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Abstract

Recent advances in parsing technology have
made treebank parsing with discontinuous
constituents possible, with parser output of
competitive quality (Kallmeyer and Maier,
2010). We apply Data-Oriented Parsing
(DOP) to a grammar formalism that allows
for discontinuous trees (LCFRS). Decisions
during parsing are conditioned on all possible
fragments, resulting in improved performance.
Despite the fact that both DOP and disconti-
nuity present formidable challenges in terms
of computational complexity, the model is
reasonably efficient, and surpasses the state of
the art in discontinuous parsing.

1 Introduction

Many natural language phenomena are inherently
not context-free, or call for structural descriptions
that cannot be produced by a context-free gram-
mar (Chomsky, 1957; Shieber, 1985; Savitch et al.,
1987). Examples are extraposition, cross-serial
dependencies and WH-inversion. However, relaxing
the context-freeness assumption comes at the peril
of combinatorial explosion.

This work aims to transcend two limitations
associated with probabilistic context-free grammars.
First in the sense of the representations produced
by the parser, which allow constituents with
gaps in their yields (see figure 1). Building on
Kallmeyer and Maier (2010), we parse with a mildly
context-sensitive grammar (LCFRS) that can be
read off directly from a treebank annotated with
discontinuous constituents.

Secondly, the statistical dependencies in our gen-
erative model are derived from arbitrarily large frag-
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Die Versicherung kann man sparen
The insurance can one save

Figure 1: A discontinuous tree from the Negra corpus.
Translation: As for the insurance, one can save it.

ments from the corpus. We employ a Data-Oriented
Parsing (DOP) model: a probabilistic tree-substitution
grammar that employs probabilities derived from the
frequencies of all connected fragments in the tree-
bank (Bod, 1992; Bansal and Klein, 2010; Sangati
and Zuidema, 2011). We generalize the DOP model
to support discontinuity. This allows us to model
complex constructions such as NP kann man VVINF.

2 Motivation

Treebank grammars need not be mere exercises in
machine learning; they may be significant steps
toward cognitively viable models of human language
processing. To develop the enterprise of corpus-
based parsing in this more ambitious direction,
substantial questions must be faced—methodological
as well as technical ones.

All successful treebank grammars now employ
very large numbers of rules; these rules, extracted
from the corpus, are extremely specific and could
never be motivated by abstract linguistic con-
siderations. They either use large and complex
fragments of the corpus trees (the Data-Oriented
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Parsing approach), or they introduce specialized
non-terminal labels which encode non-local infor-
mation about the occurrence contexts of the nodes
(the symbol-refinement approach). (These two
methods are in fact not unrelated, as we shall discuss
below.) Both approaches use “grammars" in the
technical sense (bodies of rewrite rules), but not in
the linguistic sense. The grammars do not encode
general properties of the language, but specific
properties of the corpus. All interesting treebank
grammars are thus essentially exemplar-based. This
characterization applies even more unavoidably
to discriminative models that use the corpus trees
directly without any kind of intervening grammar.

The exemplar-based models implemented by
modern statistical parsers are of potential interest to
the theory of language cognition, because they are
the first formal alternatives to the rule-based models
espoused by modern linguistics. But the tests that
drive the development of statistical parsers are not
sufficient to establish their plausibility as cognitive
models. For corpus-based language processing work
to become more relevant to language cognition,
innovations are needed along several dimensions.
One of them is evaluation methodology. F1-scores
on labeled bracketings constitute a poor criterion of
excellence. More qualitative analyses are needed; we
must try to understand what works and what doesn’t.

