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Abstract 

 

Co-training, as a semi-supervised learning me-
thod, has been recently applied to semantic role 
labeling to reduce the need for costly annotated 
data using unannotated data. A main concern in 
co-training is how to split the problem into 
multiple views to derive learning features, so 
that they can effectively train each other. We 
investigate various feature splits based on two 
SRL views, constituency and dependency, with 
different variations of the algorithm. Balancing 
the feature split in terms of the performance of 
the underlying classifiers showed to be useful. 
Also, co-training with a common training set 
performed better than when separate training 
sets are used for co-trained classifiers. 

1 Introduction 

Semantic role labeling (SRL) parses a natural 
language sentence into its event structure. This 
information has been shown useful for several 
NLP tasks such as information extraction, ques-
tion answering, summarization, and machine 
translation (Surdeanu et al., 2003; Gimenez and 
Marquez, 2008). 

After its introduction by Gildea and Jurafsky 
(2002), a considerable body of NLP research has 
been devoted to SRL. CoNLL 2004 and 2005 
(Carreras and Marquez, 2004; 2005) followed 
that seminal work by using similar input re-
sources mainly built upon constituent-based syn-
tax and achieved state-of-the-art results (Koomen 
et al., 2005). Subsequent CoNLL shared tasks 
(Surdeanu et al., 2008) put forth the use of anoth-
er framework based on dependency syntax. This 
framework also led to well-performed systems 
(Johansson and Nugues, 2008). 

Almost all of the SRL research has been based 
on supervised machine learning methods exploit-
ing manually annotated corpora like FrameNet 
(Baker et al., 1998) and PropBank (Palmer et al., 
2005). FrameNet annotates some example sen-
tences for each semantic frame, which questions 
its representativeness of the language, necessary 
for statistical learning. Propbank, on the other 
hand, annotates all the sentences from WSJ cor-
pus and remedies that problem to some extent, 
but unlike FrameNet, its coverage is limited to the 
newswire text of WSJ. 

This domain dependence affects the perfor-
mance of the systems using PropBank on any dif-
ferent domain of text (Carreras and Marquez, 
2005). Considering the cost and difficulty of 
creating such resources with all of these short-
comings, it seems infeasible to build a compre-
hensive hand-crafted corpus of natural language 
for training robust SRL systems. 

Such issues in statistical learning have moti-
vated researchers to devise semi-supervised learn-
ing methods. These methods aim at utilizing a 
large amount of unannotated data along with 
small amount of annotated data. The existence of 
raw natural text in huge amounts is a promising 
point of using such methods for SRL. 

Co-training is a semi-supervised algorithm in 
which two or more classifiers iteratively provide 
each other with the training examples by labeling 
unannotated data. Each classifier is based on the 
learning features derived from conditionally in-
dependent and redundant views of the underlying 
problem. These two assumptions are stated as the 
requirements of the algorithm in its original work 
by Blum and Mitchell (1998).  

Constituency and dependency provide attrac-
tive views of SRL problem to be exploited in a 
co-training setup. The major motivation is the 
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promising results of their use in SRL, which satis-
fies the first assumption. There is a set of rules to 
convert constituency to dependency (Johansson 
and Nugues, 2007), which may question the 
second assumption. However, these rules are one-
way, and moreover, Abney (2002) argues that this 
assumption can be loosened.  

While several parameters are involved in co-
training of SRL systems, the most important one 
is the split of the feature views. This work inves-
tigates the effects of feature split by comparing 
the co-training progress when using various 
splits. It also examines several variations of the 
algorithm. The algorithm is applied to the SRL 
problem when only a small amount of labeled 
data is available. 

2 Related Work  

Co-training was originally proposed by Blum and 
Mitchell (1998) for the problem of web page 
classification. They used hyper links pointing to 
the sample web page as one view and the content 
of the web page as another view to derive learn-
ing features. They could reduce the error rate of 
the base supervised classifier by co-training with 
unlabeled web pages. 

