
Proceedings of the 9th International Workshop on Finite State Methods and Natural Language Processing, pages 65–73,
Blois (France), July 12-15, 2011. c©2011 Association for Computational Linguistics

Open Source WFST tools for LVCSR cascade development

Josef R. Novak, Nobuaki Minematsu, Keikichi Hirose
Graduate School of Information

Science and Technology
The University of Tokyo

{novakj,mine,hirose}@gavo.t.u-tokyo.ac.jp

Abstract

This paper introduces the Transducersaurus
toolkit which provides a set of classes for gen-
erating each of the fundamental components
of a typical WFST-based ASR cascade, in-
cluding HMM, Context-dependency, Lexicon,
and Grammar transducers, as well as an op-
tional silence class WFST. The toolkit fur-
ther implements a small scripting language
in order to facilitate the construction of cas-
cades via a variety of popular combination
and optimization methods and provides inte-
grated support for the T3 and Juicer WFST
decoders, and both Sphinx and HTK format
acoustic models. New results for two standard
WSJ tasks are also provided, and the toolkit is
used to compare a variety of construction and
optimization algorithms. These results illus-
trate the flexibility of the toolkit as well as the
tradeoffs of various build algorithms.

1 Introduction

In recent years the Weighted Finite-State Transducer
(WFST) paradigm has gained considerable popular-
ity as a platform for Automatic Speech Recogni-
tion (ASR). The WFST approach provides an ele-
gant, unified mathematical framework that can be
utilized to train, generate, combine and optimize
the many heterogenous knowledge sources that typ-
ically make up a modern Large Vocabulary Continu-
ous Speech Recognition (LVCSR) system. This has
lead to the development of several excellent general
purpose software libraries devoted to the construc-
tion and manipulation of WFSTs, including the pop-
ular open source OpenFst C++ toolkit. Much re-

search has also been conducted on the theoretical
construction, integration and optimization of WFST
models for ASR (Mohri, 1997; Mohri, 1999; Mohri,
2002; Allauzen, 2004; Mohri, 2008). Nevertheless
to our knowledge at present there is no open source
toolkit devoted to the construction of ASR-specific
WFST models.

This lack of available tools represents an obstacle
to the wider dissemination and adoption of WFST-
based methods. In response to this, the current work
introduces the Transducersaurus WFST toolkit (No-
vak, 2011), which aims to provide a unified, flexi-
ble and transparent approach to the construction of
integrated WFST-based ASR cascades, while incor-
porating recent research results on this important
topic. It includes a set of classes for constructing
component models as well as a simple Domain Spe-
cific Language (DSL) suitable for specifying cas-
cade integration and optimization commands. It pro-
vides integrated support for HTK (Young, 2006) and
Sphinx (Walker, 2004) acoustic models and cascade
construction support for both the T3 (Dixon, 20007)
and Juicer (Moore, 2005) WFST decoders. Where
in past complicated development was required, with
this toolkit input knowledge sources and a single
command are sufficient to build a high-performance
system. In addition to introducing the toolkit, this
work contributes new experimental results for two
LVCSR tasks from the Wall Street Journal (Paul,
1992) (WSJ) corpus, and provides discussion of al-
ternative cascade build chains.

The remainder of the paper is structured as fol-
lows. Section 2 describes the main component mod-
els of a typical WFST-based ASR cascade. Section 3

65

Figure 1: Detail of a bi-gram model for a simple two word LM.

describes the cascade integration tool and its capa-
bilities. Section 4 describes new experimental re-
sults that explore the flexibility of the Transducer-
saurus toolkit. Section 5 provides additional anal-
ysis and explores the practical implications of vari-
ous construction techniques. Finally, Section 6 con-
cludes the paper.

2 Integrated LVCSR Cascades

The construction of WFST-based cascades for
LVCSR tasks typically involves two major steps.
The first step is to construct WFST-based represen-
tations of each of the component knowledge sources,
and the second step is to integrate these components
into either a single static cascade or, in the case of
on-the-fly composition a smaller subset of integrated
models. The most common component knowledge
sources involved in the first step include a gram-
mar G, in the form of a statistical language model, a
pronunciation lexicon L, that maps monophone se-
quences to words, and a context-dependency trans-
ducer C,that maps context-dependent triphone se-
quences to corresponding monophone sequences. In
addition to these three fundamental components, an
HMM-level model H, that maps HMM state se-
quences to context-dependent triphone sequences is
frequently utilized, and class-based silence models
are also popular. The Transducersaurus toolkit pro-
vides integrated support for each of the H, C, L,
G, and T component transducers, and these compo-
nents are described in detail in the following subsec-
tions.

