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Introduction

In natural language processing (NLP), supervised learning scenarios are more frequently explored than
unsupervised or semi-supervised ones. Unfortunately, labeled data are often highly domain-dependent
and short in supply. It has therefore become increasingly important to leverage both labeled and
unlabeled data to achieve the best performance in challenging NLP problems that involve learning of
structured variables.

Until recently most results in semi-supervised learning of structured variables in NLP were negative, but
today the best part-of-speech taggers, named entity recognizers, and dependency parsers exploit mixtures
of labeled and unlabeled data. Unsupervised and minimally unsupervised NLP also sees rapid growth.

The most commonly used semi-supervised learning algorithms in NLP are feature-based methods and
EM, self- or co-training. Mixture models have also been successfully used. While feature-based methods
seem relatively robust, self-training and co-training are very parameter-sensitive, and parameter tuning
has therefore become an important research topic. This is not only a concern in NLP, but also in other
areas such as face recognition. Parameter-sensitivity is even more dramatic in unsupervised learning of
structured variables, e.g. unsupervised part-of-speech tagging and grammar induction.

The aim of this workshop was to bring together researchers dedicated to designing and evaluating robust
unsupervised or semi-supervised learning algorithms for NLP problems. We received 11 papers, but
accepted only six. Shane Bergsma gave an invited talk on feature-based methods.

The organizers would like to thank the review committee for their thorough high-quality reviews and
their timeliness, and the RANLP 2011 organizers for their assistance.
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Gibbs Sampling with Treeness Constraint
in Unsupervised Dependency Parsing

David Mareček and Zdeněk Žabokrtský
Charles University in Prague, Faculty of Mathematics and Physics

Institute of Formal and Applied Linguistics
{marecek,zabokrtsky}@ufal.mff.cuni.cz

Abstract

This paper presents a work in progress on
the task of unsupervised parsing, follow-
ing the main stream approach of optimiz-
ing the overall probability of the corpus.
We evaluate a sequence of experiments for
Czech with various modifications of cor-
pus initiation, of dependency edge prob-
ability model and of sampling proce-
dure, stressing especially the treeness con-
straint. The best configuration is then ap-
plied to 19 languages from CoNLL-2006
and CoNLL-2007 shared tasks. Our best
achieved results are comparable to the
state of the art in dependency parsing and
outperform the previously published re-
sults for many languages.

1 Introduction

Unsupervised approaches receive considerably
growing attention in NLP in the last years, and de-
pendency parsing is not an exception.

In recent years, quite a lot of works in unsuper-
vised parsing (or grammar induction) was based
on Dependency Model with Valence (DMV) in-
troduced by (Klein and Manning, 2004); (Smith,
2007) and (Cohen et al., 2008) has focused on
DMV variants, (Headden et al., 2009) introduced
extended valency model (EVG) and added lexical-
ization and smoothing. (Spitkovsky et al., 2011b)
used punctuation marks for splitting a sentence
and impose parsing restrictions over its fragments.
Gibbs sampling was used in (Naseem and Barzi-
lay, 2011).

Some of the papers focused on English only, but
some presented the results across wide rage of lan-
guages. The last such paper was (Spitkovsky et al.,
2011a), where the evaluation was done on all 19
languages included in CoNLL shared tasks (Buch-
holz and Marsi, 2006) and (Nivre et al., 2007).

The attachment scores are very high for English,
for which the methods seems to be optimized, but
the scores are quite low for some other languages.

In this paper, we describe our new approach to
unsupervised dependency parsing. Unlike DMV,
it is not based on constituency trees, which cannot
handle non-projectivities. We have been inspired
rather by the experiment described in (Brody,
2010), in which the dependency parsing task is
formulated as a problem of word alignment; ev-
ery sentence is aligned with itself with one con-
straint: no word can be attached to itself. How-
ever, unlike (Brody, 2010), where the output struc-
tures might not be trees and could contain cycles,
we introduce a sampling method with the acyclic-
ity constraint.

Our approach attempts at optimizing the over-
all probability of tree structures given the corpus.
We perform the optimization using Gibbs sam-
pling (Gilks et al., 1996).

We employ several ways of incorporating prior
knowledge about dependency trees into the sys-
tem:

• independence assumptions – we approximate
probability of a tree by a product of probabil-
ities of dependency edges,

• edge models and feature selection – we use
words’ distance and their POS tags as the
main indicators for predicting a dependency
relation,

• hard constraints – some knowledge on depen-
dency tree properties (such as acyclicity) is
difficult to represent by local models, there-
fore we implement it as a hard constraint in
the sampling procedure,

• corpus initialization – we study the effect of
different initializations of trees in the corpus,
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• basic linguistic assumptions – according to
the dependency syntax tradition, we expect
the trees to be verbocentric. This is done
without determining which part-of-speech
tag is what.

All experiments are evaluated in detail us-
ing Czech data. The configuration which per-
forms best for Czech is applied also on other lan-
guages available in the CoNLL shared task cor-
pora (Buchholz and Marsi, 2006) and (Nivre et al.,
2007). Our goal is to achieve good results across
various languages without tuning the parser indi-
vidually for each language, so we use the other
language data exclusively for evaluation purposes.

2 Data preparation

We used Czech training part (dtrain.conll) from
CoNLL 2007 collection, which corresponds to
approximately one third of Prague Dependency
Treebank 2.0 (Hajič and others, 2006), PDT in
the sequel. We selected all sentences containing at
most 15 words after removing punctuation.1 The
resulting data contains 123,804 words in 14,766
sentences (out of 368,640 words and 25,360 sen-
tences in the original dtrain.conll file).

We are aware of a strong bias caused by this
filtering. For instance, it leads to a consider-
ably higher proportion of sentences without a verb
(such as titles – recall that PDT contains mainly
newspaper articles). However, such filtering is a
usual practise in unsupervised parsing due to time
complexity issues.

Since Czech is a morphologically rich language,
there are around 3,000 morphological tags distin-
guished in PDT. They consist of 15 positions, each
of them corresponding to one morphological cate-
gory. In the CoNLL format, Czech positional tags
are distributed into three columns: CPOS (first po-
sition), POS (second position), and FEATURES
(third to fifteenth position). For the purpose of un-
supervised parsing experiments, we reduce the tag
set at two levels of granularity:

• CoarsePOS – only the first letter is consid-
ered for each tag (11 distinct values, such as
V for verbs and P for pronouns),

• FinePOS – only the first (coarse-grained
POS) and the fifth letter (morphological case)

1If a removed punctuation node was not a leaf, its children
were attached below the removed node’s parent. This occurs
mainly with coordinations without conjunctions.

is used if case is defined (such as N4 for
nouns in accusative), or the first and the sec-
ond letter otherwise (such as Vf for infinitive
verb forms); there are 58 distinct values.2

We use this data in all our tuning experiments
(Sections 6.2 – 6.5). The final evaluation on
CoNLL (Section 6.6) is different. It is made on
all the sentences (without length limit) and only
CoNLL POS tags are used there.

3 Models

Similarly to (Brody, 2010), we use two models
which are very close to IBM Model 1 and 2 for
word alignment (Brown et al., 1993). We do not
model fertility (IBM Model 3), but we plan to
involve it in future work. We introduce another
model (called NounRoot) that postulates verbo-
centricity of the dependency trees and tries to re-
press Noun-Root dependencies.

3.1 Standard Dependency Models

In our models, each possible dependency edge is
characterized by three attributes:

• T g – tag of the governing node,

• T d – tag of the dependent node,

• Dd,g – signed distance between governing
and dependent word (it is negative, if the de-
pendent word precedes the governing one,
and is equal to 0 if the governing node is the
technical root).

The first model (called Dep) postulates that the
tag of the governing node depends only on the tag
of the dependent node. The probability that the
node d is attached below the node g is:

P (d→ g) = P (T g|T d) =
P (T g, T d)

P (T d)
(1)

We assume that the dependencies follow a Chi-
nese Restaurant Process (Aldous, 1985), in which
the probability P (T g|T d) is proportional to the
number of times T g have governed T d in the past,
as follows:

P (T g
i |T

d
i ) =

count(−i)(T g
i , T

d
i ) + α1

count(−i)(T d
i ) + α1|T |

, (2)

2This shape of tags has been previously shown to perform
well for supervised parsing.
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where the index i corresponds to the position of
the dependent word in the corpus, count(−i) rep-
resents number of occurrences in the history (from
1 to i− 1), |T | is the number of tags in the tag set
and α1 is the Dirichlet hyper-parameter.

The second model (called Dist) assumes that the
length of the dependency edge depends on the tag
of the dependent node:

P (d→ g) = P (Dd,g|T d) =
P (Dd,g, T d)

P (T d)
(3)

P (Di|T d
i ) =

count(−i)(Di, T
d
i ) + α2

count(−i)(T d
i ) + α2|D|

, (4)

where |D| is the number of all possible distances
in the corpus. This number was set to 30.

The probability of a particular analysis (i.e., the
probability of all dependency trees T built on a
whole given corpus C) can be computed as:

P (C, T ) =
N∏

i=1

P (T g
i |T

d
i ) · P (Di|T d

i )

=

N∏
i=1

(
count(−i)(T g

i , T
d
i ) + α1

count(−i)(T d
i ) + α1|T |

count(−i)(Di, T
d
i ) + α2

count(−i)(T d
i ) + α2|D|

) (5)

We maximize this probability using Gibbs sam-
pling (Gilks et al., 1996).

3.2 Noun-Root Dependency Repression
During our first experiments, we noticed that
nouns (especially subjects) often substitute verbs
in the governing positions. Since majority of
grammars are verbocentric (verbs dominates their
subjects and objects), we decided to penalize
noun-root edges. Of course, we do not want to
state explicitly which tag represents nouns in a
particular tag set. Instead, nouns are recognized
automatically as the most frequent coarse-grained
tag category in the corpus (this simple rule holds
for all languages in the CoNLL 2006 and 2007
sets).3 We add the following model called Noun-
Root:

P (d→ g) =

{
β if d is noun and g is root
1 otherwise

(6)

3We are aware that introducing this rule is a kind of hack,
which departs from the line of purely unsupervised parsing
and which will become useless with automatically induced
POS tags in future experiments. On the other hand, this sim-
ple trick has a substantial effect on parsing quality. Therefore
we decided to present results both with and without using it.

This model is added into the product in Equa-
tion (5). The value of β was experimentally set
to 0.01.

4 Sampling

We sample from the posterior distribution of
our model P (T g, Dg,d|T d) using Gibbs sampling
(a standard Markov chain Monte Carlo tech-
nique). We sample each dependency edge inde-
pendently. Computing the conditional probabili-
ties is straightforward, because the numerators and
denominators in the product in Equation (5) are
exchangeable. If we substitute the parent of a word
by a new parent, we can deal with the dependency
as if it were the last one in the corpus. The history
remains unchanged and updating the probability is
thus very efficient.

4.1 Basic sampling algorithm
The pseudocode of the basic sampling algorithm
is shown in Figure 1. This algorithm chooses one
parent for each word. It may create cycles and dis-
continuous directed graphs; such graphs are also
accepted as the algorithm’s initial input.

iterate {
foreach sentence {
foreach node in rand_permutation_of_nodes {

# estimate probability of node’s parents
foreach parent in (0 .. |sentence|) {
next if parent == node;
node->set_parent(parent);
prob[parent] = estimate_edge_prob();

}

# choose parent w.r.t. the distribution
parent = sample from prob[parent];
node->set_parent(parent);

}
}

}

Figure 1: Pseudo-code of the basic sampling ap-
proach (cycles are allowed).

4.2 Hard Constraints
The problem of the basic sampling algorithm is
that it does not sample trees. It only chooses a
parent for each word but does not guarantee the
acyclicity. We introduce and explore two hard
constraints:

• Tree – for each sentence, the set of assigned
edges constitutes a tree in all phases of com-
putation,4

4This constraint is not compliant with the RandInit initial-
ization.
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• SingleRoot – the technical root can have only
one child.

Tree-sampling algorithm with pseudocode in
Figure 2 ensures the treeness of the sampled struc-
tures. It is more complicated, because it checks
acyclicity after each sampled edge. If there is a
cycle, it chooses one edge which will be deleted
and the remaining node is then hanged on another
node so that no other cycle is created. This dele-
tion and rehanging is done using the same sam-
pling method.

iterate {
foreach sentence {
foreach node in rand_permutation_of_nodes {

# estimate probability of node’s parents
foreach parent in (0 .. |sentence|) {
next if parent == node;
node->set_parent(parent);
prob[parent] = estimate_edge_prob();

}

# choose parent w.r.t. the distribution
parent = sample from prob[parent];
node->set_parent(parent);

if (cycle was created) {

# choose where to break the cycle
foreach node2 in cycle {

parent = node2->parent;
node2->unset_parent();
prob[node2] = estimate_edge_prob();
node2->set_parent(parent);

}
node2 = sample from prob[node2];

# choose the new parent
foreach parent {

next if node2->parent creates a cycle
node2->set_parent(parent);
prob[parent] = estimate_edge_prob();

}
parent = sample from prob[parent];
node2->set_parent(parent);

}
}

}
}

Figure 2: Pseudo-code of the tree-sampling ap-
proach (cycles are not allowed).

The second hard constraint represents the fertil-
ity of the technical root, which is generally sup-
posed to be low. Ideally, each sentence should
have one word which dominates all other words.
For this reason, we allow only one word to depend
on the technical root. If the root acquires two chil-
dren during sampling, one of them is immediately
resampled (a new parent is sampled for the child).

5 Experimental Setup

This section describes the ways of initialization,
and how the final dependency trees are built from
sampling.

5.1 Corpus Initialization

We implemented four different procedures for ini-
tiating dependency edges in the corpus:

• RandInit – each word is attached below a ran-
domly chosen word from the same sentence
(or the technical root); treeness is not en-
sured,

• RandTreeInit – like RandInit, but treeness is
ensured (only edges not leading to a cycle are
added),

• LeftChainInit – in each sentence, each word
is attached below its left neighbor; the first
word is attached below the technical root,

• RightChainInit – each word is attached below
its right neighbor; the last word is attached
below the technical root.

The last two are used only for computing the base-
line scores.

5.2 Dirichlet hyper-parameters

Following (Brody, 2010), we set the Dirichlet
hyper-parameters α1 and α2 to values 0.01 and
0.05 respectively. We did not optimize the val-
ues carefully because our preliminary experiments
confirm the observation of (Brody, 2010): limited
variations (up to an order of magnitude) in these
parameters have only a negligible effect on the fi-
nal results.

5.3 Number of iterations

Experiments showed that the sampling algorithm
makes only little changes of probabilities after the
30th iteration (see the Figure 3). All the exper-
iments were running with 30 “burn-in” iterations
and then other 20 iterations from which the final
dependency trees were computed.

5.4 Parsing

We can simply take the trees after the last itera-
tion and declare them as a result. A better way is,
however, take the last (in our case 20) iterations
and create an average trees (or average directed
graphs). We tested two procedures for creating
an average tree (or graph) from n different trees
(graphs):

• Max – We attach each node to its most fre-
quent parent. This method allows cycles.
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Figure 3: Log-likelihoods of the data through 50
iterations. An example of one run.

• MST – Each edge has a weight proportional
to the number of times it appeared during the
iterations. A maximum spanning tree algo-
rithm (Chu and Liu, 1965) is then applied on
each sentence. This method always creates
trees.

6 Experiments and Evaluation

6.1 Evaluation metrics

As in other unsupervised tasks (e.g. in unsuper-
vised POS induction), there is a little consensus
on evaluation measures. Performance of unsu-
pervised methods is often measured by compar-
ing the induced outputs with gold standard man-
ual annotations. However, this approach causes a
general problem: manual annotation is inevitably
guided by a number of conventions, such as the
traditional POS categories in unsupervised POS
tagging, or varying (often linguistically controver-
sial) conventions for local tree shapes representing
e.g. complex verb forms in unsupervised depen-
dency parsing. It is obvious that using unlabeled
attachment scores (UAS) leads to a strong bias to-
wards such conventions and it might not be a good
indicator of unsupervised parsing improvements.
Therefore we estimate parsing quality by two ad-
ditional metrics:

• UUAS - undirected UAS (edge direction is
disregarded),

• NED - neutral edge direction, introduced in
(Schwartz et al., 2011), which treats not only
a node’s gold parent and child as the correct
answer, but also its gold grandparent.

6.2 Baseline and upper bound estimates
We evaluate four baselines straightforwardly cor-
responding to four corpus initiation procedures de-
scribed in Section 5.1: RandBaseline, RandTree-
Baseline, LeftChainBaseline, and RightChain-
Baseline.

In order to have an upper bound limit, we use
Ryan McDonald’s implementation of Maximum
Spanning Tree parser (McDonald et al., 2005) (Su-
pervisedMST). Only features based on reduced
POS tags are accessible to the parser. We use the
data described in Section 2 both for training and
evaluation in the 10-fold cross-validation fashion
and present the average result.

The results of the baseline and upper bound ex-
periments are summarized in Table 1.

Parser Tags UAS UUAS NED
RandBaseline – 12.0 19.9 27.5
RandTreeB. – 11.9 21.0 31.0
LeftChainB. – 30.2 53.6 67.2
RightChainB. – 25.5 52.0 60.6
SupervisedMST CoarsePOS 73.9 78.6 86.6
SupervisedMST FinePOS 82.5 84.9 90.3

Table 1: Lower and upper bounds for unsuper-
vised parsing of Czech based on reduced POS
tags.

6.3 Results for Czech
Selected experiments and results for Czech are
summarized in Table 2. We started with a simple
configuration without sampling constraints. Then
we were gradually adding our improvements and
constraints: MST parsing, Tree and SingleRoot
constraint and NounRoot model. Everything was
measured both for CoarsePOS and FinePOS tags
and evaluated with all three measures.

We can see that CoarsePOS tags work better
if we do not use SingleRoot constraint or Noun-
Root model. Adding NounRoot model improves
the UAS by 8 percent. We choose the settings of
the experiment number 10 (which uses all our im-
provements and constraints) as the best configura-
tion for Czech. It has the highest UUAS score and
the values of the other scores are very close to the
maximum achieved values.

6.4 Learning curves
It is useful to draw learning curves in order to see
how well the learning algorithm can exploit addi-
tional data. Figure 4 shows the speed of growth
of UAS for our best unsupervised configuration in
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n. Initialization Tags Models Constraints Parsing UAS UUAS NED
Baseline configuration:
1 Random CoarsePOS Dep+Dist – Max 45.1 51.2 55.8
2 Random FinePOS Dep+Dist – Max 41.3 47.6 51.0
Parsing with Maximum spanning tree algorithm:
3 Random CoarsePOS Dep+Dist – MST 44.8 58.8 67.1
4 Random FinePOS Dep+Dist – MST 36.7 50.1 55.1
Using tree-sampling:
5 RandomTree CoarsePOS Dep+Dist Tree MST 45.5 55.1 59.5
6 RandomTree FinePOS Dep+Dist Tree MST 36.2 46.6 50.0
Single-root constraint added:
7 RandomTree CoarsePOS Dep+Dist Tree+SingleRoot MST 41.8 58.9 72.2
8 RandomTree FinePOS Dep+Dist Tree+SingleRoot MST 41.2 58.6 70.8
Noun-Root repression model added:
9 RandomTree CoarsePOS Dep+Dist+NounRoot Tree+SingleRoot MST 49.6 62.2 73.3
10 RandomTree FinePOS Dep+Dist+NounRoot Tree+SingleRoot MST 49.8 62.6 73.0
Experiments with constraints on the best configuration:
11 RandomTree FinePOS Dep+Dist+NounRoot – MST 42.0 56.3 62.8
12 RandomTree CoarsePOS Dep+Dist+NounRoot Tree MST 50.0 59.8 66.9
13 RandomTree FinePOS Dep+Dist+NounRoot Tree MST 46.8 55.9 61.1
14 RandomTree FinePOS Dep+Dist+NounRoot SingleRoot MST 40.8 58.0 66.6
Other selected experiments:
15 RandomTree FinePOS Dep+Dist+NounRoot – Max 45.1 51.2 55.8
16 RandomTree FinePOS Dep+Dist+NounRoot – Max 44.6 50.5 53.0
17 RandomTree FinePOS Dep+Dist+NounRoot Tree+SingleRoot Max 49.9 62.5 72.8

Table 2: Evaluation of different configurations of the unsupervised parser for Czech.

comparison with the supervised parser (evaluated
by 10-fold cross validation, again).
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Figure 4: Learning curves for Czech: UAS of un-
supervised (our best configuration) and supervised
(unlexicalized McDonald’s MST) parsers as func-
tions of data size. FinePOS tags were used.