Motivated by these results, the algorithm was 
applied to other NLP domains, ranging from bi-
nary classification problems like text classifica-
tion (Nigam and Ghani, 2000) and reference reso-
lution (Ng and Cardie, 2003) to more complex 
problems like parsing (Sarkar, 2001) and POS 
tagging (Clark et al., 2003). Some compared co-
training with other semi-supervised algorithms 
like self-training and some studied variations of 
the algorithm for adapting it to the underlying 
problem. Whereas some of them reported suc-
cessful results (Sarkar, 2001), some others pre-
ferred other algorithms over it (Ng and Cardie, 
2003) or suggested further needs for studying the 
algorithm due to the large scale of the target prob-
lem (Pierce and Cardie, 2001). 

Besides few other approaches to semi-
supervised learning of SRL (Furstenau and Lapa-
ta, 2009), two works investigated the co-training 
algorithm for SRL.  

He and Gildea (2006) addressed the problem of 
unseen FrameNet frames by using co-training 
(and self-training). They used syntactic and lexi-
cal views of the problem as two co-training 
views. They used only tree path as the syntactic 
and head word form as lexical features. To reduce 
the complexity of the task, they generalized ar-
gument roles to 15 thematic roles. The big per-

formance gap between the two classifiers, unba-
lanced class distribution over examples, and the 
complexity of the task were argued as the reasons 
of the poor results. 

Lee et al. (2007) investigated the utility of un-
labeled data in amplifying the performance of 
SRL system. They trained Maximum Entropy 
classifiers on PropBank data as the base classifi-
ers and used co-training to utilize a huge amount 
of unlabeled data (7 times more than labeled 
seed). The feature split they employed were the 
same as previous work, except they used more 
features for each view and also some features 
common between the views.  

Unlike He and Gildea (2006) that used separate 
training sets for each classifier, they used a com-
mon training set. They only addressed core argu-
ments to manage the complexity. Again, the per-
formance gap between two views were high (~19 
F1 points), but it is not clear why they reported 
the co-training results with the performance of all 
features instead of that of each view. They attri-
buted the little gain to the low performance of the 
base classifiers and inadequacy of unlabeled data. 

3 The SRL System 

In order to be able to employ constituency and 
dependency features for two co-training views, 
we developed a two-platform SRL system: con-
stituent-based and dependency-based. 

One important issue in co-training of these two 
different platforms is that sample granularity in 
constituent-based system is a Penn tree constitu-
ent and in the dependency-based system is a de-
pendency relation or a word token. Converting 
these to each other is necessary for co-training. 
Previous work (Hacioglu, 2004) shows that this 
conversion is not straightforward and negatively 
affect the performance.  

To treat this issue we base our sample genera-
tion on constituency and then derive one depen-
dency-based sample from every constituent-based 
sample. This sample is a word token (called ar-
gument word here), selected from among all word 
tokens inside the constituent using the heuristic 
used for preparing CoNLL 2008 shared task data 
(Surdeanu et al. 2008). This one-to-one relation is 
recorded in the system and helps avoid the con-
version flaw. The system is described here. 

Architecture: A three-stage pipeline architec-
ture is used, where in the first stage less-probable 
argument candidates in the constituency parse 
tree are pruned using Xue and Palmer (2004) al-
gorithm. In the next stage, final arguments are 
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identified and assigned a semantic role jointly to 
decrease the complexity of task. In the final stage, 
a simple global optimization is performed using 
two constraints: a core argument role cannot be 
repeated for a predicate and arguments of a pre-
dicate cannot overlap. In addition, a preprocess-
ing stage identifies the verb predicates of unla-
beled sentences based on the parser's POS tags.  

Features: Appendix A lists the learning fea-
tures. Three types of features are used: constitu-
ent-based (C), dependency-based (D), and general 
(G) features which are not dependent on constitu-
ency or dependency. Columns 1 to 4 determine 
the feature sets and features present in each set, 
which will be described in the experiments sec-
tion. We have tried to avoid features like named 
entity tags to depend less on extra annotation.  