2.1 Grammar acceptor

The grammar component G, encodes information
about word sequences, and typically represents a
standard ARPA format statistical N -gram model.
Several different approaches to transforming an N -
gram model into an equivalent Weighted Finite-State
Acceptor (WFSA) have been proposed in the liter-
ature (Allauzen, 2003). The simplest approach uti-
lizes a single historyless back-off state, and uses nor-
mal ε-transitions to encode back-off arcs and asso-
ciated back-off weights. This is the approach uti-
lized currently in the Transducersaurus toolkit, and
a small example of such a model is depicted in Fig-
ure 1.

The use of normal ε-transitions however, can lead
to situations where back-offN -gram sequences may
be less costly than the equivalent N -gram sequence.
Strictly speaking this is incorrect, and (Allauzen,
2003) discusses two strategies for dealing with this
problem. The first involves the use of special “fail-
ure” or φ-transitions for the back-off arcs. These
φ-transitions encode the idea that the back-off arc
should only be utilized in the event that an equiv-
alent normal N -gram arc does not exist. The sec-
ond strategy involves mutating the baseline ε-back-
off configuration, adding additional back-off states
and manipulating the back-off arcs so as to elimi-
nate instances of path ambiguity. Transducersaurus
utilizes the ε-transition approach mainly for the sake
of simplicity, but support for the alternative strate-
gies is planned for future work. The toolkit provides
a python program, arpa2fst.py which may be used

66

Figure 2: Example of a three-word lexicon transducer, L.

to transform a standard ARPA format LM into an
equivalent WFSA. The tool also generates symbol
tables as needed.

2.2 Lexicon transducer

The lexicon transducer L, maps monophone se-
quences or pronunciations to words. An example
of a trivial lexicon transducer is described in Fig-
ure 2. In order to ensure that the lexicon can de-
scribe not just isolated words, but also word se-
quences, it is necessary to perform the closure of
the resulting WFST prior to downstream composi-
tion. Furthermore, in order to handle the occurrence
of homophones in the lexicon, it is necessary to aug-
ment the construction with auxiliary symbols as de-
scribed in (Allauzen, 2004). If this step is not taken,
the lexicon as well as any downstream cascades
may become non-determinizable. The toolkit pro-
vides a lexicon generation tool in the form of lexi-
con2fst.py, and this tool supports closure, and auxil-
iary symbol generation natively. lexicon2fst.py pro-
vides support for generating HTK as well as Sphinx
format lexicons, the latter of which typically utilizes
positional triphones. The tool further generates nec-
essary symbol tables, a list of monophones, and a
list of any auxiliary symbols that are added during
construction.

2.3 Context-dependency transducer

The Context-dependency WFST C, maps context-
dependent triphone sequences to corresponding

Figure 3: An N -word silence class model, T.

Figure 4: Example of a deterministic three-state HMM
model for the triphone a-b+c.

context-independent monophone sequences. There
are several methods of building this component as
well, which are described and illustrated in detail
in (Allauzen, 2004). The Transducersaurus toolkit
implements a deterministic construction algorithm
which results in a C transducer where the output
symbols are delayed. There are two separate tools
for building the C transducer, cd2wfstHTK.py and
cd2wfstSphinx.py and as the names indicate, the
first tool provides native support for the HTK for-
mat acoustic models, and the second provides native
support for Sphinx format models. The C tools take
as input a list of monophones, an optional list of
auxiliary symbols, and an optional acoustic-model
specific tied-list. The output consists of the text-
format WFST and associated symbol tables. Both
tools also provide support for an additional auxil-
iary WFST which can be used to replace auxiliary
symbols or translate logical triphones to physical
triphones found in the input acoustic model. This
is important in situations where the user wishes to
perform further optimizations on a CLG or HCLG
cascade.