In the present paper we do not deal with evaluation
methods, but we take up another, related point.
A precondition for a cognitively viable model of
exemplar-based syntactic processing, is a cognitively
viable definition of “syntactic Gestalts," i.e., of the
kinds of objects that occur in the corpus and that
are to be produced by the parser. It is customary to
employ “syntactic surface trees" for this purpose,
i.e., labeled trees with ordered branches, having
the words of the sentence as their leaves. When we
look at languages with a relatively free word order
(which often correlates with a relatively non-trivial
morphology), limitations of this approach become
apparent. In such languages, the intuitive “parts" of
the sentence need not coincide with contiguous sur-
face constituents. By introducing movement features
and allowing empty constituents, it is possible to
encode non-local connections inside ordered surface
trees; at the same time, functional feature labels may
be added to the surface-syntactic categories. This ap-

proach was taken in the Penn Treebank (Taylor et al.,
2003). In principle, this makes it possible to extract
functional structures from the corpus-trees, and also,
to evaluate parsers on their capacity to correctly
construct the functional structures of test sentences.
In practice, however, this is hardly ever done.

In English, the discrepancies between functional
structure and surface constituents are less prominent
than in many other languages. It is no coincidence
that this issue was first squarely faced by the de-
signers of the annotation conventions of the German
Negra and Tiger corpora (Skut et al., 1997; Brants
et al., 2002). They chose to use unordered trees
(with crossing branches), allowing discontinuous
constituents that correspond directly to the intuitively
perceived argument structures. A model using
a corpus annotated in this way, would be more
interesting from a cognitive point of view, because
it employs more plausible exemplars, and its output
can be compared with more meaningful “gold trees."

Much of the work that used the Tiger and Negra
corpora has failed to take advantage of this situation.
Typically, these corpora are converted into traditional
phrase-structure trees, so as to allow the application
of the standard American techniques that were
developed for English corpora. Exceptions were
Plaehn (2004) and Maier (2010). The current paper
follows up on that work, and integrates it with the
Data-Oriented Parsing approach.

3 Discontinuity

Our symbolic grammar is a Linear Context-Free
Rewriting System (Vijay-Shanker et al., 1987).
LCFRS was introduced to subsume a wide variety
of mildly context-sensitive formalisms (e.g., TAG,
CCG, and even synchronous CFG). Intuitively it
can be seen as a generalization of context-free
grammar to other structures: rules are context-free,
but instead of strings they rewrite tuples, trees or
graphs. In our case a non-terminal may cover a
tuple of discontinuous strings instead of a single,
contiguous sequence of terminals. The number of
components in such a tuple is called the fan-out of a
rule, which is equal to the number of gaps plus one;
the fan-out of the grammar is the maximum fan-out
of its rules. A context-free grammar is a LCFRS with
a fan-out of 1. For convenience we will will use the
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rule notation of simple RCG (Boullier, 1998), which
is a syntactic variant of LCFRS.

A LCFRS is a tuple G = 〈N,T, V, P, S〉. N is a
finite set of non-terminals; a function dim : N → N
specifies the unique fan-out for every non-terminal
symbol. T and V are disjoint finite sets of terminals
and variables. S is the distinguished start symbol
with dim(S) = 1. P is a finite set of rewrite rules
of the form:

A(α1, . . . αdim(A))→B1(X1
1 , . . . , X

1
dim(B1))

. . . Bm(Xm
1 , . . . , X

m
dim(Bm))

for m ≥ 0, where A, B1, . . . , Bm ∈ N ,
each Xi

j ∈ V for 1 ≤ i ≤ m, 1 ≤ j ≤ dim(Aj) and
αi ∈ (T ∪ V )∗ for 1 ≤ i ≤ dim(Ai).

Rules must be linear: if a variable occurs in a rule,
it occurs exactly once on the left hand side (LHS),
and exactly once on the right hand side (RHS). A
rule is ordered if for any two variables X1 and X2

occurring in a non-terminal on the RHS, X1 precedes
X2 on the LHS iff X1 precedes X2 on the RHS.

A rule can be instantiated when its variables can
be bound to spans such that for each component αi

of the LHS, the concatenation of its terminals and
bound variables forms a contiguous span in the input,
while the endpoints of each span are non-contiguous.