Classifier: Maximum Entropy is chosen as the 
base classifier for both views, because of its effi-
ciency in training time and also its built-in multi-
classification capability. Furthermore, it assigns a 
probability score for its predictions, which is use-
ful in training data selection process in co-
training. The Maxent Toolkit1 is interfaced with 
the system for this purpose. 

4 Co-training  

Since the introduction of the original co-training 
algorithm, several variations of it have been used. 
These variants have usually been motivated by 
the characteristics of the underlying application. 
Figure 1 shows a generalized version of the algo-
rithm with highlighted variables which constitute 
different versions of it. Some of the parameters 
addressed in this work are described here. 

One important factor involved in bootstrapping 
is the performance of the base classifier (C1 and 
C2). In co-training, another interesting parameter 
is the relative performance of the classifiers. We 
are interested in this parameter and investigate it 
by varying the feature split. 

There are various stop criteria (S) used in lite-
rature, such as a pre-determined number of itera-
tions, finishing all of the unlabeled data, or con-
vergence of the process in terms of improvement. 
We use the second option for all experiments 
here, but we also look at convergence so that 
some data does not cause infinite loop. 

In each iteration, one can label all of the 
unlabeled data or select and load a number of 
unlaleled examples (p) into a pool (P) and label 

                                                 
1http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolk
it.html 

only them. To study the effect of all parameters in 
a step by step approach, we do not use pool in 
this work and leave it for the future. 

Selecting the newly labeled data to be added 
to the training set is the crucial point of co-
training. First, it should be determined that both 
views use the common or separate training set 
during co-training. In the former case, T1 and T2 
are identical. Then, it should be decided how the 
classifiers collaborate with each other. 

With a common training set, selection can be 
done based on the prediction of both classifiers 
together. In one approach, only samples with the 
same predicted labels by both classifiers are 
selected (agreement-based selection). Another 
way is to select the most confidently labeled 
samples. Some select the most confident labelings 
from each view (Blum and Mitchell, 1998). In 
this method, a sample may be selected by both 
views, so this conflict needs to be resolved. We 
select the label for a sample with the highest 
confidence among both views (confidenece-based 
selection) to avoid conflict. Both approaches are 
investigated here. 

With a separate trainings set, selection is done 
among samples labeled by each classifier 
individually (usually confidence-based). In this 
case, selected samples of one view are added to 
the training set of the other for collaboration. We 
are interetsed in the comparison of common and 
separate training sets, especially because from the 
two previous SRL co-training works, one was 
based on common (Lee et al., 2007) and the other 
on separate training sets (He and Gildea, 2006). 

The next step is to chose the selection criteria. 
One can select all of the labeled examples, or one 
can only select a number of them (n), known as 
growth size, often based on a quality measure 

1- Add the seed example set L to currently 
empty training sets T1 and T2. 

2- Train the base classifiers C1 and C2 with 
training sets T1 and T2 respectively. 

3- Iterate the following steps until the stop cri-
terion S is met. 
a- Select p examples from U into pool P. 
b- Label pool P with classifiers C1 and C2 
c- Select n labeled examples whose score 

meets a certain threshold t from P and 
add to training sets T1 and T2. 

d- Retrain the classifiers C1 and C2 with 
new training sets. 

Figure 1: Generalized Co-training Algorithm 
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such as labeling confidence. To prevent poor 
labelings diminishing the quality of the training 
set, a threshold (t) is also set on this measure. We 
select all labeled samples here. 

Finally, when adding the selected samples into 
the training set, a copy of them can be kept in the 
unlabeled data set and labeled again in the 
successive iterations, or all can be removed so 
that each sample is labeled only once. The former 
is called delibility and the latter indelibility 
(Abney 2008). We use the second method here. 

5 Experiments and Results  

This work uses co-training to address the SRL 
training problem when the amount of available 
annotated data is small. 