2.4 Silence class transducer

As with most of the cascade components, there
are several viable approaches to handling silence in
a WFST-based LVCSR cascade. The Transducer-

67

saurus toolkit supports a special silence class trans-
ducer that can be utilized to transform a grammar by
augmenting it with silence or filler arcs. Other al-
ternatives include adding additional silence-trailing
entries to the lexicon or utilizing forced-alignment to
insert silences into existing speech transcripts. In the
latter case the aligned transcripts can then be used
directly to build an N -gram model with silence to-
kens. In the toolkit, the silclass2fst.py program can
be used to generate a silence class transducer from a
list of words. An example of the silence class trans-
ducer is depicted in Figure 3. Unlike the lexicon-
based approach, the T approach permits long si-
lences, and unlike the N -gram based approach, it
encodes the idea that silences may follow any word
without a context-sensitive penalty or boost. The
trade-off between the silence loop and return ε-arc
may be specified by the user but the toolkit sup-
plies default values that were estimated from several
hundred hours of spontaneous English conversation
transcripts.

2.5 HMM level

The HMM-level transducer H, maps HMM state
sequences from an acoustic model to context-
dependent triphones. The toolkit currently focuses
on a 3-state HMM configuration, although there are
plans to extend this in future to more flexible config-
urations. An example of a deterministic, three-state
H WFST for a single triphone, a-b+c is depicted in
Figure 4. In practice the full H transducer describes
the closure of the union of all triphones and mono-
phones in the acoustic model. The structure is simi-
lar to the lexicon transducer, however the phonemes
are replaced with HMM states, the words are repre-
sented by monophone and triphone labels, and the
length of each entry is fixed to the number of HMM
states used to train the models. In most acoustic
models such as those produced by HTK and Sphinx,
state-tying is used to share HMM states for under-
represented models. With the above approach this
can lead to non-determinism due to some triphones
sharing the same underlying state sequences. This
problem is handled by Transducersaurus by adding
a second level of auxiliary symbols to the H trans-
ducer in order to guarantee determinizability. At
present the H construction tool, hmm2wfst.py pro-
vides native support for Sphinx format mdef files,

as well as support for the native AT&T text format.
Native support for the HTK hmmdefs file format is
also underway. Finally, the T3 decoder provides on-
line simulation of the HMM state self-loops, which
eliminates the need to explicitly generate these dur-
ing construction. Self-loop arc generation is how-
ever supported as an option.

3 Cascade integration with
Transducersaurus

In most cases it is necessary to first combine the
individual models described in the previous sec-
tions before they can be utilized for speech recog-
nition. Much work has been done in the past in re-
gards to theoretically optimal cascade optimization
and compression methods, for example (Allauzen,
2004) describes several effective composition and
optimization schemes and the impact that these have
on WACC and decoding speed. Nevertheless the
behavior of different construction and optimization
schemes can vary considerably based on the size
and complexity of the input models. The proposed
toolkit provides a cascade integration tool, trans-
ducersaurus.py the aim of which is to facilitate
learning and speed up the potentially tedious and
time-consuming process of cascade generation. This
tool calls the individual model construction classes
described in Section 2 and automatically performs
all required generation, compilation, integration and
optimization algorithms. The tool further supports
a wide selection of common features of WFST cas-
cade generation including semiring selection, auxil-
iary symbol support, and fundamental WFST opera-
tions such as composition, determinization, and
minimization via the OpenFst library. The tool
further provides integrated support for both HTK
and Sphinx acoustic models. The flagship contri-
bution of this toolkit however, is a simple WFST-
oriented DSL which aims to streamline the specifi-
cation of build algorithms and optimization proce-
dures. This DSL is described in detail in the follow-
ing section.

3.1 Cascade construction DSL

The DSL supported by the build tool allows the user
to specify a build chain using a subset of the stan-
dard FST-based combination and optimization algo-

68

Table 1: A trivial cascade build command demonstrating several of the options available.