As in the case of a PCFG, we can read off
LCFRS rules from a treebank (Maier and Søgaard,
2008), and the relative frequencies of rules form a
maximum likelihood estimate, for a probabilistic
LCFRS (PLCFRS). The tree in figure 1 decomposes
into the following productions:

S(x0x1x2x3) → VP2(x0, x3) VMFIN(x1) PIS(x2)

VP2(x0, x1) → NP(x0) VVINF(x1)

NP(x0x1) → ART(x0) NN(x1)

ART(Die) → ε

NN(Versicherung) → ε

VVINF(sparen) → ε

VMFIN(kann) → ε

PIS(man) → ε

Discontinuous non-terminals are annotated with a
number indicating their fan-out, to satisfy the restric-
tion that each non-terminal type A can be mapped to
a unique fan-out by dim(A). A derivation proceeds
by instantiating rules with subsequences of terminals

in the input. Each non-terminal can be seen as a pred-
icate holding over part of the sentence. Following the
framework of deductive parsing (Nederhof, 2003), a
sentence is parsed in a sequence of weighted deduc-
tion steps aiming at the goal theorem, viz., the start
symbol covering the whole input in a single span.

Algorithm 1 A probabilistic agenda-based CKY

parser for LCFRS.
1: initialize agenda A with POS tags
2: while A 6= ∅
3: 〈I, x〉 ← item with lowest score on agenda
4: add 〈I, x〉 to C and F
5: for all 〈I ′, y〉 deduced from

{〈I, J〉, 〈J, I〉, 〈I〉 | J ∈ C}
6: if I ′ 6∈ A ∪ C
7: enqueue 〈I ′, y〉 in A
8: else if I ′ ∈ A ∧ y < score for I ′ in A
9: add I ′ with old score to F

10: update weight of I ′ in A to y
11: else
12: add 〈I ′, y〉 to F

This work employs an extended version of the
agenda-based CKY parser for LCFRS in Kallmeyer
and Maier (2010). The algorithm is Knuth’s
generalization of Dijkstra’s shortest path algorithm
to the case of hypergraphs, where the shortest path is
the Viterbi derivation and the hypergraph is the chart
defining possible derivations. A requirement of a
CKY parser is that rules are binarized; we also restrict
the parser to ordered rules for efficiency. The search
space of a PCFG can be explored systematically from
left to right with constituents of increasing size;
this is what makes typical CKY parsers efficient.
Unfortunately this approach does not translate to
LCFRS because discontinuous constituents can cover
any subsequence of the input. For this reason an
explicit agenda has to be used, which we order
by inside probability; alternatively the agenda can
employ figures of merit or A* heuristics, but this is
not explored in this work.

Our implementation1 produces an exhaustive
chart instead of stopping at the Viterbi derivation.
The pseudo-code is given in algorithm 1. The

1The parser including source code is publicly available from
http://github.com/andreasvc/disco-dop. Everything was
written in Python, with pre-processing and evaluation making
use of NLTK (Bird et al., 2009), and the parser and k-best
extraction making use of Cython (Behnel et al., 2011) to translate
Python code with static type annotations to native C code.
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Figure 2: DOP1 fragments as extracted from the tree of “Daisy loved Gatsby.”
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Daisy loves Gatsby

Figure 3: A DOP1 derivation. Note that “Daisy” becomes the subject, because fragments are combined with left-most
substitution.

parser makes use of an agenda A (implemented as
a priority queue with the decrease-key operation),
a chart C with Viterbi probabilities, and the full
chart F including suboptimal items. Both A and C
store items I defined by a category and a span, paired
with a weight x, while F stores weighted edges
between items, representing a shared parse forest.

The algorithm is deceptively simple. Most of the
work is in producing all items that can be deduced
from a given item and items in the chart. This in-
volves iterating over all grammar rules with matching
labels, and verifying whether the yields of particular
items can instantiate the rule. This can be optimized
by representing yields as bit vectors and first verify-
ing that the two yields do not overlap. The next step is
to walk through both bit vectors in parallel and verify-
ing the conditions for instantiating a rule. Rules that
can be instantiated are given a score that is the sum
of the weights (e.g., log probabilities) of their RHS.