One can see that from 10,000 tokens the UAS
for our best configuration grows very little and we
do not need more data if we are dealing with POS
tags only. We suppose that more data would be
needed when using lexicalization.

6.5 Error analysis

Table 3 shows attachment scores for individual
coarse-grained Czech POS tags. One can see very
low UAS values with particles, interjections, and

punctuation (special characters not filtered in the
preprocessing step), however, these categories are
not frequent in the corpus. Prepositions and con-
junctions are more frequent, but their attachment
score is still only 20.4% and 14.2% respectively.
This fact is caused mainly by reversed dependen-
cies; our parser attaches prepositions below nouns
and conjunctions below verbs, while in the cor-
pus, prepositions dominate nouns and conjunc-
tions dominate verbs. These reversed dependen-
cies are treated as correct with UUAS and NED
measures.

CPOS Occurrences UAS [%] Err. [%]
N (nouns) 21934 48.5 18.8
A (adjectives) 12890 80.1 2.6
V (verbs) 10946 55.1 7.2
P (pronouns) 6294 66.2 2.6
D (adverbs) 4025 49.4 3.3
R (prepositions) 2596 20.4 8.2
C (numerals) 1884 40.5 2.2
J (conjunctions) 957 14.2 4.7
T (particles) 198 23.6 0.5
I (interjections) 5 27.8 0.0
Z (punctuation) 3 18.8 0.0

Table 3: UAS for individual coarse-grained Czech
POS tags. The “Err.” column shows the percent-
age of errors on the whole corpus.

Nouns make most errors in total, especially in
the longer noun phrases, where the correct struc-
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Language Baselines Results
name code CoNLL rand. left right Our-NR Our Spi5 Spi6
Arabic ar 2007 3.9 59.0 6.0 24.8 25.0 22.0 49.5
Bulgarian bg 2006 8.0 38.8 17.9 51.4 25.4 44.3 43.9
Catalan ca 2007 3.9 30.0 24.8 56.3 55.3 63.8 59.8
Czech cs 2007 7.4 29.6 24.2 33.3 24.3 31.4 28.4
Danish da 2006 6.7 47.8 13.1 38.6 30.2 44.0 38.3
German de 2006 7.2 22.0 23.4 21.8 26.7 33.5 30.4
Greek el 2007 4.9 19.7 31.4 33.4 39.0 21.4 13.2
English en 2007 4.4 21.0 29.4 23.8 24.0 34.9 45.2
Spanish es 2006 4.3 29.8 24.7 54.6 53.0 33.3 50.6
Basque eu 2007 11.1 23.0 30.5 34.7 29.1 43.6 24.0
Hungarian hu 2007 6.5 5.5 41.4 48.1 48.0 23.0 34.7
Italian it 2007 4.2 37.4 21.6 60.6 57.5 37.6 52.3
Japanese ja 2006 14.2 13.8 67.2 53.5 52.2 53.5 50.2
Dutch nl 2006 7.5 24.5 28.0 43.4 32.2 32.5 27.8
Portugese pt 2006 5.8 31.2 25.8 41.8 43.2 34.4 36.7
Slovenian sl 2006 7.9 26.6 24.3 34.6 25.4 33.6 32.2
Swedish sv 2006 7.8 27.8 25.9 26.9 23.3 42.5 50.0
Turkish tr 2006 6.4 1.5 65.4 32.1 32.2 33.4 35.9
Chinese zh 2007 15.3 13.4 41.3 34.6 21.0 34.5 43.2

Average: 7.2 26.4 29.8 39.4 35.1 36.7 39.3

Table 4: Directed unlabeled attachment scores for 19 different languages from CoNLL shared task.
The “rand.”, “left”, and “right” columns reports Random, LeftChain, and RightChain baselines. The
“Our-NR” and “Our” columns show results of our algorithm; “NR” means that Noun-Root dependency
suppression was used. For comparison, “Spi5” and “Spi6” are the results reported in (Spitkovsky et al.,
2011a) in Tables 5 and 6 respectively.

ture cannot be induced from POS tags only. On
the other hand, adjectives reach as much as 80%
UAS.

6.6 Results for CoNLL languages
We applied our unsupervised dependency parser
on all languages included in 2006 and 2007
CoNLL shared tasks. We used the configura-
tion that was the best for Czech (experiment 10
in Table 2) and the same configuration without
using Noun-Root dependency repression (exper-
iment 8). The parsing was run on concatenated
trainining and development sets5 after removing
punctuation, but the final attachment scores were
measured on the development sets only, so that
they were comparable to the previously reported
results. Unlike in 6.3, there is no sentence length
limit and the evaluation is done for all the sen-
tences and only the POS (fifth column in the
CoNLL format) is used for the inference.

The results are shown in Table 4. The Ran-
dom, LeftChain, and RightChain baselines are
compared to our results and to the results reported
by (Spitkovsky et al., 2011a). It is obvious, that
using the Noun-Root suppression (“Our-NR” col-
umn) improves the parsing quality for the major-

5train.conll and test.conll files for CoNLL2006 languages
and dtrain.conll and dtest.conll for CoNLL2007 languages.

ity of languages and has higher scores for 12 (out
of 19) languages than previous results (“Spi5” and
“Spi6”). If we do not use the Noun-Root suppres-
sion (“Our” column), the scores are higher for 6
(7) languages compared to “Spi5” (“Spi6”), but
the averaged attachment score is quite similar.

Interestingly, Arabic, Danish, and Japanese
have very high LeftChain (RightChain) baseline
and no method was able to beat them so far.

7 Conclusions

We described our novel work on unsupervised de-
pendency parser based on Gibbs sampling. We
showed that introducing treeness constraint in
sampling improves attachment score for Czech
from about 45% to 50%. The other improve-
ment was caused by repressing Noun-Root depen-
dencies. We reached 49.9% unlabeled attachment
score for Czech. If we apply the same parser con-
figuration to 19 languages available in the CoNLL
2006 and 2007 data, we outperform the previously
published results for 12 languages.

Our method does not work well for English. It
reached only 24% UAS, which is far below the
RightChain baseline. This is the opposite of other
approaches (based on DMV), which are very good
for English and whose results for other languages
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are presented rarely.
In the future, we would like to add a fertility

model and introduce lexicalization. We are also
aware that the parsing quality strongly depends on
the tag set, so we plan to incorporate some form of
unsupervised tagging or word clustering.
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Jan Hajič. 2005. Non-Projective Dependency Pars-
ing using Spanning Tree Algorithms. In Proceed-
ings of Human Langauge Technology Conference
and Conference on Empirical Methods in Natural
Language Processing (HTL/EMNLP), pages 523–
530, Vancouver, BC, Canada.

Tahira Naseem and Regina Barzilay. 2011. Using Se-
mantic Cues to Learn Syntax. In AAAI.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
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Abstract

The application of machine learning tech-
niques to classify text documents into sen-
timent categories has become an increas-
ingly popular area of research. These tech-
niques rely upon the availability of la-
belled data, but in certain circumstances
the availability of pre-classified docu-
ments may be limited. Limited labelled
data can impact the performance of the
model induced from it. There are a num-
ber of strategies which can compensate for
the lack of labelled data, however these
techniques may be suboptimal if the ini-
tial labelled data selection does not con-
tain a sufficient cross section of the total
document collection. This paper proposes
a variant of self-training as a strategy to
this problem. The proposed technique
uses a high precision classifier (linguistic
rules) to influence the selection of training
candidates which are labelled by the base
learner in an iterative self-training pro-
cess. The linguistic knowledge encoded in
the high precision classifier corrects high-
confidence errors made by the base clas-
sifier in a preprocessing step. This step is
followed by a standard self training cycle.
The technique was evaluated in three do-
mains: user generated reviews for (1) air-
line meals, (2) university professors and
(3) music against: (1) constrained learning
strategies (voting and veto), (2) induction
and (3) standard self-training. The evalua-
tion measure was by estimated F-Measure.
The results demonstrate clear advantage
for the proposed method for classifying
text documents into sentiment categories
in domains where there is limited amounts
of training data.

1 Introduction

The application of machine learning techniques to
classify text into sentiment categories has become
an increasingly popular area of research. Models
induced from data can be very accurate(Halevy et
al., 2009), but a learner may require a significant
amount of data to induce a model which can accu-
rately classify a text collection. Large volumes of
labelled documents may not be readily available
or may be expensive to obtain. Models induced
from small volumes of labelled data may be sub-
optimal because the pre-classified data may not
contain a sufficient cross-section of the document
collection. The field of Semi-Supervised Learn-
ing (SSL) offers a number of possible strategies to
compensate for the lack of labelled data. These
techniques may not be effective if the model in-
duced from the initial set of labelled data is biased
or ineffective because these strategies can exacer-
bate the weaknesses in the initial model. This pa-
per describes a SSL strategy that is a variant of
Self-Training (ST). ST is an iterative process that
obtains models with increasingly larger samples of
labelled data. At each iteration the current model
is used to classify the unlabelled data. The ob-
servations which the model has a high confidence
in the classification are added to the next training
sample with the classification of the model as the
label.

The evaluation of the effectiveness of our pro-
posal involved the experimental comparison with
the following types of methods: (1) constrained,
(2) inductive and (3) standard self- training. Train-
ing data was randomly selected from the total doc-
ument collection and ranged from 1% of the total
collection to 5%. The F-Measure was estimated by
testing the model against the total document col-
lection with the training data removed. The exper-
iments were run 20 times for each training inter-
vals with two separate learners: Naive Bayes and
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Language Models. The domains which were eval-
uated were:(1) airline meals, (2) university teach-
ers and (3) music reviews. The results demonstrate
clear advantage for the proposed method for clas-
sifying text documents in domains where the mod-
els induced from the training data were weak.

1.1 Related Work

There are a number of approaches which
use words (Hatzivassiloglou and McKeown,
1997)(Riloff and Weibe, 2003), phrases (Liu,
2007) and grammars (Drury and Almeida, 2011)
to classify documents into sentiment categories.
Linguistic rules may not be sufficient in domains
which have non-standard linguistic features and
lexicons. Another approach is to use labelled
samples of the domain as training data to con-
struct a classifier. Labelled data can be expen-
sive to obtain. Semi-supervised learning can as-
sist by adding labels to unlabelled data and us-
ing them as training data. A sub-field of semi-
supervised learning uses constraints to limit the
documents selected (Abney, 2007a). For example:
co-training uses different views of the same data
to train individual classifiers and restraining the
documents selected to the documents which are
labelled equally by the separate classifiers. The
notion of ”hard” constraints has been extended to
with the idea of ”soft” constraints (Druck et al.,
2008). Druck (Druck et al., 2008) provides an
example of using the Noun, ”puck” to identify
hockey documents. This type of soft constraint
may not be successful with sentiment classifica-
tion because separate classes can share features
because a sentiment word can be negated. For ex-
ample: the Noun, ”recession” could be associated
with a negative class, but with the addition of the
word ”v-shaped” transforms ”recession” to a pos-
itive feature because the phrase ”v-shaped reces-
sion” is positive, consequently the addition of the
feature ”recession” for the negative class would be
an error. Chang (wei Chang et al., 2007) proposed
the use of constraints to label a pool of unlabelled
data and then use that pool of newly labelled data
to update the model. Chang’s approach would be
insufficient for sentiment classification because of
shared features where any individual unigram con-
straints could be negated and the pool of sentiment
indicators are very large and that constraining the
learner may produce a biased learner.

2 Proposed Strategy

The proposed ST variant - Guided Self-Training
(GST) - differs from standard ST in the selection
of the examples to add in each iteration. The
variation is the use of a high precision classi-
fier (linguistic rules) to select a small number of
high confidence candidates (”the high confidence
pool”). These rules are used to test the learner
against the high confidence pool, and if the learner
makes a high confidence erroneous classification
of a member of this pool then the member is added
to the correct class by the linguistic rules.

This training data is supplemented with extra
data which the learner selects with high confidence
from both non-members and members of the high
confidence pool. The assumption of this pro-
posed method is that the correction of erroneous
high confidence classifications improves the per-
formance of a learner and that the amount of im-
provement is directly related to the number of cor-
rections. The learner is not explicitly constrained
and is allowed to learn features from documents
which are not in the high confidence pool, but
the learner is ”guided” to make correct selections
when it makes serious errors.

2.1 Motivation

The principal motivation for this work was to
identify a strategy which could construct a ro-
bust model which could classify documents into
sentiment categories. Documents which are used
for sentiment classification are often linguistically
complex because they can contain: 1. multi word
expressions which have semantic idiomaticity and
2. non standard spelling and grammar. These
types of domains are difficult to classify because
of the aforementioned features and because of the
large volume of available documents to classify,
for example Twitter claims that there are 50 mil-
lions tweets posted in a day1. It is not feasible to
manually label or construct rules to label a signif-
icant number of these tweets. Learners which are
constructed from a small subset of data are likely
to be weak and traditional SSL techniques may not
be suitable.

2.2 Problem Definition

GST is designed to improve the performance of a
classifier in domains with the following character-
istics:

1http://goo.gl/qXldd
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Method Avg. Precision
Method 1 57% (±3)
Method 2 75% (±3)

Table 1: Precision of Classifiers Induced from
Rule Selected Data

• Limited amount of labelled data

• Labelling of large amounts of data is not fea-
sible

• External resources such as general sentiment
dictionaries (Esuli and Sebastiani, 2006) does
not aid sentiment classification

2.3 Selection of high precision rule classifier
There are a number of methodologies to create
a rule classifier. The rule classifier for GST
must have a high precision and therefore recall
was a secondary consideration. Two methodolo-
gies were considered: one which considered a se-
quence of POS tags to create bigrams (method 1)
and the other which used manually selected fea-
tures from training data and expanded them with
Wordnet (Fellbaum, 1998) (method 2). These
methodologies are described in detail by Liu (Liu,
2007). The competing methods selected and la-
belled data from reviews for airline food. Method
1 labels a document as according to the average
opinion orientation (Liu, 2007). Method 2 labels
a document as positive or negative if it has at least
a difference of three unigrams from a given class.
The difference of three unigrams produces an ac-
curate classifier, but at the expense of recall (Riloff
and Weibe, 2003).

The selection of the high precision classifier
was by precision score of Language Models in-
duced from the data selected by each competing
methodology. A mean average precision score was
calculated from a 2 X 5 cross validation process.
The results are described in Table 1.

In this context, the GST method will use
Method 22 to construct a dictionary for the high
precision classifier because it has a higher preci-
sion than method 1. The rule classifier for GST
will classify documents in the same manner as
the rule selection test, i.e. review must have at
least a difference of three unigrams from a given
class. The proposed GST method is not dependent

2Method 2 recorded an average precision of 95% and re-
call of 20% when the rules directly classified candidate data
and were allowed to abdicate.

on this rule construction methodology, but any al-
ternative rule classifier must have high precision
which is normally at the cost of low recall.

2.4 GST Algorithm

The proposed GST method is described in Algo-
rithm 1. GST takes two main inputs: the labelled
(LD) and unlabelled (UD) data sets. The outer
loop (lines 3-26) represent the typical self-training
iterations. The uniqueness of the proposal are the
following:

• Documents classified by the base learner with
a high confidence which are contrary to the
high precision classification (the pool of high
confidence candidates) are assigned to the
high precision classification. These docu-
ments are assigned to the labelled data for
training in the next iteration.

• The high precision classifier can abdicate (i.e
no decision) and therefore high confidence
candidates can be selected by the base learner
with out the explicit agreement of the high
precision classifier.

A model is induced from the selected data. At
each iteration, weaknesses in the model are cor-
rected, but the document selection is not con-
strained to the pool of high confidence candidates
(high precision classifier classifications), and con-
sequently the learner reaches its optimum per-
formance with less training data than competing
methods.

3 Experimental Evaluation

Three domains were chosen for the evaluation
of the proposed technique: (1) user gener-
ated reviews of airline meals (airlinemeals.net,
2010), (2) user generated reviews of university
lecturers (ratemyprofessors.com, 2010) and (3)
user generated reviews of music concerts and
records (reviewcentre.com, 2010) [11]3. The do-
mains demonstrated the following linguistic char-
acteristics: (1) invented words, (2) slang, (3) pro-
fanity, (4) non standard spelling and grammar, (5)
multi-word expressions (MWE) and (6) non stan-
dard punctuation.

3Data and dictionaries can be found at
http://goo.gl/IHL6V
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Algorithm 1 Description of GST Candidate Selection Cycle
1: procedure GST(LD,UD, sThr, Rules, Learner)

� LD and UD - The collections of labelled an unlabelled documents, respectively; sThr - The min-
imum classification confidence for a document to be considered for addition to the labelled training
set; Rules - A series of linguistic rules which return a classification for a document; Learner - the
classification algorithm that is to be self-trained. CD - a container for a corrected documents - i.e.
errors made by the base classifier AD A container for documents where the base and high precision
classifier don’t disagree TD - a container for documents in CD which are not selected for training

2: Model← Learner(LD) . Learn a classifier
3: repeat
4: lClass←Model.classify(UD)
5: rClass← Rules.classify(UD)
6: CD ← {}
7: AD ← {}

� Check agreement between Learner and Rules
8: for all d ∈ UD do
9: if lClass.confidence[d] ≥ sThr then

10: UD ← UD \ d
11: if rClass[d] 6= NULL and rClass[d] 6= lClass[d] then
12: CD ← CD ∪ {< d, rClass[d] >}
13: else
14: AD ← AD ∪ {< d, lClass[d] >}
15: end if
16: end if
17: end for
18: count← Count(CD)
19: if count == 0 then
20: count← Count(AD)
21: end if
22: TD ← ReturnRandomDocs(AD, count)
23: UD ← UD ∪ (AD \ TD)
24: LD ← LD ∪ CD ∪ TD
25: Model← Learner(LD) . Get a new model
26: until terminationCriterion
27: return Model
28: end procedure

3.1 Experimental Setup

Each document contained: the text and a form of
rating. The rating was taken as an indication of
the polarity of the review. The criteria for class as-
signment is described in Table 2. Documents not
satisfying the criteria for class assignment were re-
moved from our experiments.

These resulting labelled data sets were used to
compare:

• Two separate base learners (Naive Bayes and
Language Models)

Domain Positive
Category

Negative
Category

Airline
Meals

4 -5 Stars 1-2 Stars

Teacher
Reviews

Good
Quality

Poor
Quality

Music
Reviews

4-5 Stars 1-2 Stars

Table 2: Polarity Criteria
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• Alternative strategies

The evaluation was by means of an estimated F-
Measure. The experiments used increasing larger
random selection of documents as training data.
The smallest selection of data was 1% of the total
and the largest 5%. The increments were in steps
of 1%, for example the second iteration of the ex-
periment was 2%, the third 3% etc. At each itera-
tion the experiment was repeated 20 times, for ex-
ample the 1st iteration there would be 20 random
samples of 1% and 20 estimations of F-Measure.
An overview of the process is the following: 1.
randomly select training data (the LD set in Algo-
rithm 1) and 2. ”artificially unlabel” the remaining
documents to create the UD.

The experiments were repeated using Language
Models and Naive Bayes Classifier as the baseline
classifiers within the GST algorithm.

We have compared our proposed method
against three alternative strategies:

(1) inductive, (2) self-training and (3) con-
strained learning.

• Inductive: An inductive strategy induces a
classification model using only the labelled
data (Abney, 2007b).

• Self-Training: An iterative process where at
each step a model is induced from the current
labelled data and it is used to classify the un-
labelled data set. The model assigns a ”confi-
dence measure” to each classification. If the
classification confidence measure is greater
than a predefined threshold then the respec-
tive unlabelled cases are added to the new
iteration training data with the classifier as-
signed label. At the end of the cycle the
learner is trained on the ”new labelled data
set”. This cycle continues until a stopping
condition is met (Abney, 2007b). To ensure
an equitable comparison the stopping condi-
tion for both self-training and GST was 5 it-
erations.

• Constrained Learning: The alternate con-
strained learning strategies were Voting and
Veto.