$./transducersaurus.py --tiedlist tiedlist --hmmdefs hmmdefs
--grammar my.lm --lexicon my.lex --amtype htk --convert tj
--command "min(det(H*det((C*det(L)).(G*T))))"

rithms, as well as shorthand for the component mod-
els described earlier. The user need only specify a
simple chain for example,
--command "min(det(C*det(L*(G*T))))",
--command "(C*det(L)).(G*T)"

and the build tool will automatically tokenize and
parse the command into the appropriate series of
OpenFst commands, generating intermediate results
as necessary along the way. At present the DSL is
quite limited, but supports themin, det, ◦ (specified
“∗” on the command line) and “.” operations as well
as the construction of the H, C, L, G, and T compo-
nent transducers. Here det refers to determinization,
min to minimization, “∗” to standard composition,
and “.” to Static Look-Ahead (SLA) composition,
which was released in a recent version of OpenFst,
and which implements the Look-Ahead composition
algorithm proposed in (Allauzen, 2009). Auxiliary
symbol replacement is handled automatically in a
manner dependent on the set of build commands is-
sued by the user.

The advantage of the DSL approach is that it per-
mits very simple specification of the build chain,
which in turn encourages experimentation and learn-
ing, and lends itself easily to further extension
through the future addition of other standard oper-
ations. Thus the user only needs to prepare the com-
ponent knowledge sources, and specify a build algo-
rithm. For example the command in Table 1 will au-
tomatically construct an integrated recognition net-
work utilizing a silence class model, SLA composi-
tion and an HTK-format acoustic model, and output
an optimized HCLGT cascade suitable for use in
both Juicer and T3.

4 Experiments

The proposed toolkit can be used to generate recog-
nition networks for a variety of different tasks and
inputs. In order to showcase this flexibility, several
different experiments were carried out making use
of different build chains and two test sets from the

WSJ corpus. A selection of recent results are re-
ported for HTK and Sphinx acoustic models and bot
the Juicer and T3 decoder. These results illustrate
the correctness of the toolkit in reproducing previ-
ous baselines, and also confirm separate results en-
couraging the SLA-based build chains.

4.1 Experimental setup

All experiments for this work were performed on an
8 core Intel Xeon based machine running at 3GHz
with a 6MB cache and 64GBs of main system mem-
ory running the RHEL OS. As with our previous
results from (Novak, 2010), the experiments cov-
ered two popular tasks from the WSJ corpus. The
first task, nov92-5k, focuses on the November 1992
ARPA WSJ test set which comprises 330 sentences,
and was evaluated using the WSJ 5k non-verbalized
vocabulary and the standard WSJ 5k closed bigram
language model. The second task, si dt s2-20k, fo-
cuses on a subset of the WSJ1 Hub2 test set which
comprises 207 sentences. The si dt s2-20k task,
which is somewhat more difficult, was evaluated us-
ing a 64k vocabulary an a large 3-gram LM trained
on 222M words from the CSR LM-1 corpus (Dod-
dington, 1992). In order to help ensure the repeata-
bility of our experiments, open source Sphinx and
HTK acoustic models described in (Vertanen, 2006)
were used throughout, and auxiliary parameter val-
ues for the T3 and Juicer decoders were specified as
in (Novak, 2010). Unless otherwise specified the log
semiring was used for all constructions.

4.2 Nov92-5k LVCSR Experiments

The first set of experiments focused on the stan-
dard WSJ Nov92-5k test set, the default closed bi-
gram language model and associated pronunciation
lexicon. Open source Sphinx format acoustic mod-
els were used. The toolkit was utilized to generate
six different cascades, which shared the same fun-
damental knowledge sources but differed in terms of
the optimization procedures applied, and whether an

69

Table 2: WSJ-based WFST cascade characteristics for Sphinx acoustic models. Here min refers to minimization,
det refers to determinization, the “◦” operator refers to standard composition, and the “.” operator refers to static
look-ahead composition.

Cascade constructions Arcs States Size
(C ◦ det(L)).G 1,828,710 620,711 36 MB
det((C ◦ det(L)).G) 3,588,184 726,782 64 MB
min(det((C ◦ det(L)).G)) 3,260,139 654,008 58 MB
det(H ◦ ((C ◦ det(L)).G)) 4,226,328 2,729,896 96 MB
det(H ◦ det((C ◦ det(L)).G)) 6,981,130 3,528,195 147 MB
min(det(H ◦ det((C ◦ det(L)).G))) 6,318,302 3,107,984 132 MB

H-level transducer was utilized in the cascade. Re-
cent work such as (Allauzen, 2010) as well as our
own recent experiments have shown that SLA com-
position, which omits the det(LG) operation, per-
forms equally well, thus SLA composition was uti-
lized in all six cascade constructions.