Any LCFRS can be binarized (as required by the
CKY parser) and parsed in O(|G| · |w|3ϕ) time,
where |G| is the size of the grammar, |w| is the
length of the sentence, and ϕ is the fan-out after bina-
rization (Gómez-Rodríguez et al., 2009). The fan-out
may increase due to binarization, but in our exper-
iments this was no cause for concern. The degree
of the polynomial reflects the maximal number of
comparisons needed to determine whether a rule can
be applied; a binarized rule has three non-terminals
with ϕ components each in the worst case.

This stands in contrast to previous formalisms

for discontinuous parsing (Johnson, 1985; Plaehn,
2004), which have exponential time complexity.
The difference is that in a LCFRS, the productions
are formally context-free in the sense that they
are applied without knowledge of the rest of the
derivation, and they are restricted to cover certain
spans in a particular order, which avoids having
to enumerate the exponential number of possible
discontinuous spans or permutations of the sentence.

4 Data-Oriented Parsing

Data-Oriented parsing (DOP) was introduced by
Scha (1990) as both a cognitive and computational
approach to analyzing language in terms of exem-
plars instead of rules. Concretely this works by
allowing arbitrarily large fragments in the corpus
to recombine with each other. The intuition is that,
in terms of cognitive load, reuse is cheaper than
computation, so remembering fragments is more
effective than deriving them anew.

The first concrete DOP model was DOP1 (Bod,
1992). In DOP1, a fragment is defined as a connected
subset of nodes in a tree, such that for every non-
terminal node, the fragment either has all children
in common with the tree, or none. In the latter case
the node is a frontier node, which functions as a
substitution site (this is analogous to an open slot in a
construction). The weight of a fragment is its relative
frequency in the training data. Figure 2 illustrates
the DOP1 fragments extracted from the tree of an
example sentence. Note that the smallest fragments
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Figure 4: Discontinuous fragments as extracted from the tree of “is Gatsby rich?”
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Figure 5: A discontinuous DOP derivation of the tree in figure 1.

correspond to CFG productions, such that a CFG is
a DOP1 model restricted to fragments of depth 1.

A derivation is defined as a sequence of fragments
combined through left-most substitution. Left-most
substitution is defined for any two trees t1 and
t2, such that t1 has a frontier node labeled X and
root(t2) = X; the result of t1 ◦ t2 is a new tree
where t2 is substituted for the first frontier node
labeled X in t1. The probability of a derivation is
the product of the weights of its fragments. Figure 3
shows a derivation with the fragments in figure 2.

We can generalize the DOP1 model to the case of
discontinuous trees. By substituting an LCFRS for the
CFG backbone of DOP1, we obtain a discontinuous
DOP model—Disco-DOP. The Disco-DOP model
employs the same definition of a fragment, but
applies it to a broader class of trees. Figure 4 shows
the fragments extracted from a discontinuous tree.
Note that when a discontinuous node becomes
a frontier node, it specifies where its yield will
end up with respect to the yield of other nodes in
the fragment. Figure 5 shows a derivation with
discontinuous fragments of the tree in figure 1.

Parsing with all fragments explicitly is not pos-
sible, as there are exponentially many. One solution
is to select a subset of fragments (e.g., Sangati
and Zuidema, 2011). In this work we employ the
approach introduced by Goodman (1996, 2003), who
defines a PCFG which decomposes the probabilities
of fragments into several PCFG productions, such that

the same parse trees can be recovered as in a DOP

model with explicitly represented fragments. This
reduction generalizes straightforwardly to a PLCFRS.