– Voting strategy: Selects documents if
both the classifiers agree on the classi-
fication of the document

– Veto strategy: The base learner selects
the data, but high precision classifier

Figure 1: Language Models: Comparative Recall
and Precision for Teacher Domain

Figure 2: Naive Bayes: Comparative Recall and
Precision for Airline Meals Domain

adds the label, consequently the high
precision classifier vetoes a dissenting
leaner classification. The high precision
classifier is not allowed to abdicate.

4 Experimental Results

The Airline Food Domain results are presented in
Table 3. The results demonstrate a clear advan-
tage for the proposed strategy for both classifiers.
The results demonstrate a significant gain in F-
Measure at the 2% of domain for training for both
classifiers. The gain in F-Measure halts at the 3%
of domain for training. The two inductive strate-
gies gain F-Measure as training data increases.

The Teachers Domain results are presented in
Table 4. The results demonstrate a clear advantage
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% of Data for Training
1 2 3 4 5

Algorithm Classifier F-Measure F-Measure F-Measure F-Measure F-Measure
Fully Supervised Naive Bayes 0.91
Fully Supervised Language Models 0.98
GST Naive Bayes 0.52 ±0.05 0.61 ±0.01 0.63 ±0.01 0.63 ±0.01 0.63 ±0.01
GST Language Models 0.49 ±0.04 0.60 ±0.02 0.64 ±0.01 0.64 ±0.01 0.63 ±0.02
Voting Naive Bayes 0.48 ±0.00 0.49 ±0.00 0.50 ±0.01 0.51 ±0.01 0.51 ±0.01
Voting Language Models 0.48 ±0.00 0.49 ±0.00 0.49 ±0.00 0.50 ±0.00 0.51 ±0.00
Inductive (LD) Naive Bayes 0.51 ±0.01 0.51 ±0.01 0.52 ±0.01 0.54 ±0.01 0.55 ±0.01
Inductive (LD) Language Models 0.49 ±0.02 0.50 ±0.01 0.51 ±0.01 0.52 ±0.01 0.53 ±0.01
Inductive (LD+RC) Naive Bayes 0.54 ±0.00 0.55 ±0.00 0.56 ±0.00 0.56 ±0.00 0.57 ±0.00
Inductive (LD+RC) Language Models 0.53 ±0.00 0.54 ±0.00 0.55 ±0.00 0.55 ±0.00 0.56 ±0.00
Self-Training (LD) Naive Bayes 0.50 ±0.01 0.50 ±0.01 0.51 ±0.01 0.51 ±0.01 0.52 ±0.01
Self-Training (LD) Language Models 0.48 ±0.01 0.49 ±0.00 0.50 ±0.00 0.50 ±0.01 0.51 ±0.00
Veto Naive Bayes 0.54 ±0.00 0.55 ±0.00 0.56 ±0.00 0.49 ±0.00 0.49 ±0.00
Veto Language Models 0.53 ±0.00 0.54 ±0.00 0.55 ±0.00 0.55 ±0.00 0.56 ±0.00

Table 3: Airline Meals Experimental Results

for the proposed strategy. In common with the air-
line food domain the Guided Self-Training(GST)
shows a large gain in F-Measure at 2% of domain
for training. The gain in F-Measure is more pro-
nounced for language models. GST demonstrates
a reduction in F-Measure with further increases
in training data. The reduction in F-Measure is
within the mean standard deviation. The inductive
strategists in common with the airline food domain
gains F-Measure with increases in training data.
The self-training strategy gains in F-Measure in-
crease with training data, but at a faster rate than
the inductive strategies. The voting schemes also
demonstrate a gain in F-Measure, but at a lower
rate than the inductive and self-training strategies.

The Music Review Domain results are presented
in Table 4. The results demonstrates that the pro-
posed strategy does not show any distinct advan-
tage over the competing strategies. The models in-
duced from the labelled data seem robust and the
various SSL strategies fail to improve this strategy.

4.1 Discussion of Results

Strategies which have access to rule selected data
frequently have a higher precision measure, but
this improvement is frequently at the cost of lower
recall. For example the mean average recall and
precision for the voting strategy in the Airline
Food domain was 0.5 and 0.7, where as the in-
ductive strategy yielded recall and precision of:
0.51 and 0.62. A possible explanation for this phe-
nomenon is that fact that the high precision clas-
sifier may only classify a very specific sample of
documents. The addition of these documents la-
belled by the high precision classifier to the initial
data set of the models we could be biasing the clas-

sifier towards learning very specific rules, which
may negatively impact on recall, but may boost
precision. The GST method does not suffer from
a decrease in recall. A possible explanation could
be the high precision classifier is being used with
a different purpose within GST when compared
to the (LD+RC) learners. In GST high precision
classifier are used to supervise the classifications
of a standard base learner with the goal of avoid-
ing very obvious mistakes. In the (LD+RC) learn-
ers the rules are used to add more labelled data
to the training set available to the learners. These
are two different uses of the high precision classi-
fier and our experiments clearly provide evidence
towards the advantage of our proposal. In effect,
GST improvement in precision is not offset by a
drop in recall.

The graphs illustrated in Figure 2 and Figure
1 provide a comparative analysis of the precision
and recall for the inductive and proposed strategy
in the airline and teacher domains respectively.
These graphs provide some evidence for the asser-
tion that the F-Measure gains are at not at the ex-
pense of a drop in recall because until 2% domain
training data there are gains in precision and no
drop in recall. The airline domain demonstrates a
gain in recall. The recall drops from 2% onwards,
however recall is always significantly higher than
the recall for the inductive strategy. The GST strat-
egy continues to gain precision with increases in
training data.

4.2 Discussion of Methodology

The assumption of the GST methodology is that
correcting high confidence erroneous classifica-
tions and including the documents as training
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% of Data for Training
1 2 3 4 5

Algorithm Classifier F-Measure F-Measure F-Measure F-Measure F-Measure
Fully Supervised Naive Bayes 0.96
Fully Supervised Language Models 0.99
GST Naive Bayes 0.67 ±0.04 0.71 ±0.02 0.67 ±0.03 0.66 ±0.02 0.65 ±0.02
GST Language Models 0.58 ±0.01 0.75 ±0.01 0.76 ±0.01 0.74 ±0.02 0.73 ±0.02
Voting Naive Bayes 0.47 ±0.01 0.48 ±0.01 0.51 ±0.01 0.52 ±0.01 0.54 ±0.01
Voting Language Models 0.45 ±0.01 0.48 ±0.01 0.49 ±0.01 0.51 ±0.01 0.53 ±0.01
Inductive (LD) Naive Bayes 0.56 ±0.03 0.60 ±0.02 0.63 ±0.03 0.65 ±0.02 0.66 ±0.02
Inductive (LD) Language Models 0.52 ±0.02 0.59 ±0.03 0.61 ±0.02 0.64 ±0.02 0.66 ±0.02
Inductive (LD+RC) Naive Bayes 0.53 ±0.00 0.54 ±0.00 0.54 ±0.05 0.57 ±0.00 0.58 ±0.00
Inductive (LD+RC) Language Models 0.52 ±0.00 0.53 ±0.00 0.55 ±0.00 0.56 ±0.00 0.57 ±0.00
Self-Training (LD) Naive Bayes 0.53 ±0.03 0.56 ±0.02 0.60 ±0.02 0.62 ±0.03 0.64 ±0.02
Self-Training (LD) Language Models 0.49 ±0.02 0.55 ±0.03 0.57 ±0.02 0.60 ±0.02 0.62 ±0.02
Veto Naive Bayes 0.52 ±0.00 0.54 ±0.00 0.55 ±0.00 0.57 ±0.00 0.58 ±0.00
Veto Language Models 0.52 ±0.00 0.53 ±0.00 0.55 ±0.00 0.56 ±0.00 0.57 ±0.00

Table 4: Teacher Review Experimental Results

% of Data for Training
1 2 3 4 5

Algorithm Classifier F-Measure F-Measure F-Measure F-Measure F-Measure
Fully Supervised Naive Bayes 0.96
Fully Supervised Language Models 0.99
GST Naive Bayes 0.51 ±0.01 0.46 ±0.02 0.48 ±0.02 0.49 ±0.02 0.50 ±0.03
GST Language Models 0.54 ±0.01 0.55 ±0.01 0.49 ±0.01 0.49 ±0.02 0.48 ±0.02
Voting Naive Bayes 0.43 ±0.00 0.44 ±0.00 0.45 ±0.01 0.46 ±0.01 0.47 ±0.01
Voting Language Models 0.43 ±0.00 0.45 ±0.01 0.45 ±0.01 0.46 ±0.01 0.47 ±0.01
Inductive (LD) Naive Bayes 0.57 ±0.09 0.64 ±0.07 0.61 ±0.07 0.66 ±0.07 0.65 ±0.06
Inductive (LD) Language Models 0.54 ±0.09 0.59 ±0.11 0.60 ±0.07 0.65 ±0.08 0.67 ±0.06
Inductive (LD+RC) Naive Bayes 0.45 ±0.00 0.45 ±0.00 0.46 ±0.01 0.47 ±0.01 0.48 ±0.01
Inductive (LD+RC) Language Models 0.45 ±0.01 0.46 ±0.00 0.46 ±0.00 0.47 ±0.00 0.48 ±0.01
Self-Training (LD) Naive Bayes 0.58 ±0.01 0.64 ±0.07 0.61 ±0.07 0.66 ±0.08 0.65 ±0.06
Self-Training (LD) Language Models 0.54 ±0.09 0.58 ±0.12 0.60 ±0.08 0.65 ±0.09 0.66 ±0.07
Veto Naive Bayes 0.45 ±0.00 0.45 ±0.00 0.46 ±0.01 0.47 ±0.01 0.48 ±0.01
Veto Language Models 0.45 ±0.00 0.46 ±0.01 0.46 ±0.00 0.47 ±0.00 0.48 ±0.01

Table 5: Music Reviews Experimental Results

data will improve the performance of the induced
model. An experiment was conducted where the
number of documents corrected was recorded per
training cycle. The experiment was conducted for
the 1% of domain for training. The results are de-
scribed in Figure 3. The two domains in which
GST gained the highest F-Measure there is a high
level of corrections in the first training cycle. The
remaining cycles show a small number of correc-
tions. The music domain demonstrates a small
number of corrections and may account for the rel-
atively poor performance of GST in this domain.

The second assumption of this methodology is
that the classifier which corrects the erroneous
classifications must be accurate and that classifiers
with lower precision will effect the performance
of the GST strategy. A further experiment was
conducted with a high precision classifier which
was constructed with a lower precision methodol-
ogy (method 1). The experiment was conducted

on the airline meals domain data. The results are
presented in Table 6. The results were the worst
of all of the strategies tested. The lower preci-
sion classifier ”modified” correct high confidence
classifications made by the base learner rather than
the high confidence erroneous classifications. The
”erroneous corrections” inhibited the base learner
and induced a weak model. Although the afore-
mentioned methodology had an inferior precision
than the classifier used for the proposed strategy
its overall performance was slightly better. Ta-
ble 6 shows the inductive(RD+LC) strategy which
used rule selected data gained a slightly higher F-
Measure than for the inductive(RD+LC) strategy
in the main experiments (Table 3).

5 Conclusion

This paper describes a new semi-supervised classi-
fication method for sentiment classification (GST)
designed with the goal of handling document clas-
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% of Data for Training
1 2 3 4 5

Algorithm Classifier F-Measure F-Measure F-Measure F-Measure F-Measure
GST Language Models 0.13 ±0.00 0.15 ±0.00 0.17 ±0.00 0.21 ±0.00 0.25 ±0.00
Inductive (RD+LC) Language Models 0.58 ±0.00 0.58 ±0.00 0.59 ±0.00 0.59 ±0.00 0.59 ±0.00

Table 6: GST Strategy with lower precision classifier

sification tasks where there are limited labelled
documents. The proposed technique can perform
well in circumstances where more mature strate-
gies may perform poorly. The characteristics of
the domains where it is thought that this strategy
will offer a clear advantage are the following: (1)
model induced from labelled data makes obvious
mistakes, (2) adding more data (either manually
or by rules) does not improve performance, and
(3) it is possible to construct a high precision rule
based classifier. GST uses linguistic information
encoded into a high precision classifier. This in-
formation is not added on mass where the learner
may be biased towards information captured by
the high precision classifier, but it is added in ar-
eas where the learner is weak. GST also selects a
larger variety of documents than the high precision
classifier because the base learner self-selects high
confidence candidates from the unlabelled data.
The constant testing of the learner prevents drift
which may occur in classical self-training. The
proposed technique provides a viable alternative to
current semi-supervised classification strategies,
as our experimental results demonstrate.

Figure 3: No. Corrected Documents Per Training
Cycle.
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Abstract

In the field of subjectivity detection, al-
gorithms automatically classify pieces of
text into fact or opinion. Many different
approaches have been successfully evalu-
ated on English or Chinese texts. Nev-
ertheless the assumption that these algo-
rithms equally perform on all other lan-
guages cannot be verified yet. It is our
intention to encourage more research in
other languages, making a start with Ger-
man. Therefore, this work introduces a
German corpus for subjectivity detection
on German news articles. We carry out
this study in which we choose a number
of state of the art subjectivity detection ap-
proaches and implement them. Finally we
show and compare these algorithms’ per-
formances and give advice on how to use
and extend the introduced dataset.

1 Introduction

The detection of subjective statements in natu-
ral language texts is necessary for the analysis of
opinions and the extraction of facts for knowledge
retrieval. The continuously increasing number of
natural language texts on the Internet and the need
for opinion detection and fact retrieval makes re-
search on subjectivity detection more and more
important.

The economic impact is rising just as much.
The Internet has long turned into an open platform
in which everybody can participate and contribute
his or her share of opinions.

Subjectivity detection also affects upcom-
ing fields of research like knowledge retrieval.
Crawlers have to distinguish between objective
and subjective texts in order to extract given facts
only from the objective parts.

The other way round, in the field of opinion

analysis, many approaches are supposed to be ap-
plied on subjective texts. In polarity classification
pieces of text are classified into complementary
viewpoints. In this field of research facts are con-
sidered noise to the problem. So, finding the sub-
jective parts beforehand can increase the accuracy
of such a classifier (Pang and Lee, 2004). Sub-
jectivity detection can support question-answering
systems. The knowledge about the subjectivity of
sentences and sections is important, especially for
complex questions that cannot be answered with a
single fact, but should rather treat different view-
points on an issue. Also, subjectivity detection can
be useful for text summarization which may want
to list facts separately from different viewpoints.

In conclusion it can be stated that subjectiv-
ity detection is one of the most important pre-
processing steps for many IR applications. Such
pre-processing has to be language independent or
at least the drawbacks for each language have to
be known. Hence, the overall goal of this work is
to investigate the differences in subjectivity detec-
tion in different languages, starting with German
and English.

In this work we evaluate a number of machine
learning based subjectivity detection approaches
on German news texts and on the MPQA corpus,
which is the current English standard corpus for
subjectivity annotations. We focus on supervised
learning approaches for sentence-wise binary clas-
sification between subjective and non-subjective
sentences without polarity.

After giving an overview over the state of the art
in subjectivity detection, we provide details about
the MPQA corpus. Afterwards we introduce the
Subjectivity in News Corpus (SNC), which was
created in the course of this work. The corpus,
precisely the German part of the corpus, was an-
notated in such a way that it provides maximum
compatibility with MPQA. Evaluation results on
both corpora are compared to conclude if current

17



machine learning based subjectivity detection ap-
proaches are equally applicable on both languages.
In the concluding part of this work we show which
features and ideas are better fit to detect subjectiv-
ity in which language and give advice on how to
handle subjectivity detection on German texts.

2 Related Work

The field of subjectivity detection can be roughly
divided into lexical approaches and machine learn-
ing approaches. The lexical approaches are those
that incorporate some sort of annotated dictionary.
The machine learning approaches represent state-
ments as feature vectors in order to learn to distin-
guish between subjective and objective statements.
In this work, we decided to focus only on super-
vised learning approaches, which are reviewed in
the remainder of this section. In the course of this
work a new corpus was created. Therefore this
section is completed by a description of corpora
for subjectivity detection.

2.1 Subjectivity Detection

Yu and Hatzivassiloglou (2003) presented the first
fully supervised machine learning approach in the
field of subjectivity detection. As training data a
set of Wall Street Journal (WSJ) articles with at-
tached categories is used. In this work the use
of a Naive Bayes classifier to distinguish subjec-
tive and objective texts has been proposed. These
texts were represented by features like extracted
unigrams, bigrams, trigrams and POS-tags.

The latter approach does not take the context
of a sentence into account. A sentence is more
likely to be subjective if the neighboring sentences
are subjective as well. Pang and Lee try to tackle
this issue with their minimum cut approach (Pang
and Lee, 2004). They propose a similar machine
learning approach, but additionally assign an asso-
ciation value for each pair of sentences, which is
based on the distance of the two sentences in the
text. This value encourages the classifier to assign
the same label for sentences with a small distance.
The structure of the article including the predic-
tions and association values about the sentences
are represented by a graph and the final classifica-
tion is determined by a minimum-cut algorithm.

Wiebe et al. investigate another promising fea-
ture in (Wiebe et al., 2004), namely the one of
”unique words”. It is shown that ”apparently, peo-
ple are creative when they are being opinionated”.

Note, that this work is a statistical study, where
this idea was not carried on as an additional fea-
ture in a classifier. The study is based on a corpus
of WSJ articles. It is argued that rare words are
more likely to occur in opinionated pieces than in
objective texts.

Another problem in subjectivity detection and
opinion mining in general is the domain and con-
text dependency of many words. It is true in many
cases that a word can express an opinion in some
context, but be perfectly neutral in another. In
their entry for the 2006 Blog Trec, Yang et al.
present an approach to this problem (Yang et al.,
2006). They use two different sets of training data.
One of them contains text about movies, the other
about electronic devices. A classifier is trained
with each of these data sets and only those fea-
tures that were useful in both cases are extracted
and used in the final classifier. Their rationale is
to achieve a feature set that only contains domain-
independent features.

Another approach at domain-dependency has
been presented by Das and Bandyopadhyay
(2009). Instead of discarding domain-dependent
words, which could decrease recall, it is tried to
determine the topic of a text and use it as a feature
in their classifier. Therefore, an additional pre-
processing step has been introduced, clustering the
training data to determine all possible topics. It is
claimed that this feature increases the performance
on the MPQA corpus by 2.5%.

Another interesting feature has been proposed
in the approach by Chen et al. (2007), where
so-called long-distance-bigrams are introduced.
Long-distance-bigrams are bigrams which are not
consisting of neighboring terms, but of pairs of
terms with a certain, fixed distance. 1-distance bi-
grams would be the same as regular bigrams, 2-
distance bigrams have one term in between and so
forth. They report a slightly better classification
result using a feature set consisting of unigrams,
bigrams and 2-distance bigrams, than by just us-
ing unigrams. This is interesting in the context of
Pang et al. (2002) reporting that using only uni-
grams performs better than using a combination
of unigram and n-gram features.

Banea et al. (2008) wondered if the large
amount of NLP tools that already exist for English
texts can be exploited for other languages and
presented an approach based on machine transla-
tion. Different experiments are carried out with
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English data and data that was automatically trans-
lated into Romanian. Machine translated data is
either used as training or as test data. Encour-
aging results are achieved and it is claimed that
machine translation is a viable alternative to cre-
ating resources and tools for subjectivity detection
in other languages.

2.2 Subjectivity Annotated Corpora

For the English language there are currently two
major corpora with subjectivity annotations. The
first corpus is the movie data corpus presented
in (Pang and Lee, 2004). It contains 5000 sub-
jective and 5000 objective sentences, which have
been automatically collected. The subjective sen-
tences are extracted from movie reviews from rot-
tentomatoes.com and the objective ones are from
plot summaries from imdb.com. One drawback of
this corpus is that it does not contain articles, but
only a list of sentences without context.

The second corpus is the MPQA corpus1, which
is a 16000-sentence corpus made up of news arti-
cles which are tagged with a complex set of sub-
jectivity annotations. The annotations not only
mark subjective statements, but also their polar-
ity, intensity, speaker and other things. Based on
these fine-grained annotations the subjectivity of
each sentence can be determined. The researchers
consider a sentence to be subjective if it contains a
private state, a subjective speech event or an ex-
pressive subjective element. Otherwise the sen-
tence is objective (Wiebe, 2002). With the term
private state, they refer to the definition by Quirk
et al. (Quirk, 1985) which, according to them,
includes mental or emotional states such as opin-
ions, beliefs, thoughts, feelings, emotions, goals,
evaluations and judgments.