The command used to generate these cascades
was specified as
$./transducersaurus.py --tiedlist mdef
--amtype sphinx --grammar bcb05cnp-2g.arpa
--lexicon bcb05cnp.dic --convert t
--base auto --prefix bcb05s
--command "(C*det(L)).G"

and the value of the --command parameter was
simply modified to generate each of the six differ-
ent variations. The properties of each of the re-
sulting cascades are described in detail in Table 2.
The variation in terms of the number of arcs, states
and total size clearly indicates the relative effects
of applying different optimization operations to the
construction process. The simplest construction,
(C ◦ det(L)).G results in the smallest cascade in
this case. Subsequent application of determiniza-
tion increases the initial size of the cascade, while
miniminization again reduces the overall size. This
pattern is repeated with the addition of the HMM-
level WFST. The set of Sphinx format cascades gen-
erated with the transducersaurus.py tool were sub-
sequently evaluated inside of the T3 decoder and the
results of these evaluations are described in Figure 5.

Although small in this simple task, the effect
of optimization techniques can nonetheless still be
clearly seen in the difference between the (C ◦
det(L)).G construction and the determinized and
minimized variants. In general the impact of these
optimizations is increased for larger and more com-

plicated models. Nevertheless the gains are not
achieved without a cost. In particular each addi-
tional call to the determinization and minimization
algorithms consumes significant additional comput-
ing resources and time. These requirements grow
rapidly as the size and complexity of the input mod-
els increases. Thus it is pragmatic to strike a bal-
ance between development time, resource require-
ments and achievable RTF versus WACC. In order
to help illustrate this trade-off we also looked at the
memory consumption versus time characteristics of
the det(LG) determinization operation, the standard
C ◦ (LG) composition, and the SLA composition,
CL.G. The results for the bcb05 cascade used to
evaluate the Nov92-5k test set are depicted in Fig-
ure 6, and unequivocally show that the determiniza-
tion operation is by far the most costly, but also in-
dicate the advantages of SLA composition over the
standard variant.

4.3 si dt s2-20k LVCSR Experiments

The second set of experiments involved the si dt s2
test set, and a much larger 3-gram language model
based on the CSR corpus. These experiments were
carried out to show that the toolkit is a viable choice
not just for small models, but can be used in a
straightforward manner to also build very large, ef-
ficient cascades. This experiment also illustrates
the ability of the toolkit to generate both HTK, and
Sphinx based recognition networks and to construct
working cascades for both Juicer and the T3 de-
coder. In this case experiments focused on a sin-
gle construction scheme; the simple yet effective
(C ◦ det(L)).G and the commands utilized to build
the cascades are described in Table 4 and informa-

70

!"#

!$#

%"#

%$#

"# "&'# "&(# "&)# "&*# "&$# "&+#

!
"#
$%
&
''
(#
)'
*%
+,

-%

./)01234/%5)'6"#%

27(8/$%9:;3<=%7)>')$/>%?"#%@"ABCD%EF%2/>6%9/6%

,-./0⚪,-.//1⚪,-./233&433#

567/,-.//1⚪,-./233&433#

/1⚪,-./233&4#

,-./0⚪//1⚪,-./233&433#

,-.//1⚪,-./233&43#

Figure 5: Cascade build comparison for the Nov92-5k task using the T3 and Sphinx format acoustic models.

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

!" #" $!" $#" %!" %#"

!
"#

$%
&'
($
)*
+#

,-
$)

'.!
/0
'

12#"'.*"($)3*0'

!"#$%&'($)*+#,-$)'.!/0'4*5'12#"'.*"($)3*0'

()(!#"*+,-./0"

()(!#1)23"-4⚪./0"
()(!#15671)23"-4.8/0"

Figure 6: Memory consumption versus time comparison
of the det(LG) operation and SLA versus standard com-
position for the bcb05 CLG cascade.

tion regarding arc and state counts as well as overall
size is described in Table 3 while RTF versus WACC
results for the three tests are illustrated in Figure 7.