Each node A in the training corpus is decorated
with a unique address Aj . Given a node Aj with
children Bk and Cl, the number of fragments headed
by Aj is given by aj = (bk + 1)(cl + 1). The total
number of subtrees (fragments) forA is given by a =∑

j aj . We also apply a normalization factor ā which
is the frequency of non-terminals of type A in the
training data. The probabilities of Disco-DOP deriva-
tions can then be encoded in the following reduction,
applied to each production in the training corpus:

Aj(~α) → B( ~αB) C( ~αC) (1/aj)

Aj(~α) → Bk( ~αB) C( ~αC) (bk/aj)

Aj(~α) → B( ~αB) Cl( ~αC) (cl/aj)

Aj(~α) → Bk( ~αB) Cl( ~αC) (bkcl/aj)

A(~α) → B( ~αB) C( ~αC) (1/(aā))

A(~α) → Bk( ~αB) C( ~αC) (bk/(aā))

A(~α) → B( ~αB) Cl( ~αC) (cl/(aā))

A(~α) → Bk( ~αB) Cl( ~αC) (bkcl/(aā))

Where ~α refers to the arguments of the LHS

non-terminal. Each addressed non-terminal rep-
resents an internal node of a fragment, while the
unaddressed nodes represent both the root and the
frontier nodes of fragments. The latter allow a switch
from one fragment to another during parsing, viz.
they simulate substitution sites of DOP fragments.
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S (20)

VP (4)

NP (3) VB (2) NP (3)

Daisy loved Gatsby

S (20)

VP@2 (4)

NP@1 (1) VB@3 (1) NP@4 (1)

Daisy loved Gatsby
1/20 S(x0x1)→ NP(x0) VP(x1)
4/20 S(x0x1)→ NP(x0) VP@2(x1)
1/20 S(x0x1)→ NP@1(x0) VP(x1)
4/20 S(x0x1)→ NP@1(x0) VP@2(x1)
1/4 VP(x0x1)→ VB(x0) NP(x1)
1/4 VP(x0x1)→ VB(x0) NP@4(x1)
1/4 VP(x0x1)→ VB@3(x0) NP(x1)
1/4 VP(x0x1)→ VB@3(x0) NP@4(x1)
1/4 VP@2(x0x1)→ VB(x0) NP(x1)
1/4 VP@2(x0x1)→ VB(x0) NP@4(x1)
1/4 VP@2(x0x1)→ VB@3(x0) NP(x1)
1/4 VP@2(x0x1)→ VB@3(x0) NP@4(x1)
1/3 NP(Daisy)→ ε
1/1 NP@1(Daisy)→ ε
1/2 VB(loved)→ ε
1/1 VB@3(loved)→ ε
2/3 NP(Gatsby)→ ε
1/1 NP@4(Gatsby)→ ε

S (20)

VP2 (4)

VB (2) NP (3) ADJ (1)

is Gatsby rich

S (20)

VP2@6 (4)

VB@7 (1) NP@9 (1) ADJ@8 (1)

is Gatsby rich
1/20 S(x0x2x1)→ VP2(x0, x2) NP(x2)
1/20 S(x0x2x1)→ VP2(x0, x2) NP@9(x2)
4/20 S(x0x2x1)→ VP2@6(x0, x2) NP(x2)
4/20 S(x0x2x1)→ VP2@6(x0, x2) NP@9(x2)
1/4 VP2(x0, x1)→ VB(x0) ADJ(x1)
1/4 VP2(x0, x1)→ VB(x0) ADJ@8(x1)
1/4 VP2(x0, x1)→ VB@7(x0) ADJ(x1)
1/4 VP2(x0, x1)→ VB@7(x0) ADJ@8(x1)
1/4 VP2@6(x0, x1)→ VB(x0) ADJ(x1)
1/4 VP2@6(x0, x1)→ VB(x0) ADJ@8(x1)
1/4 VP2@6(x0, x1)→ VB@7(x0) ADJ(x1)
1/4 VP2@6(x0, x1)→ VB@7(x0) ADJ@8(x1)
1/1 ADJ(rich)→ ε
1/1 ADJ@8(rich)→ ε
1/1 NP@9(Gatsby)→ ε
1/2 VB(is)→ ε
1/1 VB@7(is)→ ε

Figure 6: The pairwise Cartesian product of the productions in the original and the addressed tree gives the productions
in the reduction.