A speech event refers to a speaking event, such
as direct or indirect speech. Speech events are not
automatically considered subjective. They can be
objective if the credibility of the source is not in
doubt and their content is portrayed as fact. The
term expressive subjective element is based on a
publication by Banfield (1982). It is to be used for
statements that ”express private states, but do not
explicitly state or describe the private state”.

3 Settings

In this section we first introduce the Subjectivity in
News Corpus (SNC), a set of corpora for subjec-

1Referring to version 2.0 in all explanations.

tivity detection. The German part of this corpus,
namely SNC.de, which was created for this work,
is based on German news. SNC.de marks the first
corpus in a line of upcoming similar corpora for
additional languages to be created in the near fu-
ture. In the second part of this section, we present
selected state of the art approaches. The evalua-
tion results of these approaches will provide the
baseline for future approaches.

3.1 Structure of the SNC Corpus
Although the introduced corpus will be a multi lin-
gual corpus, the descriptions in this section focus
on the German part (SNC.de). In order to be able
to evaluate the approaches on German texts, we
created an annotated, German corpus. The objec-
tive was to provide maximum compatibility with
the MPQA corpus. So we abided by the annota-
tion manual as closely as possible and also chose
the topics for the texts similarly. Just like in the
MPQA corpus, the articles in our corpus are or-
dered by topic. If we wanted to be completely con-
sistent with MPQA we should also apply the same
annotation set. The problem was that many of the
very detailed annotations were of no relevance to
this work. So we decided to only make binary,
sentence-wise annotations, based on the definition
of sentence subjectivity presented in (Riloff et al.,
2003).

The corpus annotation was carried out by a sin-
gle annotator using the graphical interface of the
GATE2 tool. So the entire corpus is saved in
GATE’s own xml serialization format. The an-
notator attached to each sentence one of the an-
notations ”subjective” or ”non-subjective”. Sug-
gestions for sentence splitting were provided by
the user interface to speed up the annotation pro-
cess. The annotated texts were saved as entire ar-
ticles, in order to preserve the context of each sen-
tence. The articles to annotate were randomly cho-
sen from current world news in German.

A comparison of the SNC corpus and the
MPQA corpus is given in Table 1.

3.2 Selected Approaches
In this part we list the approaches selected for eval-
uation and explain why they have been chosen.

Unique Words The feature of unique words, in-
vestigated by Wiebe et al. (2004), has never been
tried out in a classifier. So, we will use a counter

2http://gate.ac.uk/

19



Table 1: Text Statistics about the Corpora.
c: characters; s: sentences; a: article

SNC MPQA
Article Statistics
a in the corpus 278 692
Avrg. a length in s 24,6 22,8
Std.-dev. a lengths 14,3 27,1
Shortest a in s 3 2
Longest a in s 80 275
Sentence Statistics
s in the corpus 6848 15802
Subjective s 3458 7675
Objective s 3390 8127
Avrg. s length c 124,9 132,4
Std.-Dev. s lengths 67,0 80,1
Same annot. as neighbors 52,0% 59,1%
Avrg. length subj. s in c 133,0 150,1
Avrg. length obj. s in c 116,6 115,0
Word Statistics
tokens in the corpus 141144 403116
words in the corpus 120128 342165
distinct word forms 18968 22736

for infrequent words in our classifier and evalu-
ate if it contributes to the separation of the two
classes. We can use the Leipzig Corpora Col-
lection (LCC)3 and the BNC to figure out which
words of each language classify as rare. We de-
cided to define a rare word form, as one that is not
one of the 600.000 most frequent word forms in its
language.

POS-Trigrams Santini’s approach for genre de-
tection (Santini, 2004) has not yet been picked up
by researchers from subjectivity detection. The
main idea is to use trigrams of POS-tags as fea-
tures. We limit the number of features by taking
the most frequent POS-trigrams and varying the
maximum number.

Unigrams, Bigrams, Trigrams and POS-Tags
The machine learning approach by Yu and Hatzi-
vassiloglou (2003) can be considered a standard
for later approaches. Sentences are represented by
a feature vector which is taken to train a model for
separating objective from subjective sentences. A
Naive Bayes classifier is used and the feature vec-
tor contains unigrams, bigrams, trigrams and POS-
tags.

3http://corpora.informatik.uni-leipzig.de/download.html

Minimum-Cut Classifier Pang et al. presented
the first idea to incorporate context into the classi-
fication decision (Pang and Lee, 2004). This clas-
sifier is not only based on the content of a sen-
tence, but also on its neighboring sentences.

Long-Distance-Bigrams Chen et al. (2007)
proposed the feature of long-distance-bigrams
which is a novel idea and therefore worth inves-
tigating.

Machine-Translation of Training Data This
work aims to investigate if a separate research ef-
fort is necessary for every language, or if the exist-
ing tools of the English language can be exploited
for other languages with acceptable accuracy. Just
like in the publication of Banea et al. (2008) we
will automatically translate the MPQA corpus, in
our case into German, and use it as training or test
data. We denote the translation MPQA-G.

4 Experimental Results

Experiments were performed according to se-
lected approaches of Section 3.2. For the exper-
iments with SVMs we chose a linear SVM and
used the implementation of Libsvm4. For the
Naive Bayes classifier the weka5 implementation
was used. The Minimum-Cut classifier was im-
plemented by ourselves based on the description
in the publication. For the creation and manipula-
tion of graphs we used the JUNG6 API.

For the features of the baseline classifier we
chose POS-tags and a limited number of the most
frequent unigrams of the training corpus. It is
a simple feature set which nevertheless performs
strongly compared to other approaches. We car-
ried out a number of experiments with a Naive
Bayes classifier and an SVM and a variable num-
ber of unigrams as shown in Fig. 1a. It can be
observed that the SVM on the English corpus is
rising slightly more steeply than the SVM on the
German corpus. This indicates that large numbers
of unigrams are more useful for English texts than
for German ones.

For the following experiments, the baseline
classifier shall be the one using 1500 unigrams.
This number seems a reasonable trade-off between
computational cost and accuracy.

4www.csie.ntu.edu.tw/˜cjlin/libsvm/
5www.cs.waikato.ac.nz/ml/weka/
6http://jung.sourceforge.net/
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(b) POS-Trigrams (standalone)
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(c) Pang’s Minimum-Cut Classifier
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(d) POS-Trigrams (merged feature vectors)
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Figure 1: Comparing four approaches for different
languages (a–d). Evaluations were performed on
the English corpus MPQA and the German corpus
SNC.

For every approach where it is applicable we
carry out two types of experiments. The first type
we would like to call the standalone experiment,
in which we use exactly the feature vector de-
scribed for the approach. The second experiment,
the merged-feature-vector-experiment, is done by
merging the feature set of our baseline classifier
with that of the approach. The second experiment
allows us to evaluate if an approach can improve
a simple but effective classifier. This is impor-
tant because some approaches may not be intended
as full-blown classifiers, but rather as additional
ideas to existing classifiers.

All experiments were carried out by 5-fold cross
validation, except some of the experiments with
machine-translated data, which is explained sepa-
rately in the respective section. In all tables the
column denotes the corpus used for the cross-
validation and the row denotes the experiment’s
setting, i.e. feature set and classifier. Most exper-
iments are compared to the results of the baseline
classifier and to the corpus baseline. The latter is
the percentage of the label that occurs more often
in the corpus.

4.1 Unique Words

Table 2: Unique Words Feature Experiments.
UW: Unique Words; BUW: Base+Unique Words

SNC MPQA
Corpus Baseline 50,50 51,40
UW Training Set (NB) 49,46 51,24
UW Training Set (SVM) 50,76 51,10
UW Statistics (NB) 49,72 51,79
UW Statistics (SVM) 49,31 49,26
UW Tr.+Stats (NB) 48,01 51,65
UW Tr.+Stats (SVM) 53,79 49,81
Baseline Classifier (NB) 59,21 66,84
Baseline Classifier (SVM) 67,99 72,72
BUW Training (NB) 59,22 65,87
BUW Training (SVM) 67,76 72,20
BUW Statistics (NB) 59,18 66,80
BUW Statistics (SVM) 68,06 72,68
BUW Tr.+Stats (NB) 59,20 65,99
BUW Tr.+Stats (SVM) 67,91 72,68

For both experiment settings, the standalone
setting and the merged-feature-vector setting, we
carried out three variants with different features.
In the first variant we used a counter for words,
that are unique in the scope of the training data,
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in the second one a counter for words unique ac-
cording to statistics about the BNC or the LCC and
thirdly a feature vector with both of the latter fea-
tures (see Table 2).

The standalone setting of the unique words fea-
ture is not a serious attempt at a classifier. It con-
tains only one or two attributes which is obviously
not enough to separate the classes. But we can
compare them to the corpus baselines to determine
if the features contain any useful information.

Contrary to the claim made in (Wiebe et al.,
2004), our experiments could not verify that
unique words are a useful feature to detect subjec-
tivity. Using only unique words results in accura-
cies very close to 50%, except for one setting, but
the success for that setting could not be repeated
when applying unique words additionally to base-
line features. Since the feature does not seem to
be useful for either language, no difference could
be detected between them.

4.2 POS-Trigrams

When using only trigrams of POS-tags (Fig. 1b),
most of the experiments stay far behind their re-
spective baseline classifiers. The only classifier
that reaches above the baseline classifier is NB on
the German corpus, but only by a small margin.

The standalone experiments indicate that the
POS-trigram approach is more useful for German
texts than for English ones, when the baseline clas-
sifier is taken as comparison value. The best value
from the German SVM is slightly closer to the
baseline than the best value of the English SVM
and for the NB classifiers it is even clearer. The
German NB performs better than baseline and the
English one significantly worse.

The chart about the experiments with the
merged feature vectors (Fig. 1d) illustrates that
all results are almost identical to the respective
baseline result. Both the English classifiers and
the German SVM perform exactly like the base-
line classifier in all experiments. This indicates
that the POS-trigrams do not contain much use-
ful information that is not already contained in
the baseline features. The only exception is again
the Naive Bayes classifier applied on the German
corpus, which considerably exceeds the baseline
classifier’s accuracy. The diagram does not show
a clear difference between the languages, but it
does indicate that POS-trigrams are more useful
for German with a classifier on the German cor-

pus being the only one above baseline.

4.3 Unigrams, Bigrams, Trigrams and
POS-Tags

Table 3: Experiments with Unigrams, Bigrams,
Trigrams and POS-Tags

SNC MPQA
Baseline Classifier (NB) 59,21 66,84
Baseline Classifier (SVM) 67,99 72,72
Naive Bayes 59,68 66,92
SVM 69,80 74,24

This experiment is carried out with feature vec-
tors containing all unigrams, bigrams, trigrams
and POS-tags that occur in the training data, which
amounts to a very long vector. The setting with
merged feature vectors is not applicable for this
experiment because the feature set is a superset of
the baseline classifier’s feature set.

Table 3 shows that the SVM performs clearly
better than the baseline classifier for both corpora,
unlike the Naive Bayes classifier which does not
show any improvement. The approach is based on
a huge amount of different features. The SVM
is able to handle this number of features better
than the Naive Bayes classifier. Since the features
also contain a large amount of redundant data, the
Naive Bayes classifier does not perform as well.

For both languages the classifiers achieve about
the same distance from the baseline classifiers,
namely roughly 2%. So it appears that there is
no language dependence for this feature set, but in
fact it is much harder to achieve an improvement
of 2% when starting from a higher baseline. So,
the fact that the distances to the baselines are equal
might actually be an indication that the approach
is more useful for the English corpus.

4.4 Minimum-Cut Classifier

Fig. 1c shows the results of the experiments with
our native implementation of the minimum-cut
classifier. The feature set we used is the same as in
the baseline classifier. The parameter c, which de-
termines how much influence the context of a sen-
tence has on its classification, was set to the value
determined in a parameter optimization. The val-
ues are different for SVM (2−3) and Naive Bayes
(2−1.9). It can be seen that when the SVM is used
as base-predictor by the minimum-cut classifier,
the accuracy is well above the one of the baseline
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classifier, but when Naive Bayes is used, the accu-
racy increased only minimally.

With respect to the difference between the two
languages, there is certainly none for the Naive
Bayes classifiers. But for the SVMs it seems that
the classifier for the German corpus achieves a
bigger distance to its baseline classifier than the
classifier for the English corpus. The average dis-
tances to the baseline classifiers are 1.85% and
1.64% respectively. This might signify that the ap-
proach is better fit for German texts, but the reason
for the difference might also be that the English
baseline classifier is much better in the first place
and there is not as much room for improvement as
for the German baseline classifier.

4.5 Long-Distance Bigrams
Table 4: Long-Distance Bigrams Experiments;
(DB: Distance Bigrams)

SNC MPQA
Corpus Baseline 50,50 51,40
2-DB (NB) 55,55 60,57
2-DB (SVM) 60,29 66,74
2+3-DB (NB) 56,16 61,11
2+3-DB (SVM) 60,63 66,51
2+3+4-DB (NB) 56,20 61,22
2+3+4-DB (SVM) 60,41 66,08
Baseline Classifier (NB) 59,21 66,84
Baseline Classifier (SVM) 67,99 72,72
Base+2-DB (NB) 59,67 65,91
Base+2-DB (SVM) 67,59 72,78
Base+2+3-DB (NB) 61,06 66,11
Base+2+3-DB (SVM) 67,29 72,34
Base+2+3+4-DB (NB) 61,63 66,11
Base+2+3+4-DB (SVM) 66,65 72,05

Table 4 shows the results of using only long-
distance-bigrams as features. The types of ex-
periments we carried out are similar to those in
described in (Chen et al., 2007). First we used
only 2-distance-bigrams as features. Then we ex-
tended the feature set by adding 3- and 4-distance-
bigrams.

All SVMs perform much worse than the base-
line classifiers and their distance to that value is
about the same for all settings and corpora. Naive
Bayes also performs worse than baseline, but a dif-
ference between the English and German corpus
can be observed. For the German corpus the dis-
tances to the baseline classifier are between 3%
and 4%, whereas for the English corpora the dis-

tance is between 5% and 6%. This observation is
affirmed when we apply long-distance-bigrams to-
gether with the baseline features.

4.6 Corpus Translation
Table 5: Machine-Translated Data Experiments.

MPQA-G SNC CV
Baseline Class. (NB) 57,70 59,21
Baseline Class. (SVM) 63,43 67,99
Base+Most Freq. (NB) 59,80 60,05
Base+Most Freq. (SVM) 61,34 64,22
POS-Tri 2048 (NB) 57,83 60,18
POS-Tri 2048 (SVM) 58,56 60,88
Uni+Bi+Tri+POS (NB) 56,31 59,68
Uni+Bi+Tri+POS (SVM) 63,52 69,80
Baseline (MinCut-NB) 57,71 59,24
Baseline (MinCut-SVM) 63,41 69,68

Banea et al. proposed machine translation as
a way of saving the effort to create NLP tools in
languages other than English. Our experiments
with machine translated data are shown in Table 5.
The middle column shows the results for using
our translation of the MPQA corpus (MPQA-G)
as training data and SNC as test data. The right
column gives the upper bounds of accuracy that
can be achieved, which we determined by cross
validation on the test data.

It can be seen in many of the settings that the
translation approach comes rather close to its up-
per bound. For many settings the difference is only
2%. We have to acknowledge though, that ex-
actly for those settings where the upper bound is
high, the distance to the upper bound is also pretty
large. There are three settings with 68% and al-
most 70% accuracy in CV, but using the translated
corpus for training achieves only 63,5% in all of
these settings. That means the highest accuracy of
the translation approach is significantly lower than
the highest cross validation on the test data.

5 Conclusion

While searching for the best machine learning ap-
proach for subjectivity detection on multi-lingual
texts, we have observed several differences con-
cerning the quality of subjectivity detection in dif-
ferent languages. These differences depend on the
chosen features for the individual machine learn-
ing approach, but we have also seen that the dif-
ferences along the languages are very subtle. Most
approaches do not show a clear preference for one
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specific language. Also, the differences are dif-
ficult to interpret because the results of the base-
line classifiers for each language are very far apart
from each other and the variety caused by different
classifiers is much bigger than the language depen-
dency.

The evaluated approaches performed better on
English texts than on German. Whenever an ap-
proach improved according to the English base-
line, this approach also improved according to the
German baseline.

Focusing on the chosen features, we have seen
that using large numbers of unigrams is more use-
ful for English, compared to using only POS-tags.
Since there is no objective comparison value, it re-
mains unclear if this means that POS-tags are less
useful or unigrams more useful for English. We
have furthermore observed that POS-trigrams are
more useful for German. These two aspects indi-
cate that German subjectivity is more grammati-
calized as opposed to English subjectivity which
is more based in lexis.

Another feature that seems to be more useful for
German are the long-distance-bigrams.

The efficacy of the minimum-cut approach
strongly depends on the distribution of class labels
in the articles. If many sentences are tagged with
the same labels as their neighbors, the approach
will be very useful, otherwise it will not. In the
evaluation we found that the approach seems to
work slightly better for MPQA than for SGN. The
statistics about the corpora confirm this, indicating
that MPQA has more consecutive sentences with
equal annotations (see Table 1).

Another important observation we made is that
machine-translation of training data is not a vi-
able alternative to manually creating it. The re-
sults only came close to their comparison values
for approaches that did not perform so well in the
first place. The effectiveness of the approach de-
pends of course on the quality of the translation.
So it can be expected that it becomes more use-
ful in the future as machine-translation improves.
On the other hand, the quality of translations be-
tween English and German is quite high compared
to other language pairs.

Summarizing we can state that there is no sub-
jectivity detection approach which is more suitable
for German texts than for English texts.

The dataset was published at http://130.
149.154.91/corpus/snc/SNC.de.zip.
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Abstract

Most relation extraction methods, espe-
cially in the domain of biology, rely on
machine learning methods to classify a co-
occurring pair of entities in a sentence to
be related or not. Such an approach re-
quires a training corpus, which involves
expert annotation and is tedious, time-
consuming, and expensive.

We overcome this problem by the use of
existing knowledge in structured databases
to automatically generate a training cor-
pus for protein-protein interactions. An
extensive evaluation of different instance
selection strategies is performed to maxi-
mize robustness on this presumably noisy
resource. Successful strategies to con-
sistently improve performance include a
majority voting ensemble of classifiers
trained on subsets of the training corpus
and the use of knowledge bases consist-
ing of proven non-interactions. Our best
configured model built without manually
annotated data shows very competitive re-
sults on several publicly available bench-
mark corpora.

1 Introduction

Protein function depends, to a large degree, on the
functional context of its interaction partners, e.g.
other proteins or metabolites. Accordingly, get-
ting a better understanding of protein-protein in-
teractions (PPIs) is vital to understand biological
processes within organisms. Several databases,
such as IntAct, DIP, or MINT, contain detailed

information about these interactions. To popu-
late such databases, curators extract experimen-
tally validated PPIs from peer reviewed publica-
tions (Ceol et al., 2010). Therefore, the automated
extraction of PPIs from publications for assisting
database curators has attracted considerable atten-
tion (Hakenberg et al., 2008; Airola et al., 2008;
Tikk et al., 2010; Bui et al., 2010).

PPI extraction is usually tackled by classifying
the

(
n
2

)
undirected protein mention pairs within a

sentence, where n is the number of protein men-
tions in the sentence. Classification of such pairs
is often approached by machine learning (Airola et
al., 2008; Tikk et al., 2010) or pattern-based meth-
ods (Fundel et al., 2007; Hakenberg et al., 2008)
both requiring manually annotated corpora, which
are costly to obtain and often biased to the an-
notation guidelines and corpus selection criteria.
To overcome this issue, recent work has concen-
trated on distant supervision and multiple instance
learning (Bunescu and Mooney, 2007; Mintz et
al., 2009). Instead of manually annotated corpora,
such approaches infer training instances from non-
annotated texts using knowledge bases, thus al-
lowing to increase the training set size by a few
orders of magnitude. Corpora derived by distant
supervision are inherently noisy, thus benefiting
from robust classification methods.