5 Discussion

The results from the two experiments provide new
empirical evidence supporting previous research re-
sults in this area. Results from Subsection 4.2 show
that the toolkit can be utilized to quickly and sim-
ply develop a variety of different LVCSR cascades
and that build results accurately and reliably re-

Table 3: CSR-based WFST cascade characteristics for
HTK and Sphinx models. Both cascades employed a
(C ◦ det(L)).(G ◦ T) construction scheme.

Cascade Arcs States Size
CSR-64k-HTK 146.4M 92.4M 3.3GB
CSR-64k-Sphinx 143.8M 88.8M 3.2GB

flect previously reported findings. We note that the
HCLG builds converge more slowly, but achieve
the same best WACC at approximately 2x real-time.
The SLA composition algorithm is an improve-
ment over standard composition (Allauzen, 2010),
but the most substantial gains from the alternative
(C ◦ det(L)).G build chain result from the ability
to avoid the otherwise costly det(LG) determiniza-
tion operation in a simple CLG construction. In the
experiments described in Subsection 4.2, using SLA
composition provided roughly a 50% memory sav-
ings, and an average overall time savings of nearly
80%. The cross-comparison results described in
Subsection 4.3 replicate previous results from (No-
vak, 2010), this time utilizing the SLA build. No-
tably, in this case the SLA build produces signifi-
cantly smaller cascades and furthermore the relative
sizes of the Sphinx versus the HTK format models is
reversed. The latter result is likely a consequence of
the positional triphones utilized by the Sphinx mod-

71

Table 4: Cascade build commands for the si dt s2-20k LVCSR experiments.
$./transducersaurus.py --tiedlist mdef --amtype sphinx --grammar
lm_csr_64k_nvp_3gram.arpa --base auto --lexicon lm_csr_64k_nvp.dic
--prefix bcb05s --convert t --command "(C*det(L)).G"

$./transducersaurus.py --tiedlist tiedlist --hmmdefs hmmdefs
--amtype htk --grammar lm_csr_64k_nvp_3gram.arpa --base auto
--lexicon lm_csr_64k_nvp_3gp-htk.dic --prefix csr64kh
--convert t --command "(C*det(L)).G"

els, which permit a smaller degree of sharing, thus
resulting in a larger increase in size following deter-
minization in the C ◦ det(L ◦ G) construction. The
small performance variation among the AM types
and T3 versus Juicer again suggest that there is not
much technical motivation to overtly favor any par-
ticular combination. Rather the availability of re-
sources and existing expertise should guide devel-
opment choices.

Finally, the T3 decoder also supports GPU-based
computation of acoustic likelihood scores, and these
results have been reported in several previous works.
We note however, that application of GPU-based
acoustic scoring, when available tends to provide
the strongest single speedup, and that use of the
more computationally intensive logsum operation
versus the standard logmax also tends to boost max-
imum accuracy. This implies that SLA composition,
combined with GPU-based acoustic scoring and a
comparatively simple (C ◦ det(L)).G build chain
provides highly competitive results. This strikes a
strong balance between RTF, WACC, memory and
storage requirements and overall build time. Further
savings in terms of memory requirements, storage
and build time can be gained from performing the
lookahead composition on-the-fly at decoding time.

6 Conclusion and Future Work

In this work we have introduced Transducersaurus,
a new open source software toolkit for building
and manipulating WFST-based ASR cascades. The
toolkit provides integrated support for the T3 and
Juicer WFST decoders and both HTK and Sphinx
acoustic models, and supports construction of the
H, C, L, G, and T component WFSTs. We showed
the effectiveness of the toolkit on a variety of differ-
ent tasks, looking at both construction variants on a
simple set of inputs, and performing a decoder and

acoustic model cross comparison on a much larger
task. Furthermore we have provided a detailed ex-
planation of the SLA build process as it is supported
by the toolkit along with its merits. The ASR ap-
plication development process is often iterative, and
these results reinforce the idea that by utilizing a
simplified build chain and the SLA composition ap-
proach, overall efficiency can be greatly improved
at little or no cost to either the RTF or WACC of a
particular recognition network.

In future we plan to further expand the range of
available operations, and expand the current lim-
ited DSL build syntax, provide integrated support
for out-of-vocabulary words, and introduce parallel
support for the AT&T fsmtools. Experiments look-
ing at a much wider variety of languages and model
inputs currently in the planning phase. Although the
toolkit is still in the early stage of development we
hope that it will facilitate learning as well as more
efficient work in this area, and promote further dis-
cussion.