The data and evaluation settings used are simi-
lar to the CoNLL 2005 and 2008 shared tasks. 
For evaluation, the same script used for 2005 
shared task is used here and the measures are pre-
cision, recall, and their harmonic mean, F1. 
However, the data is changed in some ways to 
fulfill the objectives of this research, which is 
explained in the next section. 

5.1 The Data 

All the training data including labeled and unla-
beled are selected from training sections of the 
shared tasks which consist of 39,832 PropBank 
sentences. The development data is WSJ section 
24 of the PropBank, and the test data is WSJ sec-
tion 23. Also, the Brown test data is used to eva-
luate the generalization ability of the system.  

As syntactic input for the constituent-based 
system, training and test sentences were reparsed 
with the reranking parser of Charniak and John-
son (2005) instead of using the original parses of 
the shared task. The reason was a significant im-
provement of the SRL performance using the new 

parses in the preliminary experiments. These re-
sults are given in the next section for comparison. 

For dependency-based system, the dependency 
syntax was prepared by converting the above 
constituent-based parses to dependency parses 
using the LTH converter  (Johansson and Nugues, 
2007). It should be noted that the data were also 
parsed using MaltParser (Nivre et al. 2007) at the 
same time, but the converter-based system out-
performed it. These results are given in the next 
section for comparison. 

As labeled seed data, 4,000 sentence of the 
training sentences are selected randomly. These 
sentences contain 70,345 argument samples 
covering 38 semantic roles out of 52 roles present 
in the total training set. Unlike previous work, we 
address all core and adjunctive  roles. 

As unlabeled training data, we use the remain-
ing portion of the training data which contains 
35,832 sentences, including 672,672 argument 
samples. We only address verb predicates and 
automatically identify them for unlabeled sen-
tences instead of using the original predicate an-
notation of the data. 

5.2 The Base Classifiers 

Table 1 shows the performance of the base clas-
sifiers with different feature sets presented in sec-
tion 3, and different syntactic input for each fea-
ture set. The first column lists the feature set 
numbers. In the second column, cha stands for 
the original Charniak parses of the data, and 
cha.re stands for the reranking parser used in this 
work. Also, conv stands for the converter-based 
dependency syntax and malt for dependency syn-
tax produced by MaltParser. Those marked with * 
will be used here. Precision and recall are shown 
by P and R respectively. 

To compare the performance of the classifiers 
with previous work, the results with all labeled 

F.S. Synt. 
Input 

All Labeled Training Data Seed Training Data 
WSJ Test Brown Test WSJ Test Brown Test 

P R F1 P R F1 P R F1 P R F1 

1 cha 79.0 67.6 72.9 70.4 56.6 62.7 73.9 62.9 68.0 66.6 52.4 58.6 
cha.re* 79.3 73.4 76.2 68.6 60.8 64.4 75.6 68.8 72.0 65.1 56.1 60.2 

2 malt 74.4 55.1 63.3 67.3 46.4 55.0 69.6 51.7 59.4 63.1 44.1 51.9 
conv* 75.5 60.8 67.4 69.7 52.9 60.1 73.6 56.9 64.2 66.0 47.7 55.4 

3 cha 70.4 63.0 66.5 62.1 52.2 56.8 64.0 59.4 61.6 57.5 49.5 53.2 
cha.re* 71.2 68.8 70.0 68.6 60.8 64.4 70.4 64.3 67.2 60.7 53.3 56.7 

4 malt 75.3 58.3 65.7 68.3 49.6 57.5 71.9 54.5 62.0 65.4 46.4 54.2 
conv* 76.6 64.5 70.0 69.7 52.9 60.1 76.3 59.5 66.9 69.0 49.8 57.9 

Table 1: Performance of the Base Classifiers with Various Syntactic Inputs and Feature Sets 
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data (39,832 sentences) are given on the left; to 
the right are the results with seed data only (4000 
labeled sentences). 