1.1 Previous work

Distant supervision for relation extraction has re-
cently gained considerable attention. Approaches
usually focus on non-biomedical relations, such as
“author wrote book” (Brin, 1999) or “person born
in city” (Bunescu and Mooney, 2007). This work
highlighted that it is feasible to train a classifier us-
ing distant supervision, which culminated in ideas
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to learn literally thousands of classifiers from rela-
tional databases like Freebase (Mintz et al., 2009;
Yao et al., 2010), Yago (Nguyen and Moschitti,
2011), or Wikipedia infoboxes (Hoffmann et al.,
2010).

So far, approaches in the biomedical domain
on distant supervision focused on pattern learn-
ing (Hakenberg et al., 2008; Abacha and Zweigen-
baum, 2010; Thomas et al., 2011). This is sur-
prising as statistical machine learning methods are
most commonly used for relation extraction. For
example, only one of the five best performing sys-
tems in the BioNLP 2011 shared task relied on pat-
terns (Kim et al., 2011).

The approaches described by Hakenberg et al.
(2008) and Thomas et al. (2011) are those most
related to our work. Both approaches learn a set
of initial patterns by extracting sentences from
MEDLINE potentially describing protein-protein
interactions. Both methods use a knowledge base
(IntAct) as input and search sentences containing
protein pairs known to interact according to the
knowledge base. However, these approaches gen-
erate patterns only for positive training instances
and ignore the information contained in the re-
maining presumably negative instances.

PPI extraction is one of the most exten-
sively studied relation extraction problems in the
biomedical domain and is perfectly suited for a
study on distant supervision as several corpora
have been published in a common format (Pyysalo
et al., 2008). Pyysalo et al. showed that the cor-
pora differ in many aspects, e.g. annotation guide-
lines, average sentence length, and most impor-
tantly in the ratio of positive to negative training
instances which accounts for about 50 % of all
performance differences. Related work by Airola
et al. (2008) and Tikk et al. (2010) revealed that
the relation extraction performance substantially
decreases when the evaluation corpus has differ-
ent properties than the training corpus. A basic
overview of the five most commonly used bench-
mark PPI corpora is given in Table 1.

So far, it is unclear how distant supervision per-
forms on the difficult tasks of PPI extraction. For
example Nguyen and Moschitti (2011) achieve a
F1 of 74.3 % on 52 different Yago relations us-
ing distant supervision. On the other hand, com-
pletely supervised state-of-the-art PPI extraction
using manually labeled corpora achieve F1 ranging
from 56.5 % (AIMed) to 76.8 % (LLL) depend-

Corpus
Pairs Class ratio

positive negative positive
negative

AIMed 1,000 4,834 0.21
BioInfer 2,534 7,132 0.35
HPRD50 163 270 0.60
IEPA 335 482 0.73
LLL 164 166 0.99

Table 1: Overview of the 5 corpora used for evalu-
ation. For state-of-the-art results on these corpora,
see Table 3.

ing on the complexity of the corpus (Airola et al.,
2008).

The contribution of the work described herein
is as follows: We present different variations of
strategies to utilize distant supervision for PPI ex-
traction in Section 2. The potential benefit for PPI
extraction is evaluated. Parameters taken into ac-
count are the number of training instances as well
as the ratio of positive to negative examples. Fi-
nally, we assess if an ensemble of classifiers can
further improve classification performance.

2 Methods

In this section, the workflow to extract interaction
pairs from the databases and to generate training
instances is described. Additionally, the config-
uration of the classifier applied to this corpus is
given followed by the outline of the experimental
setting.

2.1 Generation of training data

Training instances are generated as follows. All
MEDLINE abstracts published between 1985
and 2011 are split into sentences using the sen-
tence segmentation model by Buyko et al. (2006)
and scanned for gene and protein names using
GNAT (Hakenberg et al., 2011). In total, we
find 1,312,059 sentences with 8,324,763 protein
pairs. To avoid information leakage between train-
ing and test sets, articles contained in any of
the benchmark evaluation corpora have been re-
moved. This procedure excludes 7,476 (< 0.1%)
protein mention pairs from the training set. Pro-
tein pairs that are contained in the PPI knowledge
base IntAct1 (Aranda et al., 2010) are labeled as
positive instances. Following a closed world as-
sumption, protein pairs not contained in IntAct are
considered as negative instances.

1As of Mar 24, 2010.
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It is very likely, that both negative and positive
instances contain a certain amount of mislabeled
examples (false positives, false negatives). There-
fore, we utilize different heuristics to minimize
the amount of mislabeled instances. Firstly, we
generate a list of words, which are frequently em-
ployed to indicate an interaction between two pro-
teins 2. This list is used to filter positive and nega-
tive instances such that positive instances contain
at least one interaction word (pos-iword) and neg-
ative contain no interaction word (neg-iword). Ap-
plication of both filters in combination is referred
to as pos/neg-iword. Secondly, we assume that
sentences with only two proteins are more likely
to describe a relationship between these two pro-
teins than sentences which contain many protein
names. This filter is called pos-pair. For the sake
of completeness, it is tested on negative instances
alone (neg-pair) and on positive and negative in-
stances in combination (pos/neg-pair). All seven
experiments are summarized in Table 2.

2.2 Classification and experimental settings

For classification, we use a support vector machine
with the shallow linguistic (SL) kernel (Giuliano
et al., 2006) which has been previously shown
to generate state-of-the-art results for PPI extrac-
tion (Tikk et al., 2010). This method uses syntactic
features, e.g. word, stem, part-of-speech tag and
morphologic properties of the surrounding words
to train a classifier, but no parse tree information.

Setting

Feature: Interaction word count Pairs in sentence

Condition: ≥ 1 = 0 = 1 = 1
Applied to: positive negative positive negative

baseline

pos-iword •
neg-iword •
pos/neg-iword • •

pos-pair •
neg-pair •
pos/neg-pair • •

Table 2: Our experiment settings. Based on the
number of interaction words and protein mention
pairs in the containing sentence, we filter out au-
tomatically generated positive or negative example
pairs not meeting the indicated heuristic condition.
The dots indicate which filter is applied for which
setting. For instance no filtering takes place for the
baseline setting.

2http://www2.informatik.hu-berlin.de/
˜thomas/pub/iwords.txt

Classifiers are trained with a small subset from
all 8 Million pairs, using 50,000 instances in all
experiments except when stated differently. This
allows us to investigate systematic differences be-
tween settings instead of generating and compar-
ing only one prediction per setting.

Classifiers often tend to keep the same positive
to negative ratio seen during the training phase.
Class imbalance is therefore often acknowledged
as a serious problem (Chawla et al., 2004). In
our first experiments, we set the positive to neg-
ative ratio according to the overall ratio of positive
to negative instances of all five corpora excluding
the test corpus. This allows us to compare the
results with the performance of various state-of-
the-art kernel methods. As few publications pro-
vide results for the so-called cross-learning sce-
nario, where a classifier is trained on the ensem-
ble of four corpora and tested on the fifth corpus,
we take the results from the extensive benchmark
conducted by Tikk et al. (2010).

The influence of training class imbalance is
evaluated separately by varying training set pos-
itive to negative ratios from 0.001 to 1, 000 using
the best filtering strategy from the previous exper-
iment.

As a sentence may describe a true protein in-
teraction not present in the knowledge base, the
closed world assumption is likely to be violated.
Furthermore, not all mentions of a pair of proteins
known to interact will describe an interaction.
Thus both positively and negatively inferred train-
ing instances can be considered noisy. We there-
fore experimented with another filtering technique
by using the Negatome database3 (Smialowski et
al., 2010) as an additional source to infer nega-
tive examples. Negatome contains a reference set
of non-interacting protein pairs and is thus better
suited to infer negative examples than our current
method, which infers a negative example for all
protein pairs not contained in the knowledge base
according to the closed world assumption. How-
ever, reliable information about non-interaction is
substantially more difficult to obtain and therefore
the database contains far less entries than IntAct.
From our 8 million protein pairs only 6,005 pairs
could be labeled as negative. Additional negative
training instances required for the training phase
are therefore inferred using the closed world as-
sumption.

3As of April 30, 2011.
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Further, we evaluate how much training data
is required to successfully train a classifier and if
the classifier reaches a steady state after a certain
number of training instances.

Finally, we evaluate whether a majority voting
ensemble of 11 classifiers trained on randomly
drawn training instances can further improve ex-
traction quality. This strategy loosely follows a
bagging strategy (Breiman, 1996), however, train-
ing instances are suspected to be less overlapping
than using the standard bagging strategy.

2.3 Evaluation

For evaluation, we use the five benchmark PPI cor-
pora listed in Table 1. Each training procedure, ex-
cept for the ensemble experiments, is repeated 10
times randomly, thus resulting in 10 independent
estimates for precision, recall, F1, and area under
the ROC curve (AUC). This allows for robust es-
timation of all evaluation metrics. Using single
sided MannWhitney U test (Mann and Whitney,
1947) p-values for F1 and AUC between two dif-
ferent models are calculated, with the null hypoth-
esis that median of two samples is equal. Sig-
nificance of Kendall correlation is determined us-
ing Best and Gipps (1974) with the null hypothesis
that correlation equals zero. For all tests we as-
sume a p-value of 0.01 to determine significance.

3 Results

Mean values for the seven different instance selec-
tion strategies (introduced in Table 2) are shown
in Table 3. All strategies, except neg-pair filter-
ing, lead to a higher AUC than 0.5. Thus six
of seven settings perform better than randomly
guessing. The advantage over random guessing
is generally significant, except for three experi-
ments in LLL. Many instance selection strategies
for AIMed, BioInfer and HPRD50 outperform co-
occurrence in terms of F1. Several experiments
outperform or at least perform on a par with the
results from Thomas et al. (2011).

Co-occurrence outperforms significantly all
seven settings for the two remaining corpora IEPA
and LLL in F1. This might have several reasons:
First, these two corpora have the highest fraction
of positive instances, therefore co-occurrence is
a very strong baseline. Second, IEPA describes
chemical relations instead of PPIs, thus our train-
ing instances might not properly reflect the syntac-
tic property of such relations.
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Figure 1: Average rank in F1 for each experiment
setting on the five corpora.

It is encouraging that on two corpora (BioInfer
and HPRD50) the best setting performs about on
par with the best cross-learning results from Tikk
et al., which have been generated using manually
annotated data and are therefore suspected to pro-
duce superior results.

For each corpus, we calculate and visualize the
average rank in F1 for the seven different strategies
(see Figure 1). This figure indicates that pos/neg-
iword and neg-iword filtering perform very well.

Repeating the previously described instance se-
lection strategies (see Table 2) using Negatome to
infer negative training instances lead to a small in-
crease of 0.5 percentage points (pp) in F1, due to
an average increase of 1.1 pp in precision over all
five corpora and seven settings (Results shown at
bottom of Table 3). We also observe a tendency for
increased AUC (0.9 pp). The largest gain in preci-
sion (3.5 pp) is observed between the two baseline
results where no instance filtering is applied. Re-
sults for varied positive to negative ratios and for
various amounts of training instances are also con-
tained in the same table and visualized in Figure 2a
and 2b respectively.

4 Discussion

The various settings introduced to filter out likely
noisy training instances either improved preci-
sion or recall or both over the baseline using all
automatically labeled instances for training (data
shown in Table 3). In the following, we analyze
and compare these settings.
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Figure 2: Distribution of mean precision, recall, F1, and AUC depending for the evaluation of class
imbalance and sample size.

Method
AIMed BioInfer HPRD50 IEPA LLL

AUC P R F1 AUC P R F1 AUC P R F1 AUC P R F1 AUC P R F1

co-occurrence 17.8 (100) 30.1 26.6 (100) 41.7 38.9 (100) 55.4 40.8 (100) 57.6 55.9 (100) 70.3

supervised (Tikk et al.) 77.5 28.3 86.6 42.6 74.9 62.8 36.5 46.2 78.0 56.9 68.7 62.2 75.6 71.0 52.5 60.4 79.5 79.0 57.3 66.4
semi-supervised (Thomas et al.) 25.8 62.9 36.6 43.4 50.3 46.6 48.3 51.5 49.9 67.5 58.2 62.5 70.3 70.7 70.5

Setting

baseline 65.1 21.0 82.8 33.5 63.2 33.3 64.2 43.8 64.4 42.8 75.4 54.6 52.2 40.9 11.6 18.0 51.8 51.3 39.2 44.4
pos-iword 66.6 21.8 82.6 34.5 67.5 38.4 60.8 47.1 67.5 45.5 76.5 57.1 53.8 48.6 12.3 19.6 51.6 50.0 37.0 42.2
neg-iword 65.3 21.1 91.1 34.2 68.1 37.3 70.9 48.9 73.4 43.9 93.6 59.8 54.7 43.9 49.9 46.7 53.9 49.9 77.4 60.7
pos/neg-iword 65.1 21.4 89.8 34.6 68.6 38.6 67.0 49.0 73.3 44.8 93.2 60.5 54.6 43.8 53.2 48.0 53.5 50.7 75.8 60.8
pos-pairs 64.2 29.3 33.4 31.2 69.8 57.8 18.0 27.5 62.7 47.9 35.6 40.8 66.6 54.9 26.3 35.5 63.2 68.2 27.8 39.5
neg-pairs 46.9 17.2 85.5 28.6 37.3 24.4 85.6 37.9 50.8 39.0 80.9 52.6 36.5 22.4 18.6 20.3 38.2 44.7 66.2 53.3
pos/neg-pairs 69.7 23.6 82.3 36.6 62.0 32.8 60.6 42.5 69.2 46.5 75.2 57.5 56.0 43.4 13.3 20.3 54.3 54.5 37.9 44.6

Train pos/neg ratio

1,000 60.6 19.0 89.8 31.3 64.2 31.3 84.6 45.7 62.5 41.1 92.9 57.0 57.9 42.6 88.3 57.3 61.2 53.7 93.3 68.1
100 63.9 20.0 88.7 32.7 69.0 35.5 77.8 48.7 71.5 44.2 91.9 59.6 58.9 45.6 65.6 53.7 61.5 53.1 85.8 65.6
10 65.5 20.9 91.0 33.9 71.2 38.7 76.0 51.2 74.1 44.2 95.8 60.5 57.9 45.7 55.5 50.1 57.9 51.8 80.7 63.1
1 65.6 21.4 91.1 34.7 70.0 38.6 71.3 50.1 74.5 44.3 95.5 60.6 56.1 45.0 55.5 49.7 55.7 51.6 79.3 62.5
0.1 65.4 22.3 81.3 35.0 67.9 40.9 57.9 48.0 72.1 46.9 84.7 60.4 53.5 43.1 37.9 40.3 51.0 50.0 58.7 53.9
0.01 66.0 26.9 46.7 34.1 66.5 46.9 24.7 32.4 70.4 59.7 48.5 53.4 52.8 48.2 8.3 14.2 52.2 54.3 12.3 19.7
0.001 61.5 41.4 0.9 1.8 63.2 63.0 0.3 0.6 67.8 72.5 1.3 2.6 53.0 30.0 0.1 0.2 54.1 10.0 0.1 0.1

Train set size

500 63.4 21.8 71.5 33.4 65.9 39.8 44.6 41.9 67.6 48.4 67.4 56.2 55.5 45.4 31.5 36.7 54.0 52.6 53.4 52.7
5,000 65.3 21.4 84.3 34.2 69.0 39.9 63.5 48.9 72.6 45.7 89.0 60.4 56.8 46.1 41.9 43.8 54.5 51.3 66.3 57.8

15,000 65.5 21.6 87.9 34.6 69.1 39.7 65.1 49.3 74.2 45.6 92.9 61.2 55.8 44.5 47.4 45.9 55.7 51.9 75.1 61.3
30,000 65.3 21.5 89.4 34.6 68.8 39.2 66.5 49.3 73.0 44.6 93.1 60.3 55.0 44.0 50.7 47.1 53.8 50.9 75.2 60.7
70,000 65.1 21.3 90.7 34.6 68.6 38.1 67.4 48.7 73.2 44.2 92.1 59.8 54.2 43.7 55.0 48.7 53.9 50.9 78.6 61.8

150,000 64.7 21.3 91.3 34.5 68.2 37.5 68.1 48.4 73.1 44.1 92.8 59.8 53.0 43.0 57.1 49.1 52.7 51.1 81.3 62.7

Setting (+Negatome)

baseline 65.9 22.2 79.6 34.7 65.7 36.8 58.6 45.2 67.6 46.7 74.0 57.3 54.9 47.5 12.7 20.0 54.8 53.6 36.3 43.2
pos-iword 67.4 22.9 81.4 35.8 69.1 41.1 56.3 47.5 69.2 47.9 75.4 58.5 57.4 52.6 12.9 20.6 52.3 51.2 37.5 43.1
neg-iword 65.3 21.1 90.7 34.3 68.8 38.1 69.6 49.2 73.6 44.6 92.1 60.1 55.6 44.4 51.7 47.8 55.2 51.3 78.9 62.2
pos/neg-iword 65.1 21.4 89.4 34.6 68.8 38.8 66.9 49.1 73.2 44.8 92.2 60.3 55.3 44.2 53.8 48.5 54.9 52.2 77.9 62.5
pos-pairs 64.6 29.6 33.7 31.5 69.7 58.2 18.3 27.8 62.2 48.5 35.5 41.0 66.9 56.6 30.7 39.7 63.4 68.8 28.1 39.9
neg-pairs 47.0 17.2 84.9 28.6 37.0 24.3 85.0 37.8 50.9 38.4 79.8 51.9 36.0 22.4 18.5 20.3 38.5 45.1 66.0 53.5
pos/neg-pairs 69.8 23.8 81.1 36.8 63.9 34.6 58.6 43.5 69.5 47.5 74.2 57.9 57.0 44.3 13.9 21.1 54.7 53.2 34.5 41.7

Table 3: Results of different instance selection strategies, different positive to negative ratios in the
training set, sample size and employing Negatome as negative knowledge base.
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Method
AIMed BioInfer HPRD50 IEPA LLL

AUC P R F1 AUC P R F1 AUC P R F1 AUC P R F1 AUC P R F1

co-occurrence 17.8 (100) 30.1 26.6 (100) 41.7 38.9 (100) 55.4 40.8 (100) 57.6 55.9 (100) 70.3

supervised (Tikk et. al) 77.5 28.3 86.6 42.6 74.9 62.8 36.5 46.2 78.0 56.9 68.7 62.2 75.6 71.0 52.5 60.4 79.5 79.0 57.3 66.4
semi-supervised (Thomas et. al) 25.8 62.9 36.6 43.4 50.3 46.6 48.3 51.5 49.9 67.5 58.2 62.5 70.3 70.7 70.5

mean of 11 runs 65.5 21.4 90.9 34.6 69.9 70.7 38.9 50.2 74.0 44.4 94.7 60.4 55.5 44.7 54.6 49.1 55.2 50.6 78.0 61.4
bagging over 11 runs 21.4 91.3 34.7 70.9 39.3 50.6 44.3 95.1 60.4 44.4 53.1 48.3 49.8 77.4 60.6

Table 4: Result of bagging over 11 classifier trained on different subsets. For comparison we show the
average results for these 11 runs.

4.1 Pair count based settings

From our analysis it becomes apparent that no cor-
relation between AUC and F1 exists (Kendall’s tau
= 0.23, p-value = 0.55). For example pos-pair fil-
tering significantly outperforms on three corpora
all remaining six settings in terms of AUC, but the
same setting supersedes almost no other setting
in terms of F1. A closer look reveals that on all
five corpora the highest average precision can be
achieved with this setting, at the cost of a decrease
in recall. The pos-pair selection strategy results
in fairly good training instances, but the decision
hyperplane is not appropriately set.

The opposing filtering strategy (neg-pair) out-
performs no other method in terms of AUC with
an average score often below or at least close to
a random classifier. However, this is expected, as
the classifier tends to assign negative class labels
to all sentences with exactly two protein mentions.
This filter is in direct conflict to the original moti-
vation and demonstrates that filtering must be per-
formed carefully.

Even though positive and negative training in-
stance filtering alone lead to almost no increase in
F1, the filtering of both negative and positive pairs
leads to an overall improvement of 1.44 pp.

4.2 Interaction word based settings

All different combinations of instance filtering us-
ing a list of interaction words lead to an over-
all increase in F1 and AUC. Filtering of positive
and negative instances (pos/neg-iword) leads to
the highest increase in AUC and with 11.8 pp in
F1, followed with 11.3 pp by exclusively filtering
negative instances (neg-iword). Finally we ob-
serve only a marginal improvement of 1.3 pp when
filtering positive instances (pos-iword).