The use of the normalization factor is called the
Equal Weights Estimate; this formulation follows
Bod (2003). Goodman (2003) first suggested this
normalization but his formula appears to contain a
mistake, having aj in the denominator of the last four
rules instead of a. The normalization is intended to
counter the bias for large subtrees in DOP1—when all
fragments are considered, the majority will consist of
large fragments, which results in the majority of prob-
ability mass being assigned to rare, large fragments.

Intuitively, the reduction can be seen as state-
splitting in the limit. A state-split partitions a
non-terminal into two or more new non-terminals to
cover more specific and fine-grained contexts. Taken
to the extreme, we can keep splitting non-terminals
until each resulting non-terminal refers to one
specific occurrence of that non-terminal in a single
sentence, which greatly increases the amount of
hierarchical information that can be extracted and
exploited from the training corpus. This is exactly
what happens in Goodman’s reduction. Compared
to other automatic state-splitting approaches such
as latent variable grammars, this approach has the
advantage of being conceptually much simpler.

Figure 6 shows a concrete example of the reduc-
tion, using the tree from figure 1. The eight produc-
tions per node of the reduction can be considered as
the pairwise Cartesian product of the original pro-
duction and the one with addressed nodes. To get
the reduction of a complete tree, this operation is

applied to all productions of both trees in parallel.
The probabilities are derived from the number of sub-
trees, shown in brackets after the node labels. The
normalization step has been left out, for simplicity’s
sake. Productions without addressed nodes, i.e., the
original productions, will recur, and their probabil-
ities must be summed. In our case productions are
considered equivalent when both the non-terminals
and their arguments match.

The large number of non-terminals and pro-
ductions in this grammar make parsing with this
reduction inefficient. In order to optimize parsing
with the DOP reduction, we apply coarse-to-fine in-
ference in the spirit of Bansal and Klein (2010). The
principle is to parse first with a coarse grammar, in
this case the treebank PLCFRS, and use information
from the resulting chart to prune parsing with the full
grammar, in this case the DOP reduction. Figure 7 il-
lustrates the approach. The fine grammar is projected
onto the coarse grammar by mapping nodes Aj to
the original nodes A. Pruning is implemented by
blocking items 〈A,~a〉which are not part of the n-best
derivations in the coarse chart; such items are simply
prevented from entering the agenda. Although this
approach is reminiscent of re-ranking (Charniak and
Johnson, 2005), in our approach items can recom-
bine to form parse trees not present in the n-best
derivations. We use n = 50 in all experiments.

We aim at maximizing the chance of obtaining the
correct structure for a given sentence, viz. finding its
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NP[11100]

NP[11100]
NP@2[11100]
NP@5[11100]
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VP[00010]

VP[00010]
VP@1[00010]
VP@9[00010]
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VP[00011]

VP[00011]
VP@1[00010]
VP@10[00010]
[. . .]

ART[10000]

ART[10000]
ART@3[10000]
ART@9[10000]
[. . .]

NN[01000]

NN[01000]
NN@4[01000]
NN@13[01000]
[. . .]

(1)

(2)

(3)

(50)

Figure 7: The coarse-to-fine inference. On the left are the
n-best derivations from the coarse chart. In the middle
the chart items (category and spans) extracted from those
derivations. On the right are all items for the fine grammar
that map to these coarse items. The latter will be the only
items allowed to enter the agenda when parsing with the
fine grammar.