5.3 Feature Splits 

We experimented with three kinds of feature 
splits. The first feature split (UBUS) uses feature 
sets 1 and 4. It is neither balanced nor separated: 
there is 5.2 and 2.4 points F1 gap between their 
classifiers on WSJ and Brown test sets respective-
ly (see Table 1, Seed Training Data, rows 2 and 8 
of the result values), and they have 4 general fea-
tures in common (See Appendix A). The idea be-
hind this feature split is to understand the impact 
of feature separation and balancing. 

The second one (UBS) consists of feature sets 
1 and 2. According to Table 1 (Seed Training Da-
ta, rows 2 and 4 of the result values), there is a 
bigger F1 gap between two classifiers (~8 and ~5 
points on WSJ and Brown respectively) than pre-
vious split. Thus the classifiers are still unba-
lanced. However, it is a separated split, since 
there is no features common between feature sets.  

The last split (BS) is also a separated split but 
has been balanced by moving all general features 
except predicate’s POS tag into the dependency-
based feature set. It consists of feature sets 3 and 
4. According to Table 1 (Seed Training Data, 
rows 6 and 8 of the result values), the balance is 
only on F1 and gaps exist between precision and 
recall in opposite directions, which roughly com-
pensate each other. 

These three feature splits are used with three 
variations of the co-training algorithms described 
in section 4. In all settings, no pool is used and all 
unlabeled data are labeled in each iteration. Any 
sample which meets the selection criteria is se-
lected and moved to training set (indelibility), i.e., 
no growth size and probability threshold is speci-
fied. The results are presented and discussed in 
the following sections.  

5.4 Co-training by Common Training Set 

Two variations of the algorithm, when using a 
common training set, are used and described here. 

Agreement-based Selection: In each iteration, 
any sample for which the same label is assigned 
by both classifiers is selected and moved into 
training set. Figures 2 to 7 show the results with 
this setting. The left and right side figures are the 
results on WSJ Brown test sets respectively. Pre-
cision, recall, and F1 are plotted for the classifier 
of each feature set as co-training progresses. The 
F1 of the base classifiers and best co-trained clas-
sifier (in case of improvement) are marked on the 

graphs. Horizontal axis is based on co-training 
iterations, but the labels are the amounts of train-
ing samples used in each iteration. 

It is also apparent that the dependency-based 
classifier is benefitting more from co-training. 
The reason may be twofold. First, with all splits, 
it has a higher precision than the other, which 
helps reduce noise propagation into the subse-
quent iterations. Next, with unbalanced splits (1 
and 3) its performance is much lower and there is 
more room for improvement. 

All the figures show an improvement on 
Brown test set. Seemingly, since this test set suf-
fers from unseen events more than the other test 
set, new data is more useful for it. 

Most of the unlabeled data (~90%) is added in 
the first iteration, showing a high level of agree-
ment between classifiers. 

Figure 2 shows that there is no improvement 
by co-training with feature set UBUS on WSJ test 
set over the baseline, though the dependency-
based classifier improves. The feature split UBS 
in Figure 4, which fully separates the two feature 
sets, also could not gain any benefit. It seems that 
separating feature sets is not effective with the 
presence of a large gap between classifiers. This 
is further confirmed by observing the results for 
feature split BS in Figure 6, where the gap has 
been decreased to 0.4 F1 points, and co-training 
could improve the baseline by 0.7 points. 

Although these improvements are slight, but 
more runs of the experiments with different ran-
dom selections of seed and unlabeled data 
showed a consistent behavior. 

Confidence-based Selection: Due to the na-
ture of this kind of selection and since there is no 
growth size and probability criteria, all samples 
are added to the training set at once, with a label 
that its classifier is more confident than the oth-
er’s. Therefore, instead in a chart, the results 
could be presented in a table (Table 2). The first 
column lists the feature splits. In the second col-
umn, 0 stands for the base classifier and 1 is for 
classifier of the first (and the only) iteration. 