4.3 Experiments with Negatome

A clear drawback of Negatome is the comparable
small sample size of protein pairs. The number
of confidently negative training instances could be
increased by generalizing proteins across species
using, for instance, Homologene. On our data
set we could infer approximately 4,200 additional
training instances. However, it is unclear if these
derived instances are of the same quality than the
Negatome data set. Another possibility is the us-
age of additional text repositories.

4.4 Effect of the pos/neg ratio

Table 3 clearly indicates that positive to negative
ratio on training data affects performance of a clas-
sifier. Precision and recall strongly correlate with
the pos/neg ratio seen in the training set. The ob-
served correlation between recall and pos/neg ra-
tio (Kendall’s tau ranging from 0.524 to 1 for all
five corpora) is expected, as the classifier tends to
assign more test instances to the majority (posi-
tive) class. This procedure works best for corpora
with many positive examples. A strong correla-
tion (Kendall’s tau ranging from −0.9 to −1.0)
between precision and class ratio can be observed
for AIMed, BioInfer, and HPRD50. Correlation
for IEPA is close to zero and for LLL the correla-
tion is even positive but not significant (p-value of
0.13). Overall, the observed influence is less pro-
nounced than expected. For instance F1 remains
comparably robust with an average standard devi-
ation of 2.6 pp for ratios between 0.1 and 10 . With
more pronounced differences in the training ratio,
a strong impact on F1 can be observed.

In contrast to previous work on distant super-
vision, more noise on positive and negative in-
stances is expected as database knowledge is sus-
pected to be less complete and besides incomplete-
ness knowledge evolves faster than for example
for “president of country” relations. Other ap-
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proaches often deal only with a strong noise on
positive data, but little noise on negative instances.
To avoid the double sided noise, we experimented
with one class variations of SVM (Schölkopf et
al., 2001) exploring the identical feature space.
In one class classification only instances for the
target set are available and the classifier searches
a separating boundary between instances and yet
unseen outliers. It has been previously demon-
strated that one class classifiers are less sensitive to
highly imbalanced data (Raskutti and Kowalczyk,
2004; Dreiseitl et al., 2010). However, in our ex-
periments one class classifiers constantly achieved
results close to random classification regardless of
whether we used solely positive or negative in-
stances for training.

4.5 Effect of training set size

For all corpora except for HPRD50 a monotonic
increase in recall (Kendall’s Tau of 1; p-value <
0.01) can be observed while increasing the train-
ing set. The negative correlation between preci-
sion and sample size is less pronounced but still
observable for all Corpora (Kendall’s Tau ranges
between −0.552 and −1). Subsequently F1 in-
creases for corpora with many positive instances.
Presumably, the problem of class imbalance gets
more pronounced with additional instances.

4.6 Bagging

On the settings previously identified of being su-
perior, we trained 11 classifiers using randomly
sampled training sets. That is, a filtering of pos-
itive and negative instances for interaction words,
a positive to negative ratio of 1, and a training size
of 15,000 instances. The average results of the
trained classifiers and the result of majority voting
are given in Table 4. The ensemble classifier per-
forms about on par with the mean of the individual
classifiers and we observe no significant difference
between the two approaches. However, a single
classifier sometimes performs better or worse than
the ensemble, whereas bagging always performs
close to the mean result. Thus, bagging can be
successfully applied for improving robustness of
a classifier. Note that in our setting, all votes are
of equal importance, thus neglecting the fact that
some classifier perform generally better than oth-
ers.

5 Conclusion

We investigated the use of distant supervision and
demonstrated that it can be successfully adopted
for domains where named entity recognition and
normalization is still an unsolved issue and the
closed world assumption might be an unsupported
stretch. This is important, as named entity recog-
nition and normalization is a key requirement for
distant supervision. Distant supervision is there-
fore an extremely valuable method and allows
training classifiers for virtually all kinds of rela-
tionships for which a database exists. We have
proven here that results obtained without a manu-
ally annotated corpus are competitive with purely
supervised methods, thus the tedious task of anno-
tating a training corpus can be avoided.

Using five benchmark evaluation corpora – hav-
ing diverse properties, annotated by different re-
searchers adhering to differing annotation guide-
lines – offers a perfect opportunity to evaluate
the robustness and usability of distant supervision.
Our analysis reveals that background knowledge
such as interaction words or “negative” knowledge
bases such as Negatome consistently improves re-
sults across all five corpora. Also bagging had a
positive impact on classifier robustness.

Surprisingly, class imbalance seams to be a less
pronounced problem in distant supervision as of-
ten observed for supervised settings. One pos-
sible explanation might be that due to the noisy
data, a classifier is less prone to over-fitting. So
far, our experiments with one-class classification
algorithms trained on positive or negative exam-
ples solely lead to disappointing results with AUC
scores close to that of a random classifier. In future
work, we plan to investigate if other one-class al-
gorithms can be successfully adapted for relation
extraction in a distant supervised setting.

Instance selection seems to have the largest im-
pact for this approach. Instead of simple heuris-
tics, we plan to investigate the usability of syn-
tactic patterns to further discriminate positive and
negative instances (Bui et al., 2010).
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Abstract

This paper describes a simple method
to achieve logical constraints on words
for topic models based on a recently de-
veloped topic modeling framework with
Dirichlet forest priors (LDA-DF). Log-
ical constraints mean logical expressions
of pairwise constraints,Must-links and
Cannot-Links, used in the literature of
constrained clustering. Our method can
not only cover the original constraints of
the existing work, but also allow us eas-
ily to add new customized constraints.
We discuss the validity of our method by
defining its asymptotic behaviors. We ver-
ify the effectiveness of our method with
comparative studies on a synthetic corpus
and interactive topic analysis on a real cor-
pus.

1 Introduction

Topic models such as Latent Dirichlet Allocation
or LDA (Blei et al., 2003) are widely used to cap-
ture hidden topics in a corpus. When we have do-
main knowledge of a target corpus, incorporating
the knowledge into topic models would be useful
in a practical sense. Thus there have been many
studies of semi-supervised extensions of topic
models (Andrzejewski et al., 2007; Toutanova and
Johnson, 2008; Andrzejewski et al., 2009; An-
drzejewski and Zhu, 2009), although topic mod-
els are often regarded as unsupervised learning.
Recently, (Andrzejewski et al., 2009) developed
a novel topic modeling framework, LDA with
Dirichlet Forest priors (LDA-DF), which achieves
two links Must-Link (ML) andCannot-Link(CL)
in the constrained clustering literature (Basu et al.,
2008). For given wordsA andB, ML(A,B) and
CL(A, B) are soft constraints thatA andB must
appear in the same topic, and thatA andB cannot
appear in the same topic, respectively.

Let us consider topic analysis of a cor-
pus with movie reviews for illustrative pur-
poses. We know that two words ‘jackie’
(means Jackie Chan) and ‘kung-fu’ should ap-
pear in the same topic, while ‘dicaprio’ (means
Leonardo DiCaprio) and ‘kung-fu’ should not
appear in the same topic. In this case, we
can add constraintsML(‘jackie’, ‘kung-fu’) and
CL(‘dicaprio’, ‘kung-fu’) to smoothly conduct
analysis. However, what if there is a word
‘bruce’ (means Bruce Lee) in the corpus, and we
want to distinguish between ‘jackie’ and ‘bruce’?
Our full knowledge among ‘kung-fu’, ‘jackie’,
and ‘bruce’ should be(ML(‘kung-fu’, ‘jackie’) ∨
ML(‘kung-fu’, ‘bruce’)) ∧ CL(‘bruce’, ‘jackie’),
although the original framework does not allow
a disjunction (∨) of links. In this paper, we ad-
dress such logical expressions of links on LDA-DF
framework.

Combination between a probabilistic model and
logical knowledge expressions such as Markov
Logic Network (MLN) is recently getting a lot of
attention (Riedel and Meza-Ruiz, 2008; Yu et al.,
2008; Meza-Ruiz and Riedel, 2009; Yoshikawa
et al., 2009; Poon and Domingos, 2009), and our
work can be regarded as on this research line. At
least, to our knowledge, our method is the first
one that can directly incorporate logical knowl-
edge into a prior for topic models without MLN.
This means the complexity of the inference in our
method is essentially the same as in the original
LDA-DF, despite that our method can broaden
knowledge expressions.

2 LDA with Dirichlet Forest Priors

We briefly review LDA-DF. Letw := w1 . . . wn

be a corpus consisting ofD documents, wheren
is the total number of words in the documents. Let
di and zi be the document that includes thei-th
word wi and the hidden topic that is assigned to
wi, respectively. LetT be the number of topics.
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As in LDA, we assume a probabilistic language
model that generates a corpus as a mixture of hid-
den topics and infer two parameters: a document-
topic probabilityθ that represents a mixture rate of
topics in each document, and a topic-word proba-
bility ϕ that represents an occurrence rate of words
in each topic. The model is defined as

θdi
∼ Dirichlet(α),

zi|θdi
∼ Multinomial(θdi

),

q ∼ DirichletForest(β, η),

ϕzi ∼ DirichletTree(q),

wi|zi, ϕzi ∼ Multinomial(ϕzi),

where α and (β, η) are hyper parameters forθ
andϕ, respectively. The only difference between
LDA and LDA-DF is thatϕ is chosen not from the
Dirichlet distribution, but from the Dirichlet tree
distribution (Dennis III, 1991), which is a gener-
alization of the Dirichlet distribution. The Dirich-
let forest distribution assigns one tree to each topic
from a set of Dirichlet trees, into which we encode
domain knowledge. The trees assigned to topicsz
are denoted asq.

In the framework,ML(A, B) is achieved by the
Dirichlet tree in Fig. 1(a), which equalizes the oc-
currence probabilities ofA andB in a topic when
η is large. This tree generates probabilities with
Dirichlet(2β, β) and redistributes the probability
for “2β” with Dirichlet(ηβ, ηβ).

In the case ofCLs, we use the following algo-
rithm.

1. Consider a undirected graph regarding words
as vertices and linksCL(A,B) as edges be-
tweenA andB.

2. Divide the graph into connected components.

3. Extract the maximal independent sets of each
component.

4. Create Dirichlet trees to raise the occurrence
probabilities of words corresponding to each
maximal independent set.

For examples, the algorithm creates the two
trees in Fig. 1(b) for the constraintCL(A,B) ∧
CL(A, C). The constraint is achieved whenη is
large, since words in each topic are chosen from
the distribution of either the left tree that zeros the
occurrence probability ofA, or the right tree that
zeros those ofB andC.

2β

β

ηβ ηβ

B CA

(a)ML(A, B)

β β

2ηβ

β

B CA

ββ

ηβ

2β

BC A

(b) CL(A, B) ∧ CL(A, C)

Figure 1: Dirichlet trees for two constraints of (a)
ML(A,B) and (b)CL(A, B) ∧ CL(A, C).

Inference ofϕ andθ is achieved by alternately
sampling topiczi for each wordwi and Dirichlet
treeqz for each topicz. Since the Dirichlet tree
distribution is conjugate to the multinomial distri-
bution, the sampling equation ofzi is easily de-
rived like LDA as follows:

p(zi = z | z−i,q,w) ∝

(n
(di)
−i,z + α)

Iz(↑i)∏
s

γ
(Cz(s↓i))
z + n

(Cz(s↓i))
−i∑Cz(s)

k

(
γ

(k)
z + n

(k)
−i,z

) ,

wheren
(d)
−i,z represents the number of words (ex-

cludingwi) assigning topicz in documentd. n
(k)
−i,z

represents the number of words (excludingwi) as-
signing topicz in the subtree rooted at nodek in
treeqz. Iz(↑ i) andCz(s ↓ i) represents the set of
internal nodes and the immediate child of nodes,
respectively, on the path from the root to leafwi

in treeqz. Cz(s) represents the set of children of

nodes in treeqz. γ
(k)
z represents a weight of the

edge to nodek in treeqz. Additionally, we define∑S
s :=

∑
s∈S .

Sampling of treeqz is achieved by sequen-
tially sampling subtreeq(r)

z corresponding to the
r-th connected component by using the following
equation:

p(q(r)
z = q′ | z,q−z, q

(−r)
z ,w) ∝ |Mr,q′ |×

I
(q′)
z,r∏
s

 Γ
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whereI
(q′)
z,r represents the set of internal nodes in

the subtreeq′ corresponding to ther-th connected
component for treeqz. |Mr,q′ | represents the size
of the maximal independent set corresponding to
the subtreeq′ for r-th connected component.

After sufficiently samplingzi andqz, we can in-
fer posterior probabilitieŝϕ and θ̂ using the last
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sampledz andq, in a similar manner to the stan-
dard LDA as follows.

θ̂(d)
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n
(d)
z + α∑T

z′=1

(
n

(d)
z′ + α

)
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k

(
γ

(k)
z + n

(k)
z

)
3 Logical Constraints on Words

In this section, we address logical expressions of
two links using disjunctions (∨) and negations (¬),
as well as conjunctions (∧), e.g.,¬ML(A,B) ∨
ML(A,C). We denote it as (∧,∨,¬)-expressions.
Since each negation can be removed in a prepro-
cessing stage, we focus only on (∧,∨)-expressions.
Interpretation of negations is discussed in Sec. 3.4.

3.1 (∧,∨)-expressions of Links

We propose a simple method that simultaneously
achieves conjunctions and disjunctions of links,
where the existing method can only treat conjunc-
tions of links. The key observation is that any
Dirichlet trees constructed byMLs andCLs are
essentially based only on two primitives. One
is Ep(A,B) that equalizes the occurrence prob-
abilities of A and B in a topic as in Fig. 1(a),
and the other isNp(A) that zeros the occurrence
probability of A in a topic as in the left tree of
Fig. 1(b). The right tree of Fig. 1(b) is created by
Np(B) ∧ Np(C). Thus, we can substituteML and
CL with EpandNpas follows:

ML(A,B) = Ep(A,B)

CL(A,B) = Np(A) ∨ Np(B)

Using this substitution, we can compile a (∧, ∨)-
expression of links to the corresponding Dirichlet
trees with the following algorithm.

1. Substitute all links (ML andCL) with the cor-
responding primitives (EpandNp).

2. Calculate the minimum DNF of the primi-
tives.

3. Construct Dirichlet trees corresponding to the
(monotone) monomials of the DNF.

Let us consider three wordsA = ‘kung-fu’, B =
‘jackie’, andC = ‘bruce’ in Sec. 1. We want to
constrain them with(ML(A,B) ∨ ML(A,C)) ∧

CL(B,C). In this case, the algorithm calculates
the minimum DNF of primitives as

(ML(A,B) ∨ML(A, C)) ∧ CL(B, C)

= (Ep(A,B) ∨ Ep(A, C)) ∧ (Np(B) ∨Np(C))

= (Ep(A,B) ∧ Np(B)) ∨ (Ep(A,B) ∧ Np(C))

∨ (Ep(A,C) ∧ Np(B)) ∨ (Ep(A,C) ∧ Np(C))

and constructs four Dirichlet trees correspond-
ing to the four monomialsEp(A,B) ∧ Np(B),
Ep(A,B) ∧ Np(C), Ep(A,C) ∧ Np(B), and
Ep(A,C) ∧ Np(C) in the last equation.

Considering only (∧)-expressions of links, our
method is equivalent to the existing method in the
original framework in terms of an asymptotic be-
havior of Dirichlet trees. We define asymptotic
behavior asAsymptotic Topic Family (ATF)as fol-
lows.

Definition 1 (Asymptotic Topic Family). For any
(∧,∨)-expressionf of primitives and any setW of
words, we definethe asymptotic topic family off
with respect toW as a familyf∗ calculated by the
following rules: Given (∧, ∨)-expressionsf1 and
f2 of primitives and wordsA,B ∈ W,

(i) (f1 ∨ f2)
∗ := f∗1 ∪ f∗2，

(ii) (f1 ∧ f2)
∗ := f∗1 ∩ f∗2，

(iii) Ep∗(A,B) := {∅, {A,B}} ⊗ 2W−{A,B},

(iv) Np∗(A) := 2W−{A}．

Here, notation⊗ is defined asX ⊗ Y := {x ∪
y | x ∈ X, y ∈ Y } for given two setsX and
Y . ATF expresses all combinations of words that
can occur in a topic whenη is large. In the above
example, the ATF of its expression with respect to
W = {A,B, C} is calculated as

((ML(A,B) ∨ML(A,C)) ∧ CL(B,C))∗

= (Ep(A,B) ∨ Ep(A, C)) ∧ (Np(B) ∨ Np(C))∗

=

(
{∅, {A,B}} ⊗ 2W−{A,B}

∪{∅, {A,C}} ⊗ 2W−{A,C}

)
∩
(
2W−{B} ∪ 2W−{C}

)
= {∅, {B}, {C}, {A,B}, {A,C}}.

As we expected, the ATF of the last equation in-
dicates such a constraint that eitherA andB or A
andC must appear in the same topic, andB and
C cannot appear in the same topic. Note that the
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part of {B} satisfiesML(A, C) ∧ CL(B, C). If
you want to remove{B} and{C}, you can use
exclusive disjunctions. For the sake of simplicity,
we omit descriptions aboutW when its instance is
arbitrary or obvious from now on.

The next theorem gives the guarantee of asymp-
totic equivalency between our method and the ex-
isting method. LetMIS(G) be the set of max-
imal independent sets of graphG. We define
L := {{w, w′} | w, w′ ∈ W, w ̸= w′}. We con-
siderCLs only, since the asymptotic equivalency
including MLs is obvious by identifying all ver-
tices connected byMLs.

Theorem 2. For any (∧)-expression of CLs rep-
resented by

∧
{x,y}∈ℓ:ℓ⊆L CL(x, y), the ATF of the

corresponding minimum DNF of primitives repre-
sented by

∨
X∈X :X⊆2W (

∧
x∈X Np(x)) is equiva-

lent to the union of the power sets of every max-
imal independent setS ∈ MIS(G) of a graph
G := (W, ℓ), that is,

∪
X∈X

(∩
x∈X Np∗(x)

)
=∪

S∈MIS(G) 2S .

Proof. For any (∧)-expressions of links character-
ized byℓ ⊆ L, we denotefℓ andGℓ as the corre-
sponding minimum DNF and graph, respectively.
We defineUℓ :=

∪
S∈MIS(Gℓ)

2S . When |ℓ| = 1,
f∗ℓ = Uℓ is trivial. Assumingf∗ℓ = Uℓ when
|ℓ| > 1, for any setℓ′ := ℓ ∪ {{A, B}} with an
additional link characterized by{A, B} ∈ L, we
obtain

f∗ℓ′ = ((Np(A) ∨ Np(B)) ∧ fℓ)
∗

= (2W−{A} ∪ 2W−{B}) ∩ Uℓ

=
∪

S∈MIS(Gℓ)

(
(2W−{A} ∩ 2S)

∪(2W−{B} ∩ 2S)

)
=

∪
S∈MIS(Gℓ)

(2S−{A} ∪ 2S−{B})

=
∪

S∈MIS(Gℓ′ )
2S = Uℓ′

This proves the theorem by induction. In the
last line of the above deformation, we used∪

S∈MIS(G) 2S =
∪

S∈IS(G) 2S and MIS(Gℓ′) ⊆∪
S∈MIS(Gℓ)

((S − {A}) ∪ (S − {B})) ⊆ IS(Gℓ′),
whereIS(G) represents the set of all independent
sets on graphG.

In the above theorem,
∪

X∈X
(∩

x∈X Np∗(x)
)

represents asymptotic behaviors of our method,
while

∪
S∈MIS(G) 2S represents those of the exist-

ing method. By using a similar argument to the
proof, we can prove the elements of the two sets
are completely the same, i.e.,

∩
x∈X Np∗(x) =

{2S | S ∈ MIS(G)}. This interestingly means
that for any logical expression characterized by
CLs, calculating its minimum DNF is the same
as calculating the maximal independent sets of the
corresponding graph, or the maximal cliques of its
complement graph.

3.2 Shrinking Dirichlet Forests

Focusing on asymptotic behaviors, we can reduce
the number of Dirichlet trees, which means the
performance improvement of Gibbs sampling for
Dirichlet trees. This is achieved just by minimiz-
ing DNF on asymptotic equivalence relationde-
fined as follows.