At present the Transducersaurus toolkit can be
downloaded freely from the location listed in (No-
vak, 2011), and is available under the terms of the
liberal BSD license.

References

Mehryrar Mohri 1997. Finite-State Transducers in Lan-
guage and Speech Processing, in Computational Lin-
guistics, Vol. 23, Issue 2.

Mehryar Mohri and Michael Riley. 1999. Network op-
timizations for large-vocabulary speech recognition,
Speech Communication, Vol. 28, Issue 1.

Mehryar Mohri, Fernando Pereira and Michael Riley.
2002. Weighted finite-state transducers in speech
recognition, Computer Speech and Language, Vol. 16,
Issue 1.

Cyril Allauzen, Mehryar Mohri, Michael Riley and Brian

72

!"#

$"#

%"#

""#

&"#

'"#

("#

)#)*+#)*!#)*$#)*%#)*"#)*&#)*'#

!
"#
$%
&
''
(#
)'
*%
+,

-%

./)01234/%5)'6"#%

'7#89:173;$6;7<%=6)>'%?"":1&@/)$%ABC/#34/D67%
./)01234/%5)'6"#%E7F%!"#$%&''(#)'*%

,-./01#234#56⚬70859::*5;⚬3:#

36-<07#234#56⚬70859::*5;⚬3:#

36-<07#=>?.@A##56⚬70859::*5;⚬3:#

Figure 7: Cross comparison for the si dt s2-20k task using the T3 and Juicer decoders, Sphinx and HTK format
acoustic models on the 3-gram CSR LM-1 language model.

Roark. 2004. A Generalized Construction of In-
tegrated Speech Recognition Transducers, in Proc.
ICASSP, pp. 761-764.

Mehryar Mohri, Fernando Pereira and Michael Riley.
2008. Speech recognition with weighted finite-state
transducers, Springer Handbook of Speech Process-
ing, pp. 1-31.

Josef Novak. 2011.
code.google.com/p/transducersaurus/

Steve Young, Gunnar Evermann, Dan Kershaw, Gareth
Moore, Julian Odell, Dave Ollason, Valtcho Valtchev
and Phil Woodland. 2006. The HTK Book (for HTK
Version 3.2),” Cambridge University Engineering De-
partment.

Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj,
Rita Singh, Evandro Gouvea, Peter Wolf and Joe
Woelfel. 2004. Sphinx-4: A flexible open source
framework for speech recognition, Sun Microsystems
Technical Report, TR-2004-139.

Paul Dixon, Diamantino Caseiro, Tasuka Oonishi and
Sadaoki Furui. 2007. The Titech Large Vocabulary
WFST Speech Recognition System, in Proc. ASRU, pp.
1301-1304.

Darren Moore, John Dines, Mathew Magimai Doss,
Jithendra Vepa, Octavian Cheng and Thomas Hain.
2005. Juicer: A Weighted Finite State Transducer
Speech Decoder, in Proc. Interspeech, pp. 241-244.

Douglas Paul and James Baker. 1992. The Design for
the Wall Street Journal-based CSR Corpus, in Proc.
ICSLP 92, pp. 357-362.

Cyril Allauzen, Mehryar Mohri and Brian Roark. 2003.
Generalized Algorithms for Constructing Language
Models, in Proc. ACL, pp.40-47.

Josef Novak, Paul Dixon and Sadaoki Furui. 2010. An
Empirical Comparison of the T3, Juicer, HDecode
and Sphinx3 Decoders, in Proc. InterSpeech 2010, pp.
1890-1893.

Cyril Allauzen, Michael Riley and Johan Schalkwyk.
2009. A Generalized Composition Algorithm for
Weighted Finite-State Transducers, InterSpeech 2009,
pp. 1203-1206.

George Doddington. 1992. CSR Corpus Development,
DARPA SLS Workshop,” pp. 363-366.

Keith Vertanen. 2006. Baseline WSJ Acoustic Models
for HTK and Sphinx: Training Recipes and Recogni-
tion Experiments, Cavendish Laboratory, University of
Cambridge.

Cyril Allauzen and Michael Riley. 2010. OpenFst:
A General and Efficient Weighted Finite-State Trans-
ducer Library, tutorial, SLT.

73