Using all data at once leads to an overall final 
classifiers performance, unlike the previous set-
ting in which remaining data for the following 
iterations degraded the progress. 

Considering the high level of agreement be-
tween classifiers (%90), a similar behavior to 
agreement-based method is observed with this 
method as expected. The trend of precision and 
recall, more improvement of dependency-based 
classifier, and better results on Brown test set are 
consistent with agreement-based co-training. 
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However, the separation of feature sets has 
even degraded the results over UBUS (71.2 vs. 
71.8 and 59.8 vs. 60.5 F1 points), but balancing 
has been again useful and improved the baselines 
by 0.4 and 0.9 F1 points on WSJ and Brown test 
sets respectively. Comparing these values corres-
pondingly to 0.7 and 0.9 point gains by agree-
ment-based co-training with feature split BS 

shows that the latter has been slightly more prom-
ising. 

5.5 Co-training by Separate Training Sets 

As with confidence-based selection, with this var-
iation of the algorithm, all samples are added to 
the training set at once. Table 3 shows the per-
formance of the algorithm. 

Figure 2: Agreement-based Co-training with Feature 
Split UBUS (WSJ Test Set) 
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Figure 3: Agreement-based Co-training with Feature 
Split UBUS (Brown Test Set) 
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Figure 4: Agreement-based Co-training with Feature 
Split UBS (WSJ Test Set) 
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Figure 5: Agreement-based Co-training with Feature 
Split UBS (Brown Test Set) 
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Figure 6: Agreement-based Co-training with Feature 
Split BS (WSJ Test Set) 
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Figure 7: Agreement-based Co-training with Feature 
Split BS (Brown Test Set) 
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The constituent-based classifier has been de-
graded with all feature splits. This even includes 
balanced and separated feature split (BS), which 
improved in previous settings. 

The dependency-based system, which has al-
ways improved before, now degrades when using 
feature split BS, even on the Brown test set which 
has been previously benefited with all settings. 
On the other hand, feature split UBS improves on 
both test sets, possibly for the same reasons de-
scribed before. However, the improvement of the 
dependency-based system with unbalanced fea-
ture split is not useful, because the performance 
of the constituent-based system is much higher, 
and it does not seem that the dependency-based 
classifier can reach to (or improve over it) even 
with more unlabeled data. 

It can be seen that this variation of the algo-
rithm performs worse compared to co-training 
with the common training set. Since in that case, 
in addition to training on the results of each other, 
the decision on selecting labeled data is made by 
both classifiers, this additional cooperation may 
be the possible reason of this observation. 

6 Conclusion and Future Work  

This work explores co-training with two views of 
SRL, namely constituency and dependency. In-
spired by the two co-training assumptions, we 
investigate the performance of the algorithm with 
three kinds of feature splits: an unbalanced split 

with some general features in common between 
feature sets, an unbalanced but fully separated 
split, and a balanced and fully separated split.   

In addition, three variations of the algorithms 
were examined with all feature splits: agreement-
based and confidence-based selection for co-
training with common training set, and co-
training with separate training sets. 

Results showed that the balanced feature split, 
in which the performances of the classifiers were 
roughly the same, is more useful for co-training. 
Moreover, balancing the feature split to reduce 
performance gap between associated classifiers, 
is more important than separating feature sets by 
removing common features.  

Also, a common training set proved useful for 
co-training, unlike separate training sets. Howev-
er, more experiments are needed to compare 
agreement- and confidence-based selections. 

Due to significant difference between the cur-
rent work and previous work on SRL co-training 
described in section 2 comparison is difficult. 
Nevertheless, unlike He and Gildea (2006), co-
training showed to be useful for SRL here, though 
with slight improvements. In addition, the statis-
tics reported by Lee et al. (2007) are unclear to 
compare for the reason mentioned in that section. 
However, as they concluded, more unlabeled data 
is needed for co-training to be practically useful. 