Definition 3 (Asymptotic Equivalence Relation).
Given two (∧, ∨)-expressionsf1, f2, we say that
f1 is asymptotically equivalent tof2, if and only
if f∗1 = f∗2 . We denote the relation as notation≍,
that is,f1 ≍ f2 ⇔ f∗1 = f∗2 .

The next proposition gives an intuitive under-
standing of why asymptotic equivalence relation
can shrink Dirichlet forests.

Proposition 4. For any two wordsA,B ∈ W,

(a) Ep(A,B) ∨ (Np(A) ∧ Np(B)) ≍ Ep(A,B)，

(b) Ep(A,B) ∧ Np(A) ≍ Np(A) ∧ Np(B)．

Proof. We prove (a) only.

Ep∗(A,B) ∪ (Np∗(A) ∩ Np∗(B))

= {∅, {A,B}} ⊗ 2W−{A,B}

∪ (2W−{A} ∩ 2W−{B})

= ({∅, {A, B}} ∪ ({∅, {B}} ∩ {∅, {A}}))
⊗ 2W−{A,B}

= {∅, {A,B}} ⊗ 2W−{A,B} = Ep∗(A,B)

In the above proposition, Eq. (a) directly re-
duces the number of Dirichlet trees since a dis-
junction (∨) disappears, while Eq. (b) indirectly
reduces since(Np(A) ∧ Np(B)) ∨ Np(B) =
Np(B).

We conduct an experiment to clarify how many
trees can be reduced by asymptotic equivalency. In
the experiment, we prepare conjunctions of ran-
dom links of MLs and CLs when |W| = 10,
and compare the average numbers of Dirichlet
trees compiled by minimum DNF (M-DNF) and
asymptotic minimum DNF (AM-DNF) in 100 tri-
als. The experimental result shown in Tab. 1
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Table 1: The average numbers of Dirichlet
trees compiled by minimum DNF (M-DNF) and
asymptotic minimum DNF (AM-DNF) in terms of
the number of random links. Each value is the av-
erage of 100 trials.

# of links 1 2 4 8 16
M-DNF 1 2.08 3.43 6.18 10.35

AM-DNF 1 2.08 3.23 4.24 4.07

indicates that asymptotic equivalency effectively
reduces the number of Dirichlet trees especially
when the number of links is large.

3.3 Customizing New Links

Two primitivesEp andNp allow us to easily cus-
tomize new links without changing the algorithm.
Let us considerImply-Link(A,B) or IL(A,B),
which is a constraint thatB must appear ifA ap-
pears in a topic (informally,A → B). In this case,
the setting

IL(A,B) = Ep(A,B) ∨ Np(A)

is acceptable, since the ATF ofIL(A, B) with
respect toW = {A,B} is {∅, {A,B}, {B}}.
IL(A,B) is effective whenB has multiple mean-
ings as mentioned later in Sec. 4.

Informally regardingIL(A,B) asA → B and
ML(A,B) asA ⇔ B, ML(A,B) seems to be the
same meaning ofIL(A,B) ∧ IL(B,A). However,
this anticipation is wrong on the normal equiv-
alency, i.e.,ML(A,B) ̸= IL(A,B) ∧ IL(B, A).
The asymptotic equivalency can fulfill the antici-
pation with the next proposition. This simultane-
ously suggests that our definition is semantically
valid.

Proposition 5. For any two wordsA,B ∈ W,

IL(A,B) ∧ IL(B,A) ≍ ML(A,B)

Proof. From Proposition 4,

IL(A,B) ∧ IL(B, A)

= (Ep(A,B) ∨ Np(A)) ∧ (Ep(B,A) ∨ Np(B))

= Ep(A,B) ∨ (Ep(A,B) ∧ Np(A))

∨ (Ep(A, B) ∧ Np(B)) ∨ (Np(A) ∧ Np(B))

≍ Ep(A,B) ∨ (Np(A) ∧ Np(B))

≍ Ep(A,B) = ML(A,B)

Further, we can constructXIL(X1, · · · , Xn, Y )
as an extended version ofIL(A,B), which allows
us to use multiple conditions like Horn clauses.
This informally means

∧n
i=1 Xi → Y as an ex-

tension ofA → B. In this case, we set

XIL(X1, · · · , Xn, Y ) =
n∧

i=1

Ep(Xi, Y )∨
n∨

i=1

Np(Xi).

When we want to isolate unnecessary words
(i.e., stop words), we can useIsolate-Link (ISL)
defined as

ISL(X1, · · · , Xn) =

n∧
i=1

Np(Xi).

This is easier than consideringCLs between high-
frequency words and unnecessary words as de-
scribed in (Andrzejewski et al., 2009).

3.4 Negation of Links

There are two types of interpretation for negation
of links. One isstrong negation, which regards
¬ML(A,B) as “A andB must not appear in the
same topic”, and the other isweak negation, which
regards it as “A andB need not appear in the same
topic”. We set¬ML(A,B) ≍ CL(A, B) for strong
negation, while we just remove¬ML(A, B) for
weak negation. We consider the strong negation
in this study.

According to Def. 1, the ATF of the negation¬f
of primitive f seems to be defined as(¬f)∗ :=
2W − f∗. However, this definition is not fit in
strong negation, since¬ML(A,B) ̸≍ CL(A,B)
on the definition. Thus we define it to be fit in
strong negation as follows.

Definition 6 (ATF of strong negation of links).
Given a linkL with argumentsX1, · · · , Xn, let-
ting fL be the primitives ofL, we define the ATF
of the negation ofL as (¬L(X1, · · · , Xn))∗ :=
(2W − f∗L(X1, · · · , Xn)) ∪ 2W−{X1,··· ,Xn}.

Note that the definition is used not for primi-
tives but for links. Actually, the similar definition
for primitives is not fit in strong negation, and so
we must remove all negations in a preprocessing
stage.

The next proposition gives the way to remove
the negation of each link treated in this study. We
define no constraint condition asϵ for the result of
ISL.

Proposition 7. For any wordsA,B, X1, · · · , Xn,
Y ∈ W,
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(a) ¬ML(A,B) ≍ CL(A,B)，

(b) ¬CL(A,B) ≍ ML(A,B)，

(c) ¬IL(A,B) ≍ Np(B)，

(d) ¬XIL(X1, · · · , Xn, Y )
≍
∧n−1

i=1 Ep(Xi, Xn) ∧ Np(Y )，

(e) ¬ISL(X1, · · · , Xn) ≍ ϵ．

Proof. We prove (a) only.

(¬ML(A,B))∗

= (2W − Ep∗(A,B)) ∪ 2W−{A,B}

= (2{A,B} − {∅, {A,B}})⊗ 2W−{A,B}

∪ 2W−{A,B}

= {∅, {A}, {B}} ⊗ 2W−{A,B}

= 2W−{A} ∪ 2W−{B}

= Np∗(A) ∪ Np∗(B) = (CL(A,B))∗

4 Comparison on a Synthetic Corpus

We experiment using a synthetic corpus
{ABAB, ACAC} × 2 with vocabulary
W = {A, B,C} to clarify the property of
our method in the same way as in the existing
work (Andrzejewski et al., 2009). We set topic
size asT = 2. The goal of this experiment is
to obtain two topics: a topic whereA and B
frequently occur and a topic whereA and C
frequently occur. We abbreviate the grouping type
as AB|AC. In preliminary experiments, LDA
yielded almost four grouping types:AB|AC,
AB|C, AC|B, and A|BC. Thus, we naively
classify a grouping type of each result into the
four types. Concretely speaking, for any two
topic-word probabilitiesϕ̂ and ϕ̂′, we calculate
the average of Euclidian distances between each
vector component of̂ϕ and the corresponding one
of ϕ̂′, ignoring the difference of topic labels, and
regard them as the same type if the average is less
than0.1.

Fig. 2 shows the occurrence rates of grouping
types on 1,000 results after 1,000 iterations by
LDA-DF with six constraints (1) no constraint,
(2) ML(A,B), (3) CL(B, C), (4) ML(A,B) ∧
CL(B, C), (5) IL(B, A), and (6) ML(A,B) ∨
ML(A, C). In the experiment, we setα = 1,
β = 0.01, andη = 100. In the figure, the higher
rate of the objective typeAB|AC (open bar) is

Figure 2: Rates of Grouping types in the 1,000
results on synthetic corpus{ABAB,ACAC} ×
2 with six constraints: (1) no constraint, (2)
ML(A,B), (3) CL(B, C), (4) ML(A,B) ∧
CL(B,C), (5) IL(B,A), and (6) ML(A,B) ∨
ML(A,C).

better. The results of (1-4) can be achieved even
by the existing method, and those of (5-6) can be
achieved only by our method. Roughly speaking,
the figure shows that our method is clearly better
than the existing method, since our method can ob-
tain almost 100% as the rate ofAB|AC, which is
the best of all results, while the existing methods
can only obtain about 60%, which is the best of
the results of (1-4).

The result of (1) is the same result as LDA,
because of no constraints. In the result, the
rate of AB|AC is only about 50%, since each
of AB|C, AC|B, andA|BC remains at a high
15%. As we expected, the result of (2) shows that
ML(A,B) cannot removeAB|C although it can
removeAC|B andA|BC, while the result of (3)
shows thatCL(B, C) cannot removeAB|C and
AC|B although it can removeA|BC. The re-
sult of (4) indicates thatML(A, B) ∧ CL(B, C)
is the best of knowledge expressions in the exist-
ing method. Note thatML(A,B)∧ML(A,C) im-
pliesML(B,C) by transitive law and is inconsis-
tent with all of the four types. The result (80%)
of (5) IL(B, A) is interestingly better than that
(60%) of (4), despite that (5) has less primitives
than (4). The reason is that (5) allowsA to ap-
pear withC, while (4) does not. In the result of
(6) ML(A,B)∨ML(A,C), the constraint achieves
almost 100%, which is the best of knowledge ex-
pressions in our method. Of course, the constraint
of (ML(A,B) ∨ML(A,C)) ∧ CL(B, C) can also
achieve almost 100%.

5 Interactive Topic Analysis

We demonstrate advantages of our method via in-
teractive topic analysis on a real corpus, which
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consists of stemmed, down-cased 1,000 (positive)
movie reviews used in (Pang and Lee, 2004). In
this experiment, the parameters are set asα = 1,
β = 0.01, η = 1000, andT = 20.

We first ran LDA-DF with 1,000 itera-
tions without any constraints and noticed that
most topics have stop words (e.g., ‘have’ and
‘not’) and corpus-specific, unnecessary words
(e.g., ‘film’, ‘movie’), as in the first block
in Tab. 2. To remove them, we added
ISL(‘film’ , ‘movie’, ‘have’, ‘not’ , ‘n’t’ ) to the con-
straint of LDA-DF, which is compiled to one
Dirichlet tree. After the second run of LDA-DF
with the isolate-link, we specified most topics such
as Comedy, Disney, and Family, since cumber-
some words are isolated, and so we noticed that
two topics about Star Wars and Star Trek are
merged, as in the second block. Each topic la-
bel is determined by looking carefully at high-
frequency words in the topic. To split the merged
two topics, we addedCL(‘jedi’ , ‘trek’) to the con-
straint, which is compiled to two Dirichlet trees.
However, after the third run of LDA-DF, we no-
ticed that there is no topic only about Star Trek,
since ‘star’ appears only in the Star Wars topic,
as in the third block. Note that the topic includ-
ing ‘trek’ had other topics such as a topic about
comedy film Big Lebowski. We finally added
ML(‘star’, ‘jedi’ ) ∨ ML(‘star’, ‘trek’) to the con-
straint, which is compiled to four Dirichlet trees,
to split the two topics considering polysemy of
‘star’. After the fourth run of LDA-DF, we appro-
priately obtained two topics about Star Wars and
Star Trek as in the fourth block. Note that our so-
lution is not ad-hoc, and we can easily apply it to
similar problems.

6 Conclusions

We proposed a simple method to achieve topic
models with logical constraints on words. Our
method compiles a given constraint to the prior
of LDA-DF, which is a recently developed semi-
supervised extension of LDA with Dirichlet forest
priors. As well as covering the constraints in the
original LDA-DF, our method allows us to con-
struct new customized constraints without chang-
ing the algorithm. We proved that our method is
asymptotically the same as the existing method for
any constraints with conjunctive expressions, and
showed that asymptotic equivalency can shrink a
constructed Dirichlet forest. In the comparative

Table 2: Characteristic topics obtained in the ex-
periment on the real corpus. Four blocks in the
table corresponds to the results of the four con-
straintsϵ, ISL(· · · ), CL(‘jedi’ , ‘trek’) ∧ ISL(· · · ),
and (ML(‘jedi’ , ‘trek’) ∨ ML(‘star’, ‘trek’)) ∧
CL(‘jedi’ , ‘trek’) ∧ ISL(· · · ), respectively.
Topic High frequency words in each topic

? havegive nightfilm turn performance
? not life haveown first only family tell
? moviehaven’t get goodnot see
? haveblack scene tom death die joe
? film haven’t not make out well see

Isolated havefilm movienot good maken’t
? star war trek planet effect special
Comedy comedy funny laugh school hilarious
Disney disney voice mulan animated song
Family life love family mother woman father

Isolated havefilm movienot make goodn’t
StarWarsstar war lucas effectjedi special
? science worldtrek fiction lebowski
Comedy funny comedy laugh get hilarious
Disney disney truman voice toy show
Family family father mother boy child son

Isolated havefilm movienot make goodn’t
StarWarsstar war toy jedi menace phantom
StarTrek alien effectstar science specialtrek
Comedy comedy funny laugh hilarious joke
Disney disney voice animated mulan
Family life love family man story child

study on a synthetic corpus, we clarified the prop-
erty of our method, and in the interactive topic
analysis on a movie review corpus, we demon-
strated its effectiveness. In the future, we intend to
address detail comparative studies on real corpora
and consider a simple method integrating nega-
tions into a whole, although we removed them in
a preprocessing stage in this study.
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Abstract 

 

Co-training, as a semi-supervised learning me-
thod, has been recently applied to semantic role 
labeling to reduce the need for costly annotated 
data using unannotated data. A main concern in 
co-training is how to split the problem into 
multiple views to derive learning features, so 
that they can effectively train each other. We 
investigate various feature splits based on two 
SRL views, constituency and dependency, with 
different variations of the algorithm. Balancing 
the feature split in terms of the performance of 
the underlying classifiers showed to be useful. 
Also, co-training with a common training set 
performed better than when separate training 
sets are used for co-trained classifiers. 

1 Introduction 

Semantic role labeling (SRL) parses a natural 
language sentence into its event structure. This 
information has been shown useful for several 
NLP tasks such as information extraction, ques-
tion answering, summarization, and machine 
translation (Surdeanu et al., 2003; Gimenez and 
Marquez, 2008). 

After its introduction by Gildea and Jurafsky 
(2002), a considerable body of NLP research has 
been devoted to SRL. CoNLL 2004 and 2005 
(Carreras and Marquez, 2004; 2005) followed 
that seminal work by using similar input re-
sources mainly built upon constituent-based syn-
tax and achieved state-of-the-art results (Koomen 
et al., 2005). Subsequent CoNLL shared tasks 
(Surdeanu et al., 2008) put forth the use of anoth-
er framework based on dependency syntax. This 
framework also led to well-performed systems 
(Johansson and Nugues, 2008). 

Almost all of the SRL research has been based 
on supervised machine learning methods exploit-
ing manually annotated corpora like FrameNet 
(Baker et al., 1998) and PropBank (Palmer et al., 
2005). FrameNet annotates some example sen-
tences for each semantic frame, which questions 
its representativeness of the language, necessary 
for statistical learning. Propbank, on the other 
hand, annotates all the sentences from WSJ cor-
pus and remedies that problem to some extent, 
but unlike FrameNet, its coverage is limited to the 
newswire text of WSJ. 

This domain dependence affects the perfor-
mance of the systems using PropBank on any dif-
ferent domain of text (Carreras and Marquez, 
2005). Considering the cost and difficulty of 
creating such resources with all of these short-
comings, it seems infeasible to build a compre-
hensive hand-crafted corpus of natural language 
for training robust SRL systems. 

Such issues in statistical learning have moti-
vated researchers to devise semi-supervised learn-
ing methods. These methods aim at utilizing a 
large amount of unannotated data along with 
small amount of annotated data. The existence of 
raw natural text in huge amounts is a promising 
point of using such methods for SRL. 

Co-training is a semi-supervised algorithm in 
which two or more classifiers iteratively provide 
each other with the training examples by labeling 
unannotated data. Each classifier is based on the 
learning features derived from conditionally in-
dependent and redundant views of the underlying 
problem. These two assumptions are stated as the 
requirements of the algorithm in its original work 
by Blum and Mitchell (1998).  

Constituency and dependency provide attrac-
tive views of SRL problem to be exploited in a 
co-training setup. The major motivation is the 
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promising results of their use in SRL, which satis-
fies the first assumption. There is a set of rules to 
convert constituency to dependency (Johansson 
and Nugues, 2007), which may question the 
second assumption. However, these rules are one-
way, and moreover, Abney (2002) argues that this 
assumption can be loosened.  

While several parameters are involved in co-
training of SRL systems, the most important one 
is the split of the feature views. This work inves-
tigates the effects of feature split by comparing 
the co-training progress when using various 
splits. It also examines several variations of the 
algorithm. The algorithm is applied to the SRL 
problem when only a small amount of labeled 
data is available. 

2 Related Work  

Co-training was originally proposed by Blum and 
Mitchell (1998) for the problem of web page 
classification. They used hyper links pointing to 
the sample web page as one view and the content 
of the web page as another view to derive learn-
ing features. They could reduce the error rate of 
the base supervised classifier by co-training with 
unlabeled web pages. 

Motivated by these results, the algorithm was 
applied to other NLP domains, ranging from bi-
nary classification problems like text classifica-
tion (Nigam and Ghani, 2000) and reference reso-
lution (Ng and Cardie, 2003) to more complex 
problems like parsing (Sarkar, 2001) and POS 
tagging (Clark et al., 2003). Some compared co-
training with other semi-supervised algorithms 
like self-training and some studied variations of 
the algorithm for adapting it to the underlying 
problem. Whereas some of them reported suc-
cessful results (Sarkar, 2001), some others pre-
ferred other algorithms over it (Ng and Cardie, 
2003) or suggested further needs for studying the 
algorithm due to the large scale of the target prob-
lem (Pierce and Cardie, 2001). 

Besides few other approaches to semi-
supervised learning of SRL (Furstenau and Lapa-
ta, 2009), two works investigated the co-training 
algorithm for SRL.  

He and Gildea (2006) addressed the problem of 
unseen FrameNet frames by using co-training 
(and self-training). They used syntactic and lexi-
cal views of the problem as two co-training 
views. They used only tree path as the syntactic 
and head word form as lexical features. To reduce 
the complexity of the task, they generalized ar-
gument roles to 15 thematic roles. The big per-

formance gap between the two classifiers, unba-
lanced class distribution over examples, and the 
complexity of the task were argued as the reasons 
of the poor results. 

Lee et al. (2007) investigated the utility of un-
labeled data in amplifying the performance of 
SRL system. They trained Maximum Entropy 
classifiers on PropBank data as the base classifi-
ers and used co-training to utilize a huge amount 
of unlabeled data (7 times more than labeled 
seed). The feature split they employed were the 
same as previous work, except they used more 
features for each view and also some features 
common between the views.  

Unlike He and Gildea (2006) that used separate 
training sets for each classifier, they used a com-
mon training set. They only addressed core argu-
ments to manage the complexity. Again, the per-
formance gap between two views were high (~19 
F1 points), but it is not clear why they reported 
the co-training results with the performance of all 
features instead of that of each view. They attri-
buted the little gain to the low performance of the 
base classifiers and inadequacy of unlabeled data. 

3 The SRL System 

In order to be able to employ constituency and 
dependency features for two co-training views, 
we developed a two-platform SRL system: con-
stituent-based and dependency-based. 

One important issue in co-training of these two 
different platforms is that sample granularity in 
constituent-based system is a Penn tree constitu-
ent and in the dependency-based system is a de-
pendency relation or a word token. Converting 
these to each other is necessary for co-training. 
Previous work (Hacioglu, 2004) shows that this 
conversion is not straightforward and negatively 
affect the performance.  