most probable parse (MPP). In DOP the probability of
a parse tree is the sum of all its possible derivations.
However, as there can be exponentially many
derivations for each parse tree, finding the MPP is
NP-hard (Sima’an, 1996). Therefore the MPP must be
approximated with a restricted set of derivations: a
list of derivations is produced using the algorithm of
Huang and Chiang (2005) which efficiently extracts
the exact k-best list from an exhaustive chart with
Viterbi probabilities. We use k = 10, 000 in all
experiments. After this list is obtained, we sum the
probabilities of all derivations generating the same
parse tree by applying the projection, and select the
best one. Note that probabilities of DOP derivations
are spread over multiple derivations in Goodman’s
reduction. In our experiments the list of derivations
in the reduction often collapses to just 5 parse trees.

words train test
PLCFRS

rules
Disco-DOP

rules

≤ 15 9025 1015 24020 678659
≤ 25 14870 1639 53773 1769507
≤ 30 16490 1845 50381 1799797

Table 1: Number of sentences and rules.

5 Experiments

We evaluate on version 2 of the German Negra tree-
bank (Skut et al., 1997). Results are for models based
on splits of 90% training data and 10% test data.
The setup follows Kallmeyer and Maier (2010) as
much as possible. The parser is presented with (gold)
part-of-speech tags from the treebank. The DOP

model, however, does exploit its knowledge of lexical
dependencies by using fragments with terminals. In
a pre-processing step, function labels are discarded
and all punctuation is lowered to the best matching
constituent. Heads are marked using the head finding
rules for the Negra corpus used by the Stanford parser,
after which trees are binarized head-outward (Klein
and Manning, 2003a,b). The markovization setting is
v=1 (i.e., no parent annotation), and h ∈ {1, 2,∞},
dictated by efficiency concerns. Lower values for
h give better performance because they allow more
flat structures to be covered through re-combinations
of parts of different constituents. However, this
also greatly increases the number of possible edges
which have to be explored. For this reason we had to
increase the value of h for parsing longer sentences,
at the cost of decreased performance and coverage.
Figure 8 illustrates the binarization. With these set-
tings the grammar has a fan-out of 5 for the grammar
of up to 15 word sentences, and a fan-out of 7 for the
other two. Table 1 lists the size of the training & test
corpora and their grammars for the respective length
restrictions. Note that Kallmeyer and Maier (2010)
apply the length restriction before the 90-10 split,
but the difference is not more than 12 sentences.

X

A B C D E F

X

XA

XA,B

XB,F

XF,E

XE,D

XD,C

A B C D E F

Figure 8: A head-outward binarization with h=2 v=1
markovization; C is the head node.
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NEGRA words coverage LP LR F1 EX

Plaehn (2004): DPSG ≤ 15 96.04 73.61 72.72 73.16 39.0
Kallmeyer and Maier (2010): PLCFRS ≤ 15 - - - 81.27 -
This work: Disco-DOP v=1, h=1 ≤ 15 99.90 84.09 85.03 84.56 54.68
Kallmeyer and Maier (2010): PLCFRS ≤ 25 99.45 73.03 73.46 73.25 -
This work: Disco-DOP v=1, h=2 ≤ 25 98.90 78.26 79.37 78.81 39.11
Maier and Kallmeyer (2010): PLCFRS ≤ 30 97.00 72.39 70.68 71.52 -
This work: Disco-DOP v=1, h=∞ ≤ 30 96.59 73.05 74.93 73.98 34.80

Table 2: Results for discontinuous parsing on the Negra treebank.

Evaluation is performed using a generalization
of the PARSEVAL measures, which compares
bracketings of the form 〈A,~a〉 where ~a is the yield
described by a tuple of intervals (Maier, 2010); we
used Maier’s publicly available implementation.2

We use PARSEVAL, in spite of its serious shortcom-
ings (Rehbein and van Genabith, 2007), to enable
comparison with previous work. Unparsed sentences
are assigned a baseline parse with all tags directly
under the root node.

Our model performs consistently better than
previous results on discontinuous parsing; see
table 2 for the results, including comparisons to
previous work. Figure 9 plots the time required to
parse sentences of different lengths with v=1 h=2,
showing a strikingly steep curve, which makes clear
why parsing sentences longer than 25 words was
not feasible with these settings. The coarse-to-fine
inference appears to work rather well, apparently
displaying a linear observed time complexity on the
DOP grammar; unfortunately exhaustive parsing with
the coarse grammar forms a bottleneck. The total
time to parse was 1, 16 and 52 hours for 15, 25, and
30 words respectively, using about 4 GB of memory.