As mentioned, we did not involve parameters 
like pool, growth size and probability threshold 

FS It. 
WSJ Test Set Brown Test Set 

Constituent-based Dependency-based Constituent-based Dependency-based
P R F1 P R F1 P R F1 P R F1 

UBUS 0 75.6 68.8 72.0 76.3 59.5 66.8 65.1 56.1 60.2 69.0 49.8 57.9 
1 79.0 65.8 71.8 77.5 59.8 67.5 70.5 53.0 60.5 70.6 50.6 59.0 

UBS 0 75.6 68.8 72.0 73.6 56.9 64.2 65.1 56.1 60.2 66.0 47.7 55.4 
1 78.3 65.4 71.2 74.9 58.0 65.4 69.4 52.5 59.8 69.1 49.8 57.9 

BS 0 70.4 64.3 67.2 76.3 59.5 66.9 60.7 53.3 56.8 69.0 49.8 57.9 
1 76.1 60.9 67.6 78.0 59.3 67.4 67.4 50.3 57.6 70.5 50.4 58.8 

Table 2: Co-training Performance with Confidence-based Selection 

FS It. 
WSJ Test Set Brown Test Set 

Constituent-based Dependency-based Constituent-based Dependency-based
P R F1 P R F1 P R F1 P R F1 

UBUS 0 75.6 68.8 72.0 76.3 59.5 66.9 65.1 56.1 60.2 69.0 49.8 57.9 
1 79.0 59.8 68.0 75.5 59.5 66.6 70.2 49.3 57.9 67.8 50.8 58.1 

UBS 0 75.6 68.8 72.0 73.6 56.9 64.2 65.1 56.1 60.2 66.0 47.7 55.4 
1 76.7 58.2 66.2 73.7 58.1 65.0 69.3 49.5 57.7 67.2 50.0 57.3 

BS 0 70.4 64.3 67.2 76.3 59.5 66.9 60.7 53.3 56.8 69.0 49.8 57.9 
1 76.2 57.9 65.8 75.1 58.4 65.7 67.5 48.8 56.7 67.5 49.9 57.4 

Table 3: Co-training Performance with Separate Training Sets 
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for a step-by-step study. A future work can be to 
investigate the effect of these parameters. Anoth-
er direction of future work is to adapt the SRL 
architecture to better match with the co-training. 
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Appendix A. Learning Features 
Feature Name Type 1 2 3 4 
Phrase Type C √  √  
Path C √  √  
Content Word Lemma C √  √  
Head Word POS C √  √  
Content Word POS C √  √  
Governing Category C √  √  
Predicate Subcategorization C √  √  
Constituent Subcategorization  C √  √  
Clause+VP+NP Count in Path C √  √  
Constituent and Predicate Distance C √  √  
Head Word Location in Constituent  C √  √  
Dependency Relation of Argument Word with Its Head D  √  √ 
Dependency Relation of Predicate with Its Head D  √  √ 
Lemma of Dependency Head of Argument Word D  √  √ 
POS Tag of Dependency Head of Argument Word D  √  √ 
Relation Pattern of Predicate’s Children D  √  √ 
Relation Pattern of Argument Word Children D  √  √ 
POS Pattern of Predicate’s Children D  √  √ 
POS Pattern of Argument Word’s Children D  √  √ 
Relation Path from Argument Word to Predicate D  √  √ 
POS Path from Argument Word to Predicate D  √  √ 
Family Relationship between Argument Word and Predicate D  √  √ 
POS Tag of Least Common Ancestor of Argument Word and Predicate D  √  √ 
POS Path from Argument Word to Least Common Ancestor D  √  √ 
Dependency Path Length from Argument Word to Predicate D  √  √ 
Whether Argument Word Starts with Capital Letter?  D  √  √ 
Whether Argument Word is WH word?  D  √  √ 
Head or Argument Word Lemma G √   √ 
Compound Verb Identifier G √   √ 
Position+Predicate Voice G √   √ 
Predicate Lemma  G √   √ 
Predicate POS G √  √ 

49