To treat this issue we base our sample genera-
tion on constituency and then derive one depen-
dency-based sample from every constituent-based 
sample. This sample is a word token (called ar-
gument word here), selected from among all word 
tokens inside the constituent using the heuristic 
used for preparing CoNLL 2008 shared task data 
(Surdeanu et al. 2008). This one-to-one relation is 
recorded in the system and helps avoid the con-
version flaw. The system is described here. 

Architecture: A three-stage pipeline architec-
ture is used, where in the first stage less-probable 
argument candidates in the constituency parse 
tree are pruned using Xue and Palmer (2004) al-
gorithm. In the next stage, final arguments are 
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identified and assigned a semantic role jointly to 
decrease the complexity of task. In the final stage, 
a simple global optimization is performed using 
two constraints: a core argument role cannot be 
repeated for a predicate and arguments of a pre-
dicate cannot overlap. In addition, a preprocess-
ing stage identifies the verb predicates of unla-
beled sentences based on the parser's POS tags.  

Features: Appendix A lists the learning fea-
tures. Three types of features are used: constitu-
ent-based (C), dependency-based (D), and general 
(G) features which are not dependent on constitu-
ency or dependency. Columns 1 to 4 determine 
the feature sets and features present in each set, 
which will be described in the experiments sec-
tion. We have tried to avoid features like named 
entity tags to depend less on extra annotation.  

Classifier: Maximum Entropy is chosen as the 
base classifier for both views, because of its effi-
ciency in training time and also its built-in multi-
classification capability. Furthermore, it assigns a 
probability score for its predictions, which is use-
ful in training data selection process in co-
training. The Maxent Toolkit1 is interfaced with 
the system for this purpose. 

4 Co-training  

Since the introduction of the original co-training 
algorithm, several variations of it have been used. 
These variants have usually been motivated by 
the characteristics of the underlying application. 
Figure 1 shows a generalized version of the algo-
rithm with highlighted variables which constitute 
different versions of it. Some of the parameters 
addressed in this work are described here. 

One important factor involved in bootstrapping 
is the performance of the base classifier (C1 and 
C2). In co-training, another interesting parameter 
is the relative performance of the classifiers. We 
are interested in this parameter and investigate it 
by varying the feature split. 

There are various stop criteria (S) used in lite-
rature, such as a pre-determined number of itera-
tions, finishing all of the unlabeled data, or con-
vergence of the process in terms of improvement. 
We use the second option for all experiments 
here, but we also look at convergence so that 
some data does not cause infinite loop. 

In each iteration, one can label all of the 
unlabeled data or select and load a number of 
unlaleled examples (p) into a pool (P) and label 

                                                 
1http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolk
it.html 

only them. To study the effect of all parameters in 
a step by step approach, we do not use pool in 
this work and leave it for the future. 

Selecting the newly labeled data to be added 
to the training set is the crucial point of co-
training. First, it should be determined that both 
views use the common or separate training set 
during co-training. In the former case, T1 and T2 
are identical. Then, it should be decided how the 
classifiers collaborate with each other. 

With a common training set, selection can be 
done based on the prediction of both classifiers 
together. In one approach, only samples with the 
same predicted labels by both classifiers are 
selected (agreement-based selection). Another 
way is to select the most confidently labeled 
samples. Some select the most confident labelings 
from each view (Blum and Mitchell, 1998). In 
this method, a sample may be selected by both 
views, so this conflict needs to be resolved. We 
select the label for a sample with the highest 
confidence among both views (confidenece-based 
selection) to avoid conflict. Both approaches are 
investigated here. 

With a separate trainings set, selection is done 
among samples labeled by each classifier 
individually (usually confidence-based). In this 
case, selected samples of one view are added to 
the training set of the other for collaboration. We 
are interetsed in the comparison of common and 
separate training sets, especially because from the 
two previous SRL co-training works, one was 
based on common (Lee et al., 2007) and the other 
on separate training sets (He and Gildea, 2006). 

The next step is to chose the selection criteria. 
One can select all of the labeled examples, or one 
can only select a number of them (n), known as 
growth size, often based on a quality measure 

1- Add the seed example set L to currently 
empty training sets T1 and T2. 

2- Train the base classifiers C1 and C2 with 
training sets T1 and T2 respectively. 

3- Iterate the following steps until the stop cri-
terion S is met. 
a- Select p examples from U into pool P. 
b- Label pool P with classifiers C1 and C2 
c- Select n labeled examples whose score 

meets a certain threshold t from P and 
add to training sets T1 and T2. 

d- Retrain the classifiers C1 and C2 with 
new training sets. 

Figure 1: Generalized Co-training Algorithm 
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such as labeling confidence. To prevent poor 
labelings diminishing the quality of the training 
set, a threshold (t) is also set on this measure. We 
select all labeled samples here. 

Finally, when adding the selected samples into 
the training set, a copy of them can be kept in the 
unlabeled data set and labeled again in the 
successive iterations, or all can be removed so 
that each sample is labeled only once. The former 
is called delibility and the latter indelibility 
(Abney 2008). We use the second method here. 

5 Experiments and Results  

This work uses co-training to address the SRL 
training problem when the amount of available 
annotated data is small. 

The data and evaluation settings used are simi-
lar to the CoNLL 2005 and 2008 shared tasks. 
For evaluation, the same script used for 2005 
shared task is used here and the measures are pre-
cision, recall, and their harmonic mean, F1. 
However, the data is changed in some ways to 
fulfill the objectives of this research, which is 
explained in the next section. 

5.1 The Data 

All the training data including labeled and unla-
beled are selected from training sections of the 
shared tasks which consist of 39,832 PropBank 
sentences. The development data is WSJ section 
24 of the PropBank, and the test data is WSJ sec-
tion 23. Also, the Brown test data is used to eva-
luate the generalization ability of the system.  

As syntactic input for the constituent-based 
system, training and test sentences were reparsed 
with the reranking parser of Charniak and John-
son (2005) instead of using the original parses of 
the shared task. The reason was a significant im-
provement of the SRL performance using the new 

parses in the preliminary experiments. These re-
sults are given in the next section for comparison. 

For dependency-based system, the dependency 
syntax was prepared by converting the above 
constituent-based parses to dependency parses 
using the LTH converter  (Johansson and Nugues, 
2007). It should be noted that the data were also 
parsed using MaltParser (Nivre et al. 2007) at the 
same time, but the converter-based system out-
performed it. These results are given in the next 
section for comparison. 

As labeled seed data, 4,000 sentence of the 
training sentences are selected randomly. These 
sentences contain 70,345 argument samples 
covering 38 semantic roles out of 52 roles present 
in the total training set. Unlike previous work, we 
address all core and adjunctive  roles. 

As unlabeled training data, we use the remain-
ing portion of the training data which contains 
35,832 sentences, including 672,672 argument 
samples. We only address verb predicates and 
automatically identify them for unlabeled sen-
tences instead of using the original predicate an-
notation of the data. 

5.2 The Base Classifiers 

Table 1 shows the performance of the base clas-
sifiers with different feature sets presented in sec-
tion 3, and different syntactic input for each fea-
ture set. The first column lists the feature set 
numbers. In the second column, cha stands for 
the original Charniak parses of the data, and 
cha.re stands for the reranking parser used in this 
work. Also, conv stands for the converter-based 
dependency syntax and malt for dependency syn-
tax produced by MaltParser. Those marked with * 
will be used here. Precision and recall are shown 
by P and R respectively. 

To compare the performance of the classifiers 
with previous work, the results with all labeled 

F.S. Synt. 
Input 

All Labeled Training Data Seed Training Data 
WSJ Test Brown Test WSJ Test Brown Test 

P R F1 P R F1 P R F1 P R F1 

1 cha 79.0 67.6 72.9 70.4 56.6 62.7 73.9 62.9 68.0 66.6 52.4 58.6 
cha.re* 79.3 73.4 76.2 68.6 60.8 64.4 75.6 68.8 72.0 65.1 56.1 60.2 

2 malt 74.4 55.1 63.3 67.3 46.4 55.0 69.6 51.7 59.4 63.1 44.1 51.9 
conv* 75.5 60.8 67.4 69.7 52.9 60.1 73.6 56.9 64.2 66.0 47.7 55.4 

3 cha 70.4 63.0 66.5 62.1 52.2 56.8 64.0 59.4 61.6 57.5 49.5 53.2 
cha.re* 71.2 68.8 70.0 68.6 60.8 64.4 70.4 64.3 67.2 60.7 53.3 56.7 

4 malt 75.3 58.3 65.7 68.3 49.6 57.5 71.9 54.5 62.0 65.4 46.4 54.2 
conv* 76.6 64.5 70.0 69.7 52.9 60.1 76.3 59.5 66.9 69.0 49.8 57.9 

Table 1: Performance of the Base Classifiers with Various Syntactic Inputs and Feature Sets 
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data (39,832 sentences) are given on the left; to 
the right are the results with seed data only (4000 
labeled sentences). 

5.3 Feature Splits 

We experimented with three kinds of feature 
splits. The first feature split (UBUS) uses feature 
sets 1 and 4. It is neither balanced nor separated: 
there is 5.2 and 2.4 points F1 gap between their 
classifiers on WSJ and Brown test sets respective-
ly (see Table 1, Seed Training Data, rows 2 and 8 
of the result values), and they have 4 general fea-
tures in common (See Appendix A). The idea be-
hind this feature split is to understand the impact 
of feature separation and balancing. 

The second one (UBS) consists of feature sets 
1 and 2. According to Table 1 (Seed Training Da-
ta, rows 2 and 4 of the result values), there is a 
bigger F1 gap between two classifiers (~8 and ~5 
points on WSJ and Brown respectively) than pre-
vious split. Thus the classifiers are still unba-
lanced. However, it is a separated split, since 
there is no features common between feature sets.  

The last split (BS) is also a separated split but 
has been balanced by moving all general features 
except predicate’s POS tag into the dependency-
based feature set. It consists of feature sets 3 and 
4. According to Table 1 (Seed Training Data, 
rows 6 and 8 of the result values), the balance is 
only on F1 and gaps exist between precision and 
recall in opposite directions, which roughly com-
pensate each other. 

These three feature splits are used with three 
variations of the co-training algorithms described 
in section 4. In all settings, no pool is used and all 
unlabeled data are labeled in each iteration. Any 
sample which meets the selection criteria is se-
lected and moved to training set (indelibility), i.e., 
no growth size and probability threshold is speci-
fied. The results are presented and discussed in 
the following sections.  

5.4 Co-training by Common Training Set 

Two variations of the algorithm, when using a 
common training set, are used and described here. 

Agreement-based Selection: In each iteration, 
any sample for which the same label is assigned 
by both classifiers is selected and moved into 
training set. Figures 2 to 7 show the results with 
this setting. The left and right side figures are the 
results on WSJ Brown test sets respectively. Pre-
cision, recall, and F1 are plotted for the classifier 
of each feature set as co-training progresses. The 
F1 of the base classifiers and best co-trained clas-
sifier (in case of improvement) are marked on the 

graphs. Horizontal axis is based on co-training 
iterations, but the labels are the amounts of train-
ing samples used in each iteration. 

It is also apparent that the dependency-based 
classifier is benefitting more from co-training. 
The reason may be twofold. First, with all splits, 
it has a higher precision than the other, which 
helps reduce noise propagation into the subse-
quent iterations. Next, with unbalanced splits (1 
and 3) its performance is much lower and there is 
more room for improvement. 

All the figures show an improvement on 
Brown test set. Seemingly, since this test set suf-
fers from unseen events more than the other test 
set, new data is more useful for it. 

Most of the unlabeled data (~90%) is added in 
the first iteration, showing a high level of agree-
ment between classifiers. 

Figure 2 shows that there is no improvement 
by co-training with feature set UBUS on WSJ test 
set over the baseline, though the dependency-
based classifier improves. The feature split UBS 
in Figure 4, which fully separates the two feature 
sets, also could not gain any benefit. It seems that 
separating feature sets is not effective with the 
presence of a large gap between classifiers. This 
is further confirmed by observing the results for 
feature split BS in Figure 6, where the gap has 
been decreased to 0.4 F1 points, and co-training 
could improve the baseline by 0.7 points. 

Although these improvements are slight, but 
more runs of the experiments with different ran-
dom selections of seed and unlabeled data 
showed a consistent behavior. 

Confidence-based Selection: Due to the na-
ture of this kind of selection and since there is no 
growth size and probability criteria, all samples 
are added to the training set at once, with a label 
that its classifier is more confident than the oth-
er’s. Therefore, instead in a chart, the results 
could be presented in a table (Table 2). The first 
column lists the feature splits. In the second col-
umn, 0 stands for the base classifier and 1 is for 
classifier of the first (and the only) iteration. 

Using all data at once leads to an overall final 
classifiers performance, unlike the previous set-
ting in which remaining data for the following 
iterations degraded the progress. 

Considering the high level of agreement be-
tween classifiers (%90), a similar behavior to 
agreement-based method is observed with this 
method as expected. The trend of precision and 
recall, more improvement of dependency-based 
classifier, and better results on Brown test set are 
consistent with agreement-based co-training. 
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However, the separation of feature sets has 
even degraded the results over UBUS (71.2 vs. 
71.8 and 59.8 vs. 60.5 F1 points), but balancing 
has been again useful and improved the baselines 
by 0.4 and 0.9 F1 points on WSJ and Brown test 
sets respectively. Comparing these values corres-
pondingly to 0.7 and 0.9 point gains by agree-
ment-based co-training with feature split BS 

shows that the latter has been slightly more prom-
ising. 

5.5 Co-training by Separate Training Sets 

As with confidence-based selection, with this var-
iation of the algorithm, all samples are added to 
the training set at once. Table 3 shows the per-
formance of the algorithm. 

Figure 2: Agreement-based Co-training with Feature 
Split UBUS (WSJ Test Set) 
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Figure 3: Agreement-based Co-training with Feature 
Split UBUS (Brown Test Set) 
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Figure 4: Agreement-based Co-training with Feature 
Split UBS (WSJ Test Set) 
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Figure 5: Agreement-based Co-training with Feature 
Split UBS (Brown Test Set) 
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Figure 6: Agreement-based Co-training with Feature 
Split BS (WSJ Test Set) 
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Figure 7: Agreement-based Co-training with Feature 
Split BS (Brown Test Set) 
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The constituent-based classifier has been de-
graded with all feature splits. This even includes 
balanced and separated feature split (BS), which 
improved in previous settings. 

The dependency-based system, which has al-
ways improved before, now degrades when using 
feature split BS, even on the Brown test set which 
has been previously benefited with all settings. 
On the other hand, feature split UBS improves on 
both test sets, possibly for the same reasons de-
scribed before. However, the improvement of the 
dependency-based system with unbalanced fea-
ture split is not useful, because the performance 
of the constituent-based system is much higher, 
and it does not seem that the dependency-based 
classifier can reach to (or improve over it) even 
with more unlabeled data. 

It can be seen that this variation of the algo-
rithm performs worse compared to co-training 
with the common training set. Since in that case, 
in addition to training on the results of each other, 
the decision on selecting labeled data is made by 
both classifiers, this additional cooperation may 
be the possible reason of this observation. 

6 Conclusion and Future Work  

This work explores co-training with two views of 
SRL, namely constituency and dependency. In-
spired by the two co-training assumptions, we 
investigate the performance of the algorithm with 
three kinds of feature splits: an unbalanced split 

with some general features in common between 
feature sets, an unbalanced but fully separated 
split, and a balanced and fully separated split.   

In addition, three variations of the algorithms 
were examined with all feature splits: agreement-
based and confidence-based selection for co-
training with common training set, and co-
training with separate training sets. 

Results showed that the balanced feature split, 
in which the performances of the classifiers were 
roughly the same, is more useful for co-training. 
Moreover, balancing the feature split to reduce 
performance gap between associated classifiers, 
is more important than separating feature sets by 
removing common features.  

Also, a common training set proved useful for 
co-training, unlike separate training sets. Howev-
er, more experiments are needed to compare 
agreement- and confidence-based selections. 

Due to significant difference between the cur-
rent work and previous work on SRL co-training 
described in section 2 comparison is difficult. 
Nevertheless, unlike He and Gildea (2006), co-
training showed to be useful for SRL here, though 
with slight improvements. In addition, the statis-
tics reported by Lee et al. (2007) are unclear to 
compare for the reason mentioned in that section. 
However, as they concluded, more unlabeled data 
is needed for co-training to be practically useful. 

As mentioned, we did not involve parameters 
like pool, growth size and probability threshold 

FS It. 
WSJ Test Set Brown Test Set 

Constituent-based Dependency-based Constituent-based Dependency-based
P R F1 P R F1 P R F1 P R F1 

UBUS 0 75.6 68.8 72.0 76.3 59.5 66.8 65.1 56.1 60.2 69.0 49.8 57.9 
1 79.0 65.8 71.8 77.5 59.8 67.5 70.5 53.0 60.5 70.6 50.6 59.0 

UBS 0 75.6 68.8 72.0 73.6 56.9 64.2 65.1 56.1 60.2 66.0 47.7 55.4 
1 78.3 65.4 71.2 74.9 58.0 65.4 69.4 52.5 59.8 69.1 49.8 57.9 

BS 0 70.4 64.3 67.2 76.3 59.5 66.9 60.7 53.3 56.8 69.0 49.8 57.9 
1 76.1 60.9 67.6 78.0 59.3 67.4 67.4 50.3 57.6 70.5 50.4 58.8 

Table 2: Co-training Performance with Confidence-based Selection 

FS It. 
WSJ Test Set Brown Test Set 

Constituent-based Dependency-based Constituent-based Dependency-based
P R F1 P R F1 P R F1 P R F1 

UBUS 0 75.6 68.8 72.0 76.3 59.5 66.9 65.1 56.1 60.2 69.0 49.8 57.9 
1 79.0 59.8 68.0 75.5 59.5 66.6 70.2 49.3 57.9 67.8 50.8 58.1 

UBS 0 75.6 68.8 72.0 73.6 56.9 64.2 65.1 56.1 60.2 66.0 47.7 55.4 
1 76.7 58.2 66.2 73.7 58.1 65.0 69.3 49.5 57.7 67.2 50.0 57.3 

BS 0 70.4 64.3 67.2 76.3 59.5 66.9 60.7 53.3 56.8 69.0 49.8 57.9 
1 76.2 57.9 65.8 75.1 58.4 65.7 67.5 48.8 56.7 67.5 49.9 57.4 

Table 3: Co-training Performance with Separate Training Sets 
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for a step-by-step study. A future work can be to 
investigate the effect of these parameters. Anoth-
er direction of future work is to adapt the SRL 
architecture to better match with the co-training. 
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Appendix A. Learning Features 
Feature Name Type 1 2 3 4 
Phrase Type C √  √  
Path C √  √  
Content Word Lemma C √  √  
Head Word POS C √  √  
Content Word POS C √  √  
Governing Category C √  √  
Predicate Subcategorization C √  √  
Constituent Subcategorization  C √  √  
Clause+VP+NP Count in Path C √  √  
Constituent and Predicate Distance C √  √  
Head Word Location in Constituent  C √  √  
Dependency Relation of Argument Word with Its Head D  √  √ 
Dependency Relation of Predicate with Its Head D  √  √ 
Lemma of Dependency Head of Argument Word D  √  √ 
POS Tag of Dependency Head of Argument Word D  √  √ 
Relation Pattern of Predicate’s Children D  √  √ 
Relation Pattern of Argument Word Children D  √  √ 
POS Pattern of Predicate’s Children D  √  √ 
POS Pattern of Argument Word’s Children D  √  √ 
Relation Path from Argument Word to Predicate D  √  √ 
POS Path from Argument Word to Predicate D  √  √ 
Family Relationship between Argument Word and Predicate D  √  √ 
POS Tag of Least Common Ancestor of Argument Word and Predicate D  √  √ 
POS Path from Argument Word to Least Common Ancestor D  √  √ 
Dependency Path Length from Argument Word to Predicate D  √  √ 
Whether Argument Word Starts with Capital Letter?  D  √  √ 
Whether Argument Word is WH word?  D  √  √ 
Head or Argument Word Lemma G √   √ 
Compound Verb Identifier G √   √ 
Position+Predicate Voice G √   √ 
Predicate Lemma  G √   √ 
Predicate POS G √  √ 
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