries, and in any case, we would
not want to disallow their use by linguists; on the
other hand, apply-up tracing seems inevitably to
lead to an infinite or at least unacceptably large
number of possible antecedent strings from which
a given string could arise through uncondtioned
deletion of a segment.

In order to deal with this we have developed a
strategy based on the notion of distributional filter-
ing. Consider the above-mentioned example of a
rule ‘'+' -> 0’ to delete all instances of a mor-
pheme boundary ‘+’ after it has served its function,
e.g. in conditioning other morphophonemic rules.
If our description consisted merely of a sequence
of replacement rules R1, … , Rn including the de-
letion rule, then not only apply-up tracing with
single rules, but also apply-up applications with the
overall network in general would lead to an explo-
sion in the computation of upper forms from which
a lower form could arise. The problem dissolves,
however, if we compose a network N0 constraining
the distribution of symbols in the ultimate upper
language with the total network R arising from the
composition of all replacement rules; if N0 cor-
rectly specifies where ‘+’ can occur in the first
place, then it can only be deleted from these posi-
tions, and the problem is solved for apply up in a
single, composite network.

We now need to carry over the filtering idea to
upward tracing. The upper language defined by the
network of a single unconditioned deletion rule
must be restricted in order to ensure that the set of
possible antecedent strings is highly constrained.
Consider the sequence of networks N0, N1, …, Nn
where each Ni except N0 arises from Ri. For each
Nj stemming from an unconditioned deletion rule,
we can define Nj' as the composition N0 .o. N1 .o.
… Nj-1. Then in upward tracing of the application
of Nj to produce string w, not [Nj .o. w].u , but ra-
ther [Nj'.l .o. Nj .o. w].u is computed to get the set
of possible antecedent strings. This gives us the
desired filtering effect and solves the problem for
tracing.

5.2 Downward tracing

The implementation of downward tracing is sim-
ple. Given replacement rules defined like these

define r1 [k -> c || _ i] ;
define r2 [i -> 0 || _ .#.] ;

xfst or foma constructs the network encoded in
Prolog, which is exported to a file (cf. the example
in Section 6 below).

Following the techniques of Gazdar and Mel-
lish mentioned above, a Prolog network-interpreter
for downward tracing can then be implemented
easily. Due to limitations of space we omit the list-
ings here. The interpreter has been tested exten-
sively.

6 An Example

The following example already given above is very
simple and transforms a fictitious proto-language
PL into a daughter language DL with two ordered
sound changes: palatalization of the velar k to c
before the front vowel i, followed by the deletion
of i in final position. Here, again, is the code of the
language description:

LgDL.txt
define r1 [k -> c || _ i] ;
define r2 [i -> 0 || _ .#.] ;
define lgdl [r1 .o. r2] ; QQ

After the compilation of the language descrip-
tion, the Prolog networks of replacement rules r1
and r2 and the play list are exported to LgDL-
Nwks.pl. Here is part of the content of this file:

91

:- encoding(utf8).
network(r1).
arc(r1, 0, 0, "?").
arc(r1, 0, 0, "c").
arc(r1, 0, 0, "i").
arc(r1, 0, 1, "k").
arc(r1, 0, 2, "k":"c").
arc(r1, 1, 0, "?").
arc(r1, 1, 0, "c").
arc(r1, 1, 1, "k").
arc(r1, 1, 2, "k":"c").
arc(r1, 2, 0, "i").
final(r1, 0).
final(r1, 1).
network(r2).
arc(r2, 0, 0, "?").
arc(r2, 0, 1, "i").
arc(r2, 0, 2, "i":"0").
arc(r2, 1, 0, "?").
arc(r2, 1, 1, "i").
arc(r2, 1, 2, "i":"0").
final(r2, 0).
final(r2, 2).
rule_list(lgdl, [r1, r2]).

The Prolog downward tracing interpreter ap-
plydn.pl is compiled in the SWI Prolog console,
and then LgDL-Nwks.pl is consulted. Now the de-
veloper can test pairs of words from the proto-
language and the daughter language:

7 Conclusion

We believe that FTrace can be useful and help de-
velopers of synchronic and diachronic language
descriptions to debug their applications. In teach-
ing historical linguistics it makes it possible to
show the historical development of the phonologi-
cal system of a language in detail and to test the
proposed rules for derivations of individual forms.
The same tool can equally well be used to produce

explicit synchronic derivations from underlying
forms to surface forms.

References

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite

State Morphology. CSLI, Stanford
Gerald Gazdar and Chris Mellish. 1989. Natural Lan-

guage Processing in Prolog. Addison-Wesley, Wok-
ingham et al.

Mans Hulden. 2009. Foma: a finite-state compiler and
library. In: Proceedings of the EACL 2009 Demon-
strations Session, pp. 29-32.

Lauri Karttunen. 1995. The replace operator. In: 33rd
ACL Proceedings, 16-23.

Kemal Oflazer and Yasin Yılmaz. 2004. Vi-xfst: a vis-
ual regular expression development environment for
Xerox finite state tool. In: SIGPHON 2004: Proceed-
ings of the Seventh Meeting, Barcelona, Spain.

92