6 Remaining challenges

From these results it may appear as if the combina-
tion of the formalism and treebank parsing forms an
inherent barrier to parsing longer sentences. Even
Kallmeyer and Maier (2010), who employ a precom-
puted table of outside estimates, could not parse be-
yond 30 words, because of memory limitations. Their
four-dimensional table is indexed on non-terminals,
span length, length of gaps, and number of words to

2Cf. http://www.wolfgang-maier.net/rparse
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Figure 9: Efficiency as a function of the number of words
in the coarse (PLCFRS) and the fine stage (Disco-DOP).The
data are from parsing 10 Negra sentences, hand-picked
to illustrate the worst case.

the left and right. This implies a space complexity of
O(|N |·n3) where |N | is the number of non-terminals
and n the maximum sentence length. With approx-
imately 12,000 non-terminals as cited by Kallmeyer
and Maier (2010), a limit of 100 words per sentence,
and double precision, this implies a table of 96 GB.

Another issue is that it is not clear whether
obtaining k-best lists with these estimates works well
or is possible at all. Pauls and Klein (2009) present
an algorithm for extending an A* parser to a parser
that builds the k-best derivations during parsing, but
the estimates of Kallmeyer and Maier (2010) are
not monotone, a property which is assumed by Pauls
and Klein (2009). Monotonicity guarantees that the
Viterbi parse will be found first.

We consider extending the coarse-to-fine approach
to be more promising. Instead of only making the
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categories coarser, we can also resort to a coarser
formalism. Following Barthélemy et al. (2001), we
can extract a grammar that defines a superset of the
language we want to parse, but with a fan-out of 1.
Concretely, a context-free grammar can be read off
from discontinuous trees that have been transformed
to context-free trees by the procedure introduced
by Boyd (2007). Each discontinuous node is split
into a set of new nodes, one for each component;
for example a node NP2 will be split into two nodes
labeled NP*1 and NP*2 (like Barthélemy et al.,
we can mark components with an index to reduce
overgeneration). Because Boyd’s transformation
is reversible, derivations from this grammar can be
converted back to discontinuous trees, and can guide
parsing with the LCFRS. Results with this approach
will be reported in future work.

Aside from these technical issues, many linguistic
features have been glossed over in this work to
limit its scope. A proper parser and evaluation
should work with grammatical functions as well, and
parsing languages with less strict word-order implies
that morphology provides important information
about constituents that have been moved or extra-
posed. Movement and extraposition could also be
modeled statistically, which can reduce data sparsity.
Scrambling is known to be beyond the power of
LCFRS (Becker et al., 1992); however, the question
is whether it needs to be part of the formalism at all.
As the work of Tsarfaty (2010) shows, it is possible
to incorporate morphology, grammatical functions,
and word-order in a statistical model built on a PCFG

backbone. Perhaps this approach could be combined
with the work presented here, such that it can produce
discontinuous structures using LCFRS, and to weaken
its independence assumptions through a DOP model.

7 Conclusion

A data-oriented model of discontinuous phrase-
structure has been presented which outperforms
all previously published results. This has been
achieved by combining a variety of techniques: a
linear context-free rewriting system as the symbolic
grammar, data-oriented parsing as the probabilistic
framework, a general method for enumerating
k-best derivations from a chart, and a coarse-to-fine
optimization to tame the complexity of DOP.

It turns out that using a grammar formalism with
a parsing complexity that is well beyond cubic is not
an impediment for making a DOP model with consid-
erably better performance. The remaining difficulty
with parsing longer sentences lies squarely on the
side of discontinuity, not DOP. It is quite plausible
that further innovations in binarization, pruning and
estimates will enable parsing longer sentences.
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